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Global prompt: An urban scene 
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A
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A theater with 
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residential 
building.

A two-story 
office made of 
gray and white 
stone bricks

A red 
car wash garage 

with two silver 
roller doors

(a) (b) (c) (d)

Fig. 1. We introduce InstanceTex, an automatic method for controllable texture synthesis for 3D scenes. Give an untextured scene composed of multiple
objects (a), InstanceTex enables users to specify instance-level text prompts (b), facilitating the generation of high-fidelity textures while maintaining stylistic
coherence (c). Compared to previous texture synthesis methods, our approach provides precise control over individual instances, i.e., enabling selective
modification of target objects, such as specific buildings indicated by arrows in (d).

Automatically generating high-quality textures for complex scenes remains
a significant challenge in computer graphics. Recent advances in text-to-
texture synthesis using 2D diffusion models have yielded impressive results
for individual objects but struggle to maintain style consistency and seman-
tic alignment when applied to larger scenes. These methods often require
extensive optimization time and substantial memory resources. To address
these challenges, we present InstanceTex, a novel approach to creating realis-
tic and style-consistent textures for large scenes containing multiple objects.
The core idea of InstanceTex lies in the instance-level controllable texture
synthesis, which utilizes an instance layout representation to allow precise
semantic control over individual instances while maintaining overall style
consistency. We also introduce a local synchronized multi-view diffusion
strategy to improve local texture consistency by sharing the latent denoised
content among neighboring views in a mini-batch. Additionally, we intro-
duceNeural MipTexture, inspired byMipmaps, specifically designed for scene
texture mapping to minimize aliasing effects. Extensive texturing experi-
ments on both indoor and outdoor scenes demonstrate that InstanceTex
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can produce high-quality and consistent textures that outperform existing
texture generation methods in terms of quality and consistency.
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1 INTRODUCTION
Automatic 3D content creation is a fundamental task in computer
graphics, and recent years have witnessed remarkable progress in
3D generation [Li et al. 2023; Shi et al. 2022]. One crucial goal of
this task is to provide realistic 3D models that can serve as essential
assets in a variety of downstream applications, such as games and
films, augmented reality, digital twins, etc. For many of these appli-
cations, texture generation is essential for authoring photo-realistic
3D objects without increasing their geometric complexity [Hassel-
gren et al. 2021; Knodt et al. 2023; Yuksel et al. 2019].
Creating high-quality textures remains a daunting and time-

consuming task, often requiring domain-specific expertise and labo-
rious manual efforts. Recent advances in mesh-conditioned texture
synthesis have made significant progress in producing realistic and
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diverse textures, largely due to the power of diffusion and large lan-
guage models in image generation via text prompting [Ramesh et al.
2022; Rombach et al. 2022; Saharia et al. 2022]. Seminal project-and-
inpaint methods [Chen et al. 2023b; Richardson et al. 2023] apply
an iterative scheme to generate partial textures with pre-trained
depth-aware diffusion models, which are then stitched together and
projected back to mesh vertices or UV atlas. To reduce the seam
and inconsistent artifacts caused by synthesizing partial texture
independently, holistic generation methods based on multi-view
diffusion (e.g., SyncMVD [Liu et al. 2023b] and TexFusion [Cao et al.
2023]) allow diffusion processes from different views to generate the
entire output simultaneously. However, performance drops signifi-
cantly as the number of views increases, particularly for complex
objects.
Moreover, existing text-to-texture methods typically focus on

texturing single objects with rather small-scale and simple mesh
geometry. When these methods are scaled up to generate textures
for larger scenes, issues such as texture seams and accumulated
artifacts are exacerbated. Specifically, occlusion among multiple
objects and the absence of instance information make texture gen-
eration prone to erroneous results due to inherent ambiguity. On
the contrary, texturing each object individually and then integrat-
ing them into a coherent scene poses a significant challenge in
terms of introducing stylistic inconsistencies. For example, in an
urban street scene, maintaining style consistency between adjacent
structures and their surroundings (e.g., buildings, street furniture,
and sidewalks) is essential. A recent approach, SceneTex [Chen
et al. 2024], has improved style and geometry consistency in indoor
scenes through multi-resolution texture field optimization, but the
method requires considerable time (up to 20 hours) to converge for
a single scene.
In this paper, we present InstanceTex, a novel framework for ef-

fectively creating high-quality textures for a wide range of scene
meshes, ranging from indoor to larger-scale urban scenes. At the
core of our method is an instance-level controllable texture syn-
thesis approach. We assume the input scene is instance-segmented
and build an instance layout representation that specifies every in-
stance’s location (i.e., 3D bounding box) and appearance style via text
prompts. As naively texturing every object individually can under-
mine scene style consistency, we first propose instance-conditioned
image generation based on the flexible inpainting framework [Chen
et al. 2023b]. To address discontinuities typically encountered dur-
ing texture generation, we divide the image inpainting process into
an instance-level inpainting stage and a scene-level inpainting stage.
The former allows precise control over each instance, while the
latter ensures global style consistency. We further enhance our
approach by incorporating a texture refinement strategy that in-
novatively integrates a local multi-view diffusion (MVD) into the
inpainting pipeline. This process unifies the diffusion process among
neighboring views to jointly denoise them, thereby improving local
consistency. Finally, to map the generated multi-view images back
to the UV atlas, we propose Neural MipTexture, a neural multiscale
texture mapping algorithm for creating high-fidelity texture maps.
Our Neural MipTexture is specially designed to address the prob-
lem of aliasing artifacts that commonly occur when texturing large
scenes.

