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In this document, we first provide more details about implementing
our InstanceTex. Then we present more texturing results, ablation
studies, and comparisons.

1 MORE TECHNICAL DETAILS
ControlNet Fine Tuning. To extend the original ControlNet in

alignment with InstanceDiffusion, we refine the depth-based Con-
trolNet and the lineart-based ControlNet with 10, 000 images we
collected from both indoor and outdoor scenes. For the instance level
captions, follow the data generation scheme proposed InstanceDif-
fusion [Wang et al. 2024], we utilize Grounded-SAM [Kirillov et al.
2023; Liu et al. 2023b] to generate the Bounding boxes and BLIP-
V2 [Li et al. 2023] to generate distinct instance prompts.

Since 3D bounding box information is required to train the pose-
aware position map ControlNet, we generate a dataset by ran-
domly selecting and arranging multiple objects from Objaverse
dataset [Deitke et al. 2023]. We generate a dataset containing 50, 000
images with ground-truth 3D position maps to train ControlNet
from scratch. We set the learning rate following the official imple-
mentation of ControlNet as 1𝑒 − 5 and 50000 iterations.
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only depth depth & normal depth & lineart

Fig. 1. Ablation study on the different geometric conditions, including depth-
only, depth with normal, and depth with lineart.

Handling distant objects and occlusions. When texturing scene
meshes, we encountered significant occlusions during the texturing
process, resulting in disordered and unaesthetic textures. Addition-
ally, when viewed from certain angles, distant objects will cause
textures that are not faithful to the mesh geometry. Inspired by
the two-stage inpainting paradigm, we have devised an effective
technique to address these challenges. For distant or occluded ob-
jects viewed from a single viewpoint, we choose not to unwrap the
object’s texture into an RGB UV texture, but instead utilize only the
latent UV texture. This approach is motivated by the assumption
that textures generated for distant objects tend to be inaccurate and,
as such, are not suitable to be unwrapped to the RGB texture. On
the other hand, the inaccurate latent UV texture, which represents
the latent of the early stage of denoising, has a reduced impact on
the generated RGB texture. Therefore, it still can be effectively lever-
aged for inpainting other viewpoints. Benefiting from this scheme,
our approach is further relieved from the disordered texture caused
by distant objects and occlusions.
In our implementation, we establish an object projected area

threshold of 80 × 80 pixels within a 512 × 512 image to determine
whether an object is distant/occluded.
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A photo of European style living room, comprising two a wooden chair with a leather surface, a leather surface sofa, a wooden table, a blue 
and white porcelain teapot and two cups on a wooden tray, a vase with a green plant.

Fig. 2. Full visual comparison of scene texture generation on an indoor scene (Furniture-1) with two individual texturing baselines SyncMVD [Liu et al. 2023a]
and Text2Tex [Chen et al. 2023].

2 ABLATION STUDY OF LINEART CONDITION
Lineart-based ControlNet is a robust and widely used tool in 2D
image generation, particularly for outdoor buildings and indoor
room scenes, which represent most cases in our experiments. We
found that using only the depth map as the geometric condition for
the scene mesh often results in images that fail to capture precise
local geometric details, leading to inconsistent and disordered tex-
tures. Therefore, we integrate lineart as an additional condition in
our pipeline to provide accurate local geometric cues for texture
generation.
As illustrated in Fig. 1, incorporating lineart as an additional

geometric condition yields better performance than using depth
condition alone. As referenced in the zoom-in figure (indicated by
the red boxes), our depth with lineart conditioned model demon-
strates the most consistency compared to other conditions. We also
evaluate the generated textures of commonly used normal maps
as a condition for comparison, which also demonstrate inferior
performance compared to our approach.

3 USER STUDY
We conducted a user study to evaluate InstantTex against other com-
pared methods, collecting feedback from 23 participants using the

Table 1. The questionnaires of the scene texturing evaluation assess the
aspects of aesthetics, harmony, realism, and prompt fidelity, respectively.

