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Diff-PCG: Diffusion Point Cloud Generation Conditioned on Continuous
Normalizing Flow

Ting Yu · Weiliang Meng · Zhongqi Wu · Jianwei Guo · Xiaopeng Zhang

Abstract With the continuous advancement of computer
technology and graphic capabilities, the creation of 3D point
clouds holds great promise across various fields. However,
previous methods in this area are still facing huge chal-
lenges, such as complex training setups and limited pre-
cision in generating high-quality 3D content. Taking in-
spiration from the denoising diffusion probabilistic model,
we propose Diff-PCG, a Diffusion Point Cloud Generation
Conditioned on Continuous Normalizing Flow for 3D gen-
eration. Our approach seamlessly combines forward diffu-
sion and reverse processes to produce high-quality 3D point
clouds. Moreover, we include a trainable continuous nor-
malizing flow that controls the foundational structure of the
point cloud to enhance the representation ability of the en-
coded information. Extensive experiments validate the ef-
ficacy of our approach in generating high-quality 3D point
clouds.

Keywords 3D Shape Generation · Diffusion Model ·
Continuous Normalizing Flow · Point Cloud

1 Introduction

The rapid progress in computer graphics and artificial in-
telligence has fueled the growth of 3D content generation
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Fig. 1 Examples of 3D shapes generated by our proposed Diff-PCG,
including chairs, airplanes, and cars. Each sample contains 4096
points, rendered by Mitsuba.

in various domains, including game, film, augmented real-
ity, and metaverse. Traditional approaches rely on manual
modeling or modification, resulting in high-quality models
but requiring extensive manual labor and time investment.



2 Ting Yu et al.

However, the emergence of generative modeling for three-
dimensional shapes holds immense potential across diverse
fields of 3D content creation and has become a thriving
research area. 3D generative models currently in use are
built on different frameworks, such as generative adversarial
networks (GANs) [1–3], 3D CNNs [4], variational autoen-
coders (VAEs) [5–8], normalizing flows [9, 10], autoregres-
sive models [11, 12], and others [13, 14]. At the same time,
unlike the RGB format of 2D images, 3D assets have rich
expression structures, including mesh, voxel, point clouds,
function, implicit field, etc.

Point clouds have gained popularity as a common 3D
representation due to their ability to capture fine details and
achieve high resolutions in comparison to voxel grids [4,15].
They act as an important step toward using more advanced
representations such as meshes [16] and are known for their
capacity to model complex 3D structures with precision
[17–19]. Machine learning techniques have shown promise
in generating 3D point clouds [20, 21]. However, these ap-
proaches face various challenges that require continuous re-
search and development efforts, including the need for ex-
tensive training data, long training times, inference dura-
tions, and limitations in output quality. Yang et al. [10] pro-
posed a flow-based learning model capable of learning latent
features of point cloud shapes, thereby better-guiding point
cloud generation based on inverse transformations. How-
ever, flow-based models also face challenges such as compu-
tational complexity and training difficulties. Luo et al. [22]
introduced diffusion models into 3D point cloud generation
tasks; however, as mentioned by zhou et al. [23], the perfor-
mance of PointNet encoders in point cloud reconstruction is
not as impressive as PVCNN module [24].

In this paper, we propose Diff-PCG, a point cloud gen-
eration framework that integrates continuous normalizing
flow modules along with diffusion models. Our method uti-
lizes the power of the diffusion model for generating point
clouds while leveraging the continuous normalizing flow to
enhance the expressive capacity of the latent variable in cap-
turing shape priors. By building upon the foundational prin-
ciples of the diffusion model, we employ a forward diffu-
sion process that introduces random coordinate bias to the
point cloud, progressively transforming it into a fully disor-
dered state. Subsequently, the point cloud is systematically
denoised through the reverse process to restore its original
shape. Furthermore, we demonstrate that using a learnable
continuous normalizing flow to represent the shape prior of
the point cloud expands the range of shape latent variable
expressions available.

To summarize, our main goal is to propose a robust, ef-
ficient, and accurate point cloud generation algorithm, with
the following significant contributions:

• We propose a diffusion-based point cloud generation
framework with PVCNN as the encoder, which not only

captures point cloud features better than methods based
on PointNet but also exhibits greater stability in training
compared to previous methods.

• We parameterize the shape latent variable with a Contin-
uous Normalization Flow (CNF), thereby enhancing its
ability to express the details of shapes.

• We conduct extensive experiments, validating that our
model achieves competitive performance in the task of
point cloud generation.