We evaluate our approach and find it effective in maintaining
viewpoint consistency, where textures arewell alignedwith instance-
level text prompts and scene geometry. In summary, our contribu-
tions include:
• InstanceTex, a fully automatic method for generating high-quality
and style-consistent textures on large scene geometries, offering
precise instance-level control.

• An instance-conditioned diffusion model that guides the inpaint-
ing process based on an instance layout representation, enabling
the generation of multi-view textures with correct semantic align-
ment.

• A novel local multi-view diffusion approach that enhances local
style consistency in texture generation.

• Neural MipTexture, a neural multiscale texture mapping algorithm
that reduces the aliasing artifacts, resulting in high-fidelity texture
maps.

2 RELATED WORK
Our work diverges from traditional texture mapping approaches
for realistic 3D scene reconstruction [Bi et al. 2017; Fu et al. 2018;
Gal et al. 2010; Waechter et al. 2014; Xiong et al. 2023; Zhou and
Koltun 2014], which rely on a collection of captured photographs
and calibrated cameras. Instead, we focus on texture synthesis for
3D meshes based on given text prompts.

Text-driven mesh texturing. Many previous methods [Bokhovkin
et al. 2023; Chen et al. 2023a; Dundar et al. 2023; Gao et al. 2022,
2021; Oechsle et al. 2019; Siddiqui et al. 2022] leverage categorical
information as a prior and train generative models upon a specific
dataset (e.g., ShapeNet [Chang et al. 2015], urban meshes [Georgiou
et al. 2021; Kelly et al. 2018]) to synthesize textures or textured 3D
shapes. Although these methods can achieve plausible results, they
suffer from significant limitations: reliance on specific training data
restricts their generalizability to objects in other categories and
limits the diversity of generated textures.
More recently, diffusion models have emerged as robust zero-

shot generation approaches and have spawned many text-driven
texture generation methods. Text2mesh [Michel et al. 2022] learns
per-vertex color with local displacements guided by text, while CLIP-
Mesh [Mohammad Khalid et al. 2022] optimizes textured geometry
by deforming an initial sphere. Score distillation loss harnesses
the capability of the more advanced Stable Diffusion [Rombach
et al. 2022], and has been used in DreamFusion [Poole et al. 2023],
Magic3D [Lin et al. 2023], DreamGaussian [Tang et al. 2023], and
LatentPaint [Metzer et al. 2023]. However, they often result in over-
saturated colors, over-smoothed textures, and long convergence
times, hindering these optimization-driven approaches from being
used in practical applications.
Methods closely related to our work are optimization-free ap-

proaches. TEXTure [Richardson et al. 2023] alternates between a
pre-trained depth-conditioned diffusion model and an inpainting
diffusion model, partitioning the texture into three distinct regions
("keep", "refine", and "generate") and employing different strategies
for each segment to maintain local consistency within partial syn-
thesis. Text2Tex [Chen et al. 2023b] uses the same idea and proposes
a dynamic viewpoint selection to search the optimal viewpoints
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Fig. 2. Overview of InstanceTex. Starting from an untextured scene geometry, we build an instance layout representation, which can be fed into a diffusion
model with other scene conditions (i.e., depth, lineart and position maps). To generate textures, we adopt an inpainting scheme, where our core contribution
lies in the instance- and scene-aware diffusion and inpainting to generate multi-view images. A local multi-view diffusion (MVD) strategy is further proposed
to ensure texture consistency. Finally, we develop Neural MipTexture, a new texture mapping approach for large scene texture reconstruction.

based on dynamic partitioning iteratively. However, due to asyn-
chronous stochastic diffusion from different viewpoints, they suffer
from apparent seams, over-fragmentation, and long-range texture
inconsistency. As a concurrent work, TexFusion [Cao et al. 2023]
extends single-image diffusion and reformulates view-dependent
texture synthesis as a holistic auto-regressive model to mitigate
the inconsistent generation. Point-UV [Yu et al. 2023] leverages 3D
point diffusion to generate a global coarse texture but is less effec-
tive for scenes with more complex geometry due to the scarcity of
large-scale 3D datasets and the enormous amount of points required
to describe the intricate geometry of such scenes.