Please review the images then answer the following questions
to rate texture quality on a scale of 1 to 5.
(Q1) Please review the generated images about the overall

aesthetic appeal.
(Q2) Please review the generated images about harmonious

textures for each single object.
(Q3) Please review the realism of the generated images.
(Q4) Please review how the generated images match the de-

scription text.
(Q5) Please review the generated images about harmonious

textures for the whole scene.

same set of questionnaires. To comprehensively evaluate texturing
results, following TEXTure [Yu et al. 2023] and SceneTex [Chen et al.
2024], we designed 5 questions (listed in Table 1) to assess the tex-
turing in terms of aesthetics, harmony, realism, and prompt-fidelity,
respectively. Specifically, we designed two questionnaires on consis-
tency: one to evaluate texture consistency within individual objects,
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(b). A photo of a modern children‘s bedroom, comprising a single bed with a bright and colorful bedspread, 
two modern cylindrical bedside tables, a stylish cabinet, a modern closet filled with a variety of cloth in 
different colors, a cozy chair.

(a). A photo of traditional style bedroom, comprising a bed with a floral pattern on the bedding, a dark 
wooden wardrobe with visible wood grain texture, two wooden bedsides, a chair upholstered in velvet fabric.
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(c). A photo of a Chinese tea set table, comprising a set of porcelain tea cups with blue and white pattern , 
a porcelain tea kettle, a wooden table, a tablecloth with classical pattern, two traditional Chinese 
handkerchief, a wooden container and a wooden tea bowl, a wooden tray.

(d). A photo of a European style room, comprising four a wooden chair in Baroque style, a a wooden dinning 
table, a wooden low cabinet, a wooden wardrobe.
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Fig. 3. Evaluation on the texture generation for challenging complex cases, where the scenes EchoScene-1 and EchoScene-2 are generated by EchoScene [Zhai
et al. 2024], and Teaset-1 and Furniture-2 are randomly selected scenes with either intricate geometry or complex text prompts.

Table 2. We report User Study results for quantitative comparisons, includ-
ing Visual Quality (VQ), which summarizes the first three question scores,
Prompt Fidelity (PF) and Scene Consistency (SC) which reflects the last two
question scores.

Method VQ↑ PF↑ SC↑
TEXTure 1.39 1.19 2.19
Text2tex 2.45 1.12 3.88
SyncMVD 2.17 1.57 3.91

SceneTex (only indoors) 4.37 2.93 4.17
InstanceTex (Ours) 4.35 4.54 4.35

and another to assess scene texture consistency, which is often over-
looked by approaches that focus solely on individual objects. Then
we summarized the first three questions into the Visual Quality (VQ)
criterion by averaging the score, and the last two questions into
Prompt Fidelity (PF) and Scene Consistency (SC) criterion.
As shown in Table 2, benefiting from instance layout guidance,

InstantTex achieves textures with high fidelity to the given prompt
without losing the scene consistency, as reflected in the highest
PF and SC scores. Our performance on VQ score is also signifi-
cantly superior to the common baselines TEXTure [Yu et al. 2023],

Text2tex [Chen et al. 2023], SyncMVD [Liu et al. 2023a] and achieves
comparable results with SceneTex [Chen et al. 2024], an optimization-
based approach which consumes much more time to converge.

4 TEXTURING COMPLEX SCENES
To validate InstanceTex’s robustness and generality, we conduct a
stress test on several challenging scenes: noisy meshes with irregu-
lar scene geometry, scene meshes comprising sets of objects with
repeated elements, and complex text prompts. Initially, we utilize
EchoScene [Zhai et al. 2024], a scene layout-based 3D indoor scene
mesh generation approach, to produce the noisy meshes. Then we
randomly select several generated scene meshes and manually ob-
tain the corresponding scene layout. As illustrated in Fig. 3, the
texturing performance of IntanceTex on noisy meshes remains sta-
ble, comparable to its performance on manually-created meshes
with fine geometry. It verifies that InstanceTex does not impose
any special requirements on input meshes, as depth and position
maps are independent of vertex/face order. Furthermore, integrated
with layout-guided scene generation approaches, InstanceTex can
generate textured 3D assets in an end-to-end manner.
For more intricate scenes, we evaluate InstantTex on two addi-

tional cases: a tea set scene featuring repetitive elements like tea
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Fig. 4. Comparisons of texture generation for an outdoor scene, Block-1.

cups with the complex text prompt "blue-and-white porcelain", and
a furniture set scene with multiple chairs and closets. As illustrated
in Fig. 3 (c) and (d), InstantTex not only performs harmonious mesh
texturing across distinct objects, but also produces textures with
complex patterns that faithfully reflect input text prompts.