2 Related Work

In this section, we review existing diffusion models and ex-
plore using continuous normalization flow to learn shape
priors for our point cloud generation. We also discuss al-
ternative deep learning algorithms, emphasizing key chal-
lenges and the need for further research to improve preci-
sion, efficiency, and versatility in generation models.
Diffusion Model. The diffusion model is a highly effective
generative model renowned for its ability to generate realis-
tic images. Initially introduced by Sohl-Dickstein et al. [25]
in the realm of physics, this model was later adapted for
deep learning-based image generation. However, the orig-
inal work primarily focused on mathematical derivations
and lacked practical code demonstrations, which limited
its visibility. Fortunately, subsequent advancements in the
field propelled the diffusion generative model into the spot-
light. Song et al. [26] introduced the Neural CDE Sampler
(NCSN), while Ho et al. [27] from Google Brain presented
the Denoising Diffusion Probabilistic Model (DDPM). Ad-
ditionally, because DDPM parameterizes only the mean
of the Gaussian distribution, subsequent improvements by
DDIM [28] involve parameterizing both the mean and the
variance. These significant contributions built upon the orig-
inal concept and brought substantial progress by achiev-
ing remarkable results. As a result, the diffusion generative
model has firmly established itself as a prominent approach
in the field.
Point Cloud Generation. Deep learning has made substan-
tial advancements in improving the performance of various
tasks related to point clouds, which are sets of 3D points
representing the surfaces of objects or scenes. These tasks
include classification [29, 30], segmentation [31], and re-
construction [32]. In recent years, there has been remark-
able progress in the field, particularly in the area of point
cloud synthesis which involves generating or completing
point clouds from limited or incomplete data.

Before the breakthrough of the diffusion model, the task
of point cloud generation was mainly completed by some
previous methods. For instance, variational auto-encoders
(VAEs) [33] encode point cloud features into a Gaussian
distribution space and then sample from that distribution to
recover point cloud data [34, 35]. Deep AutoEncoder [5]
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Fig. 2 The architecture of our model is structured as follows: (a) During the training process, we convert the point cloud into a latent variable
using the PVCNN module, which acts as a trainable parameter for the neural network of continuous normalizing flow and as an input parameter
for the diffusion model. (b) For the generation process, we sample noisy priors and 3D noisy point clouds from normal distributions. Subsequently,
a fixed number of reverse diffusion steps are executed to generate the shape.

demonstrates superior geometric data representation, en-
abling shape manipulation and improved generative models
for point clouds. Additionally, generative adversarial net-
works (GANs) [36] have been explored for both raw data
space and latent space generation of point clouds. These
methods [3, 37] often employ autoencoders trained using
heuristic loss functions such as Chamfer distance (CD) or
earth mover’s distance (EMD) to measure the dissimilar-
ity between two sets of points. Furthermore, auto-regressive
models [11, 38, 39] with a discrete point distribution have
been employed to generate point clouds, with a fixed num-
ber of points per shape.

Despite these advancements, many existing methods in
point cloud synthesis often focus on sampling a specific
number of points from the high-dimensional distribution of
the point cloud to create the final point cloud data. While this
approach has been successful in various applications, further
research is needed to explore and refine the generation and
completion of point clouds, particularly in scenarios with
complex or irregular data distributions. The continuous de-
velopment of deep learning techniques is expected to drive
further progress in this field, enabling more accurate and
versatile point cloud synthesis methods. Overall, these ap-
proaches have significantly advanced the field of point cloud
generation, but there is still ample room for further innova-
tion and improvement.

3 Method

3.1 Overview

The overall flowchart of our algorithm framework can be
seen in Fig. 2. As highlighted in the study by Zhou et
al. [23], the proficiency of PointNet encoders in recon-
structing point clouds falls short compared to the PVCNN
module [24]. Therefore, to enhance the performance of the

diffusion-based point cloud generation method, during the
training phase of our methodology, we employ the PVCNN
[24] model as the encoder of our architecture, encoding the
input point cloud data into latent variables. These latent vari-
ables serve as representations that encapsulate the underly-
ing shape characteristics. Our approach differs from tradi-
tional methods by not directly sampling the Gaussian prior
for the shape hidden variable from a standard normal distri-
bution. Instead, we implement a process where these latent
variables undergo continuous normalized flow during train-
ing. This flow significantly shapes the distribution of these
variables in a more adaptable way, enhancing the distribu-
tion’s capacity to handle data intricacies.

Our training framework primarily involves encoding
input point clouds into shape latent variables using the
PVCNN module. Subsequently, these shape latent variables
undergo learning within a continuous normalization flow
module and simultaneously serve as input parameters for
our neural network during training. Our training loss com-
prises two main components: one involves the KL diver-
gence between the precomputed Gaussian distribution of
point clouds during the forward diffusion process and the
Gaussian distribution fitted by the neural network during the
reverse diffusion process. The other component pertains to
the KL divergence between the Gaussian distribution of the
shape latent variables learned from the continuous normal-
ization flow module and the actual Gaussian distribution ob-
tained from the encoder’s encoding process.

During the generation phase after training, we sample
from a normal distribution to obtain noise prior and 3D noise
point cloud data. The noise prior transforms into the shape
latent variable through continuous normalization flow. Both
transformed shape latent variables and 3D noise point cloud
data feed into the trained neural network. Our generated
point cloud data exhibit high quality, and achieve compet-
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itive quantitative indicators and visualizations compared to
previous methods.