3D scene-level texture synthesis. The aforementioned works focus
primarily on texturing individual objects with small-scale geometry.
For larger urban scenes, FrankenGAN [Kelly et al. 2018] introduces
a cascade GAN model to adopt distinct texture generation for each
part of a coarse building, while PUT [Georgiou et al. 2021] con-
centrates on re-targeting texture from panoramic images to novel
urban area meshes employing a contrastive and adversarial model.
These approaches, however, heavily rely on the generative model
trained on specific datasets, resulting in limited texture diversity in
their results. RoomDreamer [Song et al. 2023] employs 2D diffusion
models to generate 3D scene geometry and textures based on text
prompts but modifies the input mesh. SceneTex [Chen et al. 2024]
generates textures for indoor scenes using a multiresolution texture
field and incorporates a cross-attention decoder to ensure style con-
sistency. However, SceneTex’s texture optimization via variational
score distillation is memory-intensive and requires around 20 hours
to converge, making it unsuitable for practical use. In contrast, we
adopt a flexible inpainting framework to texture larger scenes ef-
ficiently and integrate instance-conditioned diffusion and a local
MVD approach to resolve style inconsistency.

Text-to-image generation. Diffusion models have shown impres-
sive capabilities in image synthesis [Chang et al. 2023; Dhariwal and
Nichol 2021], using text conditions to control synthesis. Approaches
like Stable Diffusion [Rombach et al. 2022], Imagen [Saharia et al.
2022], GLIDE [Nichol et al. 2022] follow this paradigm and develop
various architectures for text-based image generation and editing.

Recent work has incorporated layout as a conditional representa-
tion for image generation [Fu et al. 2021; Jia et al. 2024; Taghipour
et al. 2024; Zheng et al. 2023], which provides semantics with spe-
cific spatial positions for more controllable inference. Furthermore,
layout with instance prompts [Wang et al. 2024] has extended tradi-
tional methods by incorporating additional decorative descriptions
for individual instances, increasing the precision of style and con-
tent control. While some approaches generate entire 3D scenes with
layout priors [Lu et al. 2024; Zhai et al. 2024], few have integrated
layout conditions into 3D-aware texture generation to improve
instance-level control. Our work fills this gap by leveraging 3D
bounding boxes as an intermediate layout representation and using
them alongside instance prompts to texture complex scene meshes
with detailed control over individual instances.

3 OVERVIEW
Our goal is to synthesize highly detailed and semantically aligned
textures for large-scale scene geometries, ensuring continuity both
locally and globally. Our framework takes three inputs: an untex-
tured 3D scene composed of multiple objects {O𝑖 }𝑛𝑖=1, a scene-level
text prompt y describing the global style, and instance-level text
prompts {y𝑖 } describing the desired appearance of each object.
The pipeline of our scene texturing is shown in Fig. 2. We as-

sume that the input scene is unwrapped, where UV coordinates
map each vertex of the mesh to a texel in a texture map. If not, we
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parameterize the mesh into a texture map using Blender’s Smart
UV mapping tool∗. The key to our framework is an instance lay-
out representation that specifies the location and text prompt for
every instance, enabling precise yet flexible instance-level control.
First, we define a set of viewpoints {𝑣 𝑗 }𝑚𝑗=1, from each of which we
render a depth map and a lineart map of the scene, as well as a pose-
aware position map of the observed instances. These three maps
and the rendered 2D instance layout are fed into a diffusion model
to generate instance-conditioned images, allowing flexible appear-
ance specification for multiple objects (Sect. 4.1). Next, we improve
the inpainting scheme [Chen et al. 2023b] to generate multi-view
images. A novel instance- and scene-aware inpainting module is
proposed to reduce instance information leakage and enhance style
coherence (Sect. 4.2). Furthermore, we develop a local multi-view
diffusion refinement to enhance local texture consistency (Sec. 4.3).
Finally, with the generated multi-view images, we propose Neu-
ral MipTexture, a neural multiscale texture mapping algorithm, to
obtain the complete high-fidelity texture maps (Sec. 5).

4 INSTANCE-CONDITIONED MULTI-VIEW TEXTURE
GENERATION

Our texture generation process follows a project-and-inpaint frame-
work [Chen et al. 2023b], which is more flexible than holistic gen-
eration methods [Cao et al. 2023; Liu et al. 2023b] for texturing
large scenes usually involving a complex setting of camera view-
points. Different from [Chen et al. 2023b], our work is based on an
instance layout representation, providing strong control over both
the global style and each detailed object appearance. Specifically,
given a sequence of pre-defined viewpoints, we iteratively synthe-
size and update the 3D texture. We first generate a view using an
instance-conditioned diffusion model and project this view onto the
scene geometry. Then we render the partially textured scene from
the next viewpoint and fill in the missing texture regions using an
instance-aware inpainting scheme.

4.1 Single-view Diffusion with Instance Layout
Instance layout and input conditions. We define a scene’s instance

layout L as a set of 3D bounding box B𝑖 and a textual description
𝑦𝑖 of every object instance. Our key insight is that this 3D rep-
resentation L, when rendered to 2D L2𝐷 , incorporates semantic
information associated with locations, enabling control over pow-
erful 2D diffusion models to generate textures that align with the
scene layout. To implement this level of instance-specific control
during the diffusion process, we adopt InstanceDiffusion introduced
by [Wang et al. 2024] as our base diffusion model.