5 MORE VISUAL COMPARISON
For a detailed comparison, we show all of the outdoor and indoor re-
sults comparedwith TEXTure [Richardson et al. 2023], Text2tex [Chen
et al. 2023], SyncMVD [Liu et al. 2023a], and Meshy, each of which
exhibits two different views for better visualization, as well as the
rendered input meshes. Fig. 4, Fig. 5, Fig. 6 and Fig. 7 are four cases
of outdoor scenarios, named Block-1, Block-2, Block-3, and Garden.
Those methods show multi-view inconsistency results (e.g., the roof
of the wooden cabin in Fig. 7) and over-fragmentation (e.g., the
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Fig. 5. Comparisons of texture generation for an outdoor scene, Block-2.

exterior facades in Fig. 4). Besides, they are difficult to create and
interpret prompts for instance control (e.g., three villas with red
roof with a white stone wall and a white warehouse in Fig. 5). In
contrast, our InstanceTex achieves higher-quality texture, seamless,
and instance-aware texturing with accurate semantic alignment to
input prompts.
In addition, we show two multi-view renderings of generated

texturing rooms from 3D-FRONT [Fu et al. 2021] in Fig. 8, as the in-
door comparison. We add the results of SceneTex [Chen et al. 2024],
a specially designed method for texting indoor scenes. From these
comparisons, we can conclude that SceneTex is able to synthesize
high-quality textures with overall coherent styles. However, it fails
to match the input prompt correctly because it cannot precisely con-
trol the appearance of a target object. It is also worth noticing that
SceneTex is an entirely optimization-based pipeline and takes more
than 25 hours to coverage, whereas ours can synthesize textures
with comparable quality with greater fidelity to the text prompt in
around half an hour.
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Fig. 6. Comparisons of texture generation for an outdoor scene, Block-3.

6 QUANTITATIVE COMPARISON
We show the detailed quantitative comparison in Table 3 case by
case in our dataset. The number of instances in each scene is also
presented to indicate the complexity of each scene, ranging from 6
to 12. We first calculate the Fréchet Inception Distance (FID) [Heusel
et al. 2017] and Kernel Inception Distance (KID) [Bińkowski et al.
2018], which measure the difference between the output distribution
of the generated images of ControlNet and our textured objects
under specified viewpoints. Then we utilize CLIP-Score [Hessel et al.
2021] to validate the congruence between our generated texture and
the provided text prompts.

Ourmethod outperforms prior methods on all metrics in each case
by a significant margin. When the number of instances is similar, the
FID and KID metrics of compared methods for outdoor scenes are
higher than those for indoor scenes (e.g., , Block-1/Block-2 vs. Room
6). However, our method maintains relatively stable metric values
for both indoor and outdoor scenes. This demonstrates the superior
capability of InstanceTex in generating realistic and high-fidelity
textures across diverse scenes with different categories and styles. In
particular, InstanceTex achieves nearly 13% and 31% improvements
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Fig. 7. Comparisons of texture generation for an outdoor scene, Garden.

in CLIP-Score on indoor and outdoor scenes respectively, indicating
our model’s superiority in semantic-aligned texture generation.
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Table 3. Quantitative evaluation and comparison on texture generation on seven synthetic datasets. For the comparison of texture quality, Fréchet Inception
Distance (FID) [Heusel et al. 2017] and Kernel Inception Distance (KID) [Bińkowski et al. 2018] are recorded. CLIP-Score [Hessel et al. 2021] is calculated to
validate the alignment between the generated texture and the provided text prompts. Statistics including the number of instances (#Instances) are shown for
every scene example. The first- and second-place performances are highlighted using bold and italic fonts, respectively.
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