Beyond the semantic alignment provided by the instance layout,
we also ensure that the generated textures accurately reflect the
scene’s geometry. To achieve this, we render a depth map and a
lineart map from a given viewpoint as geometric cues for the 2D
diffusion model.
Furthermore, directional prompts are crucial in texturing indi-

vidual objects [Chen et al. 2023b; Yu et al. 2023], as they help elimi-
nate semantic misalignment by providing relative pose information.
However, generating suitable directional prompts for a large scene
∗https://docs.blender.org/manual/en/latest/modeling/meshes/editing/uv.html

is challenging due to the varying poses of different objects within
the same scene. Fortunately, benefiting from our instance layout
L, we can define a pose-aware position map that represents the
relative pose between the current camera and the object instances.
Specifically, for each object, we rescale its 3D bounding box into the
[0, 1] range and project it into 2D space according to the viewpoint,
as defined by the following equation:

𝑐 (𝑝,B𝑖 ) =
𝑝 −𝑚𝑖𝑛(𝑝B𝑖

)
𝑚𝑎𝑥 (𝑝B𝑖

) −𝑚𝑖𝑛(𝑝B𝑖
) . (1)

Here, the value at any point 𝑝 on the position map corresponds to
its relative position within the instance bounding box B𝑖 . Therefore,
for each scene view, a position map containing multiple objects is
generated as an additional controllable condition.

The conditions of the depth map, lineart map, and position map
are usually incorporated into the diffusion model using Control-
Net [Zhang et al. 2023]. However, the public ControlNet, being
pre-trained on the architecture of Stable Diffusion [Rombach et al.
2022], can introduce noticeable artifacts when directly applied to
InstanceDiffusion. To facilitate geometry alignment, we fine-tune
ControlNet by training three adaptors with InstanceDiffusion for the
depth map, lineart map, and position map, respectively. Additional
details are provided in our supplementary material.

Modified diffusion process. The above conditions are fed to In-
stanceDiffusion for instance-conditioned texture generation. Specif-
ically, InstanceDiffusion, a modified version of Stable Diffusion, can
accept instance layouts as input conditions. We pre-encode the in-
stance layout with a specified UniFusion block [Wang et al. 2024]
and divide the denoising process into two stages: instance-level
and scene-level denoising. Given the instant layout, instance-level
denoising is first performed individually for each instance. Then, the
scene latent 𝑥𝜏𝑠 is produced by averaging the intermediate instance
latent 𝑥𝜏

𝑖
with the expression: 𝑥𝜏𝑠 = 1

𝑛 ·
∑𝑛
𝑖=1 𝑥

𝜏
𝑖
, where the parameter

𝜏 is the time step that the merging operation is inserted. Scene-level
denoising is then conducted by feeding the merged latent to the
subsequent denoising steps.

4.2 Instance and Scene Aware Texture Inpainting
After generating textures for a single view, the next step is to synthe-
size multi-view texture images with consistent styles. We leverage
a depth-based inpainting scheme, as introduced in Text2tex [Chen
et al. 2023b] and TEXTure [Richardson et al. 2023], to maintain
consistency between multi-view images. We start from a random
viewpoint and synthesize the corresponding image using the single-
view Diffusion model, conditioned on the instance layout, depth
map, lineart, and positional map. Then, we take an incremental in-
painting process for other viewpoints. For a specific viewpoint, we
render the mesh textured with an RGB UV texture representation
unwrapped from all previously synthesized images. Subsequently,
in each denoising step, we blend a noised latent 𝑥𝑡 of the rendered
image with the denoised latent 𝑥𝑡 of the current viewpoint using
an inpainting mask:

𝑥𝑡 = 𝑥𝑡 ⊙ 𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 + 𝑥𝑡 ⊙
(
1 −𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡

)
(2)
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Fig. 3. Illustration of instance and scene-aware texture inpainting.

where the inpainting mask 𝑀𝑖𝑛𝑝𝑎𝑖𝑛𝑡 is derived by rendering the
existing UV mask into the current viewpoint.

However, directly applying the above blending approach through-
out the entire denoising process can lead to severe artifacts due to
information leakage, i.e., one instance’s prompt affects the appear-
ance of another. This issue arises from the merging operation in
the InstanceDiffusion model, which disrupts the standard denoising
process by dividing it into instance-level and scene-level denois-
ing. This disruption hinders the correct derivation of the noised
latent introduced in the blending, as we can not infer the noised
latent of the instances before the merging operation. To address
this, We introduce another UV texture, referred to as latent UV
texture, which captures the latent before the merging operation.
This allows us to divide the multi-object inpainting process into two
stages: instance-level and scene-level inpainting, as illustrated in
Fig. 3. During instance-level inpainting (before merging), since the
denoising process is conducted individually for each instance, we
adapt the inpainting method to be instance-aware:

𝑥𝑡𝑖 = 𝑥𝑡𝑖 ⊙ 𝑀𝑖
𝑖𝑛𝑝𝑎𝑖𝑛𝑡 + 𝑥𝑡

𝑖
⊙
(
1 −𝑀𝑖

𝑖𝑛𝑝𝑎𝑖𝑛𝑡

)
, 𝑡 ∈ 𝜏 . . .𝑇 (3)

where 𝑥𝑡
𝑖
represents the 𝑖th instance latent in timestep t,𝑀𝑖

𝑖𝑛𝑝𝑎𝑖𝑛𝑡

is the corresponding individual inpainting mask, and 𝑥𝑡
𝑖
is derived

by adding noise towards the rendered latent image. During scene-
level inpainting (after merging), it generally follows the blending
approach introduced in Eq. 2:

𝑥𝑡𝑠 = 𝑥𝑡𝑠 ⊙ 𝑀𝑠𝑐𝑒𝑛𝑒
𝑖𝑛𝑝𝑎𝑖𝑛𝑡 + 𝑥𝑡𝑠 ⊙

(
1 −𝑀𝑠𝑐𝑒𝑛𝑒

𝑖𝑛𝑝𝑎𝑖𝑛𝑡

)
, 𝑡 ∈ 0 . . . 𝜏 (4)

where 𝑥𝑡𝑠 is the scene-level latent in time step t, 𝑀𝑠𝑐𝑒𝑛𝑒
𝑖𝑛𝑝𝑎𝑖𝑛𝑡

repre-

sents the inpainting mask for the entire scene, and 𝑥𝑡𝑠 is obtained
by adding noise towards the rendered RGB image. This two-stage
inpainting process enables InstanceTex to generate multi-view im-
ages with consistent object textures. It is worth noting that a scene
often contains many instances, making occlusions and small objects
texturing two common challenges. Our supplementary material
provides a detailed explanation of how we address these issues.

4.3 Texture Refinement via Local Multi-View Diffusion
For large-scale scene texture generation, inpainting-based meth-
ods often struggle to maintain geometric and semantic consistency
over long sequences. To improve the multi-view consistency, we

introduce a local multi-view diffusion (LMVD) module to refine the
images generated in previous steps.

In detail, the LMVD module can be integrated into the above in-
painting process. After generating a first batch containing 𝑘 images
I𝑏1 = {𝐼1, 𝐼2, . . . , 𝐼𝑘 } based on the inpainting framework, we feed
these images I𝑏1 to the LMVD module and apply the resampling
operation of a latent diffusion model [Rombach et al. 2022] to refine
local details of each image while maintaining its overall structure.
Each image 𝐼𝑖 is first encoded into a latent space, and noise is grad-
ually added to obtain a noisy latent image 𝑥𝑡

𝑖
at each intermediate

time step 𝑡 . Note that in our case, 𝑥𝑇
𝑖
at 𝑡 = 𝑇 is not pure Gaussian

noise to preserve the original image’s details. Next, starting from
𝑥𝑇
𝑖
, we perform the denoising process using latent-level multi-view

blending, which enables information exchange between different
views.

Inspired by synchronized MVD [Liu et al. 2023b], we synchronize
the diffusion process by sharing latent information among different
views. Specifically, at each denoising step, all latent images 𝑥𝑡

𝑖
are

projected onto the shared UV texture space. Information is then
shared across the overlapping regions of these views within the UV
domain. The latent values from different views are blended in these
overlapping regions in a weighted manner, where the weight𝑤𝑖 of
an image 𝐼𝑖 is computed as the cosine value between the normal
vectors of the visible faces in the 3D mesh and the view direction.
Finally, this texture is mapped back to the corresponding views to
yield an updated 𝑥𝑡

𝑖
that is used for denoising.

By sharing denoised content among local views, we can achieve
better local consistency. Furthermore, to ensure global consistency
as much as possible, we set𝑚 overlapping views between two con-
secutive batches.

5 TEXTURE MAPPING VIA NEURAL MIPTEXTURE
Once consistent multi-view images {𝐼 𝑗 }𝑚𝑗=1 have been generated,
the next step is to unwrap a texture map T from them. Since our
approach focuses on scene texturing, both near and distant objects
are always rendered within the same image. Unlike single-object
texturing, directly unwrapping the generated images onto a conven-
tional UV map can lead to severe aliasing artifacts, as most pixels
are allocated to the UV space of nearby objects, leaving only a
few for distant ones. Therefore, a single UV map resolution cannot
effectively capture scene details, e.g., causing blurring with low-
resolution UV maps and noisy patterns with high-resolution ones.
To address these aliasing artifacts caused by varying camera-

object distances, we proposeNeuralMipTexture, a neural pre-filtering
approach inspired by mipmapping and its neural extension Zip-
NeRF [Barron et al. 2023]. While Zip-NeRF represents a scene as
a 3D neural hash field and approximates the pixel color through
multi-sampling, we extend it to UV textures using a multi-resolution
2D hash map with a tiny MLP. Practically, for a given pixel 𝑝 in
the image space, we initially sample 𝐿 points {𝑞𝑖 }𝐿𝑖=1 uniformly
within the pixel (𝐿 = 6 by default). These sampled points are
then projected onto the UV space to obtain the corresponding
UV coordinates {𝑢𝑖 }𝐿𝑖=1. We then query the corresponding features
{𝑓𝑖 }𝐿𝑖=1 from the neural UV field, which is parameterized by a multi-
resolution 2D hash map. These features are averaged to get a feature

5



SA Conference Papers ’24, December 3–6, 2024, Tokyo, Japan M. Yang, J. Guo, Y. Chen, et al.

𝑓 = 𝐴𝑉𝐺 ({𝑓𝑖 }𝐿𝑖=1) to represent the pixel. Then 𝑓 is fed into a tiny
multi-layer perceptron (MLP) ℎ(𝑓 ;Φ) to derive the final pixel color
𝑐𝑝 .

The neural UV field is optimized using an L2 loss between the
ground truth color 𝑝 and the predicted color 𝑐𝑝 :

𝐿(𝑝) =
������ℎ (

𝐴𝑉𝐺

(
{𝑓 (𝑞𝑖 ;𝑝)}𝐿𝑖=1

)
;Φ

)
− ˆ𝑐𝑝

������
2

(5)

Benefiting from the multi-resolution Hash map, the whole optimiza-
tion converges quickly (within a few minutes) with stable gradients.
Note that while SceneTex [Chen et al. 2024] uses a similar multi-
resolution 2D hash map to smooth back-propagated gradients, In-
stanceTex differs in its unique goal of resolving aliasing in textures
and its specific implementation of multi-sampling within a pixel.

6 RESULTS AND EVALUATION
We demonstrate the effectiveness of our method through high-
fidelity texturing results on different categories. We then conduct
qualitative and quantitative comparisons with competing methods
and validate our design choices through ablation studies.

6.1 Experimental Setup
Dataset. For performance evaluation and comparisons, we carry

out experiments on 11 large scenes, including 2 indoor scenes from
3D-FRONT [Fu et al. 2021] used in SceneTex, 2 indoor scenes gen-
erated by EchoScene [Zhai et al. 2024], 3 manually created scenes
featuring furniture and tea sets, and 4 outdoor scenes come from
public datasets (Block-2 [Kelly et al. 2018]) or collected from Sketch-
fab [Ske 2022]†.

Implementation details. For each scene in our evaluation dataset
containing multiple instances, we manually select 15-40 surround-
ing cameras to fully cover all instances. We manually generate the
3D-oriented bounding boxes for all instances within the scene mesh
and derive 2D layouts by projecting these 3D bounding boxes into
preset viewpoints. Our diffusion pipeline is developed based on
InstanceDiffusion and ControlNet module v1-1 of the Huggingface
Diffusers library, with projection functions implemented using Py-
torch3D. Since edges deliver vital cues for elements like windows
and cages in urban scenes, we externally integrate rendered lineart
maps as additional conditions to enhance the fidelity of synthesized
texture with mesh geometry details. We render these edge maps
using Blender’s "Freestyle" rendering feature‡. The default batch
size for the local MVD is set to 8. For the Neural MipTexture module,
we set the learning rate as 1e-3 to optimize the neural texture field,
with the entire optimization using all synthesized images and con-
verging after approximately 2000 iterations. To facilitate smoother
texture, we additionally apply a Laplacian smoothing loss alongside
the re-rendered RGB loss during optimization. The overall synthe-
sis process takes around 30 minutes on average to converge on an
NVIDIA® RTX 4090.

†We carefully select meshes where artists had not restricted use in generative AI models
at the time of download.
‡https://docs.blender.org/manual/en/latest/render/freestyle/introduction.html

6.2 Qualitative Evaluation
We compare our approach against state-of-the-art texture genera-
tionmethods, including Text2tex [Chen et al. 2023b], TEXTure [Richard-
son et al. 2023], SyncMVD [Liu et al. 2023b], and SceneTex [Chen
et al. 2024], and Meshy [Meshy 2023], a commercial generative tool
known for consistent 3D object texturing. All methods were tested
using the same input prompts and viewpoints for a fair comparison.

Fig. 4 shows the qualitative comparisons for outdoor and indoor
scenes, respectively. Although TEXTure generates high-quality tex-
tures for individual objects, it still suffers from over-fragmentation
and hallucinates scene components when texturing both outdoor
and indoor scenes. Text2Tex easily generates salt-and-pepper noise
and obvious seams, and also struggles to keep global style consis-
tency across objects. SyncMVD and Meshy offer consistent style
schemes but tend to generate over-saturated colors and misinter-
pret prompts. While SceneTex, designed specially for texting indoor
scenes, can synthesize high-quality textures with overall coher-
ent styles, it fails to accurately match the input prompts due to
its inability to precisely control the appearance of target objects,
despite considering instance texture features. In contrast, guided
by instance layout representation, our InstanceTex demonstrates
higher quality, seamless, and instance-aware texturing results with
accurate semantic alignment to the input prompts.

Comparison to individual texturing baselines. We also compare
InstanceTex against baselines on individual object texturing, where
the input scene is first separated into distinct instances, and textures
are generated for each object according to specified instance text
prompts. For a fair comparison, we combine scene-level prompts
with instance-level prompts to condition the texture generation
of each object. We compare InstanceTex with two representative
single-object texturing approaches: Text2tex [Chen et al. 2023b]
and SyncMVD [Liu et al. 2023b]. As shown in Fig. 5, the individual
texturing results of Text2Tex and SyncMVD generally lack global
consistency and result in disharmonious textures, particularly in
indoor scenes with uniformly styled furniture. In contrast, the ren-
derings of InstanceTex align with specified instance prompts and
maintain global style consistency across objects, as illustrated by
the consistent blue design on the teacups and the uniform texture
pattern between the leather sofa and chairs.

Evaluation on complex scenes. We further conduct a stress test
on several challenging scenes, including noisy meshes with irreg-
ular geometry (produced by a layout-based 3D scene generation
approach EchoScene [Zhai et al. 2024]), and complex scenes with
repetitive objects and complicated text prompts. As shown in Fig. 6,
the texturing results on EchoScene validate InstanceTex’s robust-
ness. Besides, InstanceTex still achieves consistent texturing onmore
intricate scenes with complex patterns that cause high occlusions.
More results are available in the supplementary material.

6.3 Quantitative Evaluation
For quantitative evaluation, we utilize three common metrics for
texture generation assessment. We first utilize CLIP-Score [Hessel
et al. 2021] to assess how well the generated textures align with
the provided text prompts. Then we calculate the Fréchet Inception
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Table 1. Quantitative comparison on the performance of texturing results
on two indoor and four outdoor scenes. The first- and second-place perfor-
mances are highlighted using bold and italic fonts, respectively.

Methods Indoor Scenes Outdoor Scenes
FID↓ KID↓ CLIP ↑ FID↓ KID↓ CLIP ↑

TEXTure 103.21 8.19 19.43 122.75 9.90 18.60
Text2tex 96.23 9.73 22.63 111.21 9.54 19.75
SyncMVD 92.44 9.54 22.48 109.52 9.73 20.66
Meshy 96.03 7.61 21.98 89.3 7.56 21.28

SceneTex 91.56 6.56 23.69 / / /
InstanceTex 83.62 6.19 27.35 82.91 5.96 27.90

Distance (FID) [Heusel et al. 2017] and Kernel Inception Distance
(KID) [Bińkowski et al. 2018], which measure the difference be-
tween the output distribution of the generated images of Instance
Diffusion with ControlNet and our textured objects under specified
viewpoints. (we used 40 views for evaluation in our experiments).
The generated images of Instance Diffusion serve as the ground
truth for all comparison methods because Stable Diffusion struggles
to synthesize well-aligned images with object-level prompts.

Table 1 reports the quantitative evaluation results, demonstrating
that our method significantly outperforms prior methods across all
metrics. Notably, InstanceTex achieves nearly 13% and 31% improve-
ments in CLIP-Score on indoor and outdoor scenes respectively,
indicating our model’s superiority in semantic-aligned texture gen-
eration. Moreover, the improvements in FID and KID demonstrate
the superior capability of InstanceTex in generating realistic and
high-fidelity textures across diverse scenes with different categories
and styles. Detailed quantitative comparisons for each scene in our
dataset are available in the supplementary material.

6.4 Ablation Study
Instance-level conditions with instance layout. Leveraging instance-

level conditions enhances the generation of accurate texture. As
illustrated in the first column in Fig. 7, without instance layout as
a condition, the synthesized texture lacks fidelity toward the text
prompts (e.g., the umbrella is not green as specified in the given text
prompt in Fig. 4). The CLIP-Score in Table 2 further verifies that the
instance layout is vital for correct semantic alignment.

Instance-aware inpainting scheme. Given that our denoising pro-
cedure is divided into two stages, namely instance-level and scene-
level generation, directly conducting inpainting for the scene con-
tent inherited from previous frames induces scene-level context into
instance-level denoising. Such an implementation would disrupt
the independent instance generation inherent in instance-level de-
noising, potentially resulting in instance-level information leakage.
As shown in the second column in Fig. 7, the green pattern from
the prompt "a green sunshade" is leaked into the "wooden garden
shed". Moreover, only leveraging scene-level inpainting increases
the difficulty for the diffusion model to produce harmonized results,
thereby disturbing the texture consistency (see the second row in
Fig. 7). Our introduced instance- and scene-aware inpainting scheme
largely resolves the information leakage and texture incoherence,
as demonstrated in all the metrics in Table 2.

Table 2. Ablation study of InstanceTex using Garden scene.

Methods FID↓ KID↓ CLIP ↑
w/o Instance layout 94.50 7.91 18.67

w/o Instance-level inpainting 117.21 9.65 20.85
w/o Position map 98.19 8.23 23.32
w/o Local MVD 89.35 6.58 26.41

w/o Neural MipTexture 95.34 8.35 27.45
Full model 88.18 6.47 28.15

Position map condition. Previous studies [Chen et al. 2023b; Liu
et al. 2023a,b] have shown the significance of directional prompts in
maintaining coherence in 3D content generation. However, it is non-
trivial to represent the large scene containing multiple instances by
text prompts. This motivates us to propose the pose-aware position
map as directional guidance. As demonstrated in the third column
in Fig. 7, without the position map, the generation result lacks
consistency and produces sharp edges during inpainting.

Local MVD refinement. The multi-view diffusion model has show-
cased superior performance in 3D content synthesis. Therefore,
we reformulate this strategy as an image-to-image refiner in our
pipeline. The fourth column in Fig. 7 shows that our local MVD
refinement resolves the visual inconsistency by the multi-view de-
noising process. The numerical values in Table 2 also demonstrate
the improved coherence of the generated textures.

Neural MipTexture. To resolve the aliasing effects caused by vary-
ing camera-object distances, we leverage a neural Mip UV texture
representation to unwrap the texture from synthesized images. As
shown in the fifth column in Fig. 7, the absence of Neural Mip-
Texture results in the textures exhibiting local noisy artifacts, thus
significantly decreasing the fidelity of the rendered image.

7 CONCLUSION AND FUTURE WORK
We presented InstanceTex, a novel method for text-driven texture
generation for 3D scenes. Our major contribution lies in incorpo-
rating instance layout in the diffusion model, enabling precise con-
trol over individual objects while maintaining high-quality results.
Specifically, we proposed an instance-aware inpainting scheme and
a local multi-view diffusion strategy to ensure texture consistency.
We also developed a new texture mapping approach tailored for
large scene texture reconstruction. We evaluated InstanceTex on
several large 3D scenes and demonstrated its advantages over state-
of-the-art methods. We believe our work represents a significant
advance in enabling non-experts to create large-scale 3D assets.

Limitations and future work. Due to the image resolution limi-
tation (i.e., 512 × 512) of InstanceDiffusion, the generated textures
still lack sufficient high-definition details. Second, pre-sampling a
well-distributed sequence of viewpoints with complete coverage
over the scene surface is crucial for generating satisfactory results,
particularly in large-scale scenes. Inspired by the Next-Best-View
planning [Maldonado et al. 2016; Smith et al. 2018] used in geome-
try reconstruction, we plan to develop an automatic view planning
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algorithm to improve the texturing efficiency and quality, while min-
imizing the number of views needed. Furthermore, we observed that
shading effects are sometimes inevitably integrated into the gen-
erated images, leading to unwanted shadows and highlights. This
issue could potentially be addressed by incorporating a material gen-
eration model to replace the base model. Finally, our current focus
is on object-level conditioning. In the future, we aim to incorporate
more detailed structured representations commonly found in scene
models and implement texture reuse (such as facade/door/window)
to enhance high-definition control over the structured elements.
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Text2TexTEXTure SyncMVD Meshy InstanceTex

A French style small town, comprising two wooden bench, with three villas with red roof with a white stone wall, and a white warehouse with roller shutter
door, a gray mini van, and a red BMW sedan.

An urban scene comprising multiple buildings, a gray supermarket with a white banner on top, a church with red-brick roof and white wall, a gray car wash
garage with two silver roller doors, a theater with golden decoration, a two-story office made of gray and white stone bricks, and a tall brown and white
residential building.

A mordern house backyard, with a small white artificial swimming pool filled with water, a metal freestanding barbecue grill, a children playhouse with a slide
and a swing, two woonden garden shed, three wooden teak lounge with brown cushions, and two sets of wooden table and chairs with a green sunshade.

A bedroom with wooden furniture, comprising a red fluffy sofa chair with pillows, a long white cabinet shelf desk with golden edging pattern, a wooden
vintage bench, two brown double-layer nightstand beside the bed, a double bed with red pillows and a blue carnation patterns bed sheets on it, and a
wooden cabinet with four drawers, a solid wooden wardrobe, a wooden stool with red velvet surface, and a beige zabuton cushion.

Text2TexTEXTure SyncMVD Meshy InstanceTexSceneTex

A mordern girl's bedroom, with a double bed with four pillows, a white wooden storage cabinet, a white woodeen vanity table, two bedside tables with drawers,  
a chair with a red velvet surface,  and a white wardrobe with red floral pattern.

Fig. 4. Visual comparison of text-guided texture generation on three outdoor scenes (Block-1, Block-2, Garden) and two indoor scenes (Room-3 and Room-6).
The detailed comparisons are shown in the zoomed-in insets.
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Fig. 5. Visual comparison against two individual texturing baselines, SyncMVD and Text2Tex, on an indoor scene (Furniture-1). Due to the page limit, we only
show the overall view of our textured model, which is shown on the left to the zoomed-in insets. Please refer to the supplementary for a full comparison.

a). b). c). d). 

Fig. 6. Evaluation on the texture generation for challenging complex cases, where the scenes in (a) and (b) are generated by EchoScene [Zhai et al. 2024], while
(c) and (d) are randomly selected scenes with either intricate geometry or complex text prompts.

w/o Position mapw/o Instance layout w/o Instance inpainting w/o MVD refinement w/o Neu. MipTexture Our full model

Fig. 7. Ablation Study on the key components of InstanceTex using the Garden scene.
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