Subsequent sections elucidate the principles behind the
diffusion model, encompassing forward and reverse diffu-
sion processes. We delve into the continuous normalized
flow concept and its role in learning shape priors. Finally,
we present the training objective, which involves compos-
ing the training loss function.

3.2 Diffusion Model for Point Cloud Generation

The original diffusion model, designed for generating 2D
images, has been transformed to make it applicable for the
generation of 3D point clouds. Instead of relying on 2D-
pixel noise, we have replaced it with a bias introduced into
the 3D position coordinates. This modification involves two
distinct yet interconnected processes:
(i) Fixed Forward Diffusion Process (q): In this process,
a fixed forward diffusion process denoted as ”q” comes into
play. It gradually introduces random 3D Gaussian noise into
the initial point cloud. This noise addition takes place pro-
gressively until the point cloud evolves into a state where it
consists solely of noise. This marks the initial phase of the
adaptation.

Specific to the 3D point cloud data format, let’s consider
the dataset q(X(0)) from which we extract a point cloud
(X(0) = {x(0)

i }Ni=1). This point cloud consists of N points,
where each point xi is drawn from a distribution q(x

(0)
i |z),

with z representing the latent variable that characterizes the
shape of the given point cloud. As mentioned earlier, the for-
ward diffusion process gradually transforms this point cloud
into a disordered state. To model this process, we adopt a
Markov chain framework:

q(x
(1:T )
i |x(0)

i ) =

T∏
t=1

q(x
(t)
i |x(t−1)

i ) (1)

The equation above succinctly formulates the Markov
diffusion kernel q(x

(t)
i |x(t−1)

i ). Which is rooted in the
framework of the original diffusion model [25], and serves
as the foundational framework upon which our adaptation
for 3D point cloud generation is constructed. By using this
kernel, we can precisely control the diffusion process, en-
abling the structured point cloud to change into a noise-
dominated form, and then denoise it to restore the original
shape:

q(x(t)|x(t−1)) = N (x(t)|
√

1− βtx
(t−1), βtI), t ∈ [1, T ]

(2)

where the βt parameter is incrementally adjusted in DDPM
using a linear strategy. Also, with preconfigured parameters

for the forward diffusion process, we utilize the cumula-
tive nature of the Gaussian distribution to derive directly the
Gaussian distribution for the forward diffusion at any time
step t from the original image x(0). This direct derivation
enables obtaining the resulting image x(t) directly:

q(x(t)|x(0)) = N (x(t);
√
ᾱtx

(0), (1− ᾱt)I),

αt := 1− βt, ᾱt =

t∏
s=0

αs

(3)

This allows us to randomly select a time step t from the
range [0, T ] while using stochastic gradient descent for loss
computation, adding flexibility to the training.

Another benefit is the option to adjust the neural net-
work to forecast noise ϵθ(x

(t), t) at time step t rather than
the mean µθ(x

(t), t) of the Gaussian distribution. Predicting
noise is typically simpler than predicting the mean, offering
advantages. Their equivalence can be derived as follows:

µθ

(
x(t), t

)
=

1
√
αt

(
x(t) − βt√

1− ᾱt
ϵθ

(
x(t), t

))
(4)

(ii) Trainable Reverse Denoising Process (pθ): Unlike the
fixed forward diffusion process, our adaptation’s second part
involves a trainable reverse denoising process performed by
a neural network (pθ). This network aims to learn and exe-
cute the transformation of a noise-only point cloud back into
a structured shape. Through gradual denoising, it restores
the underlying shape from the noisy point cloud generated
during forward diffusion.

If we have access to the inverse sampling distribution
p(xt−1|xt) at each time step t, we can gradually reconstruct
the original point cloud from pure noise. However, as this
distribution is often unknown, we need to learn its mean and
variance through a neural network. In the original DDPM
formulation, the variance is predetermined and doesn’t need
learning. Hence, we use the neural network to approximate
the distribution, ensuring an efficient fit:

pθ(x
(t−1)|x(t), z) = N (x(t−1);µθ(x

(t), t, z), σθ(t)),

σθ(x
(t), t, z) = σ2

t I = βtI
(5)

then we can formulate the reverse diffusion process at any
time step:

pθ(x
(0;T )|z) = p(x(T ))

i∏
t=1

pθ(x
(t−1)|x(t), z) (6)

where µθ symbolizes the mean of the point cloud’s associ-
ated distribution, governed by θ, while the latent variable z

embodies the point cloud’s shape features. For simplicity,
we denote the overall point cloud distribution as X(0) in
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Fig. 3 Normalizing flow aims to model complex probability distribu-
tions, allowing the generation of samples that align with the true data
distribution from a simple and easily samplable distribution.

subsequent sections. As points within a cloud are indepen-
dently sampled, the cloud’s overall probability is obtained
by multiplying probabilities assigned to each point:

q(X(1·T )|X0) =

n∏
i=1

q(x
(1:T )
i |x(0)

i ),

pθ(X
(0:T )|z) =

n∏
i=1

pθ(x
(0:T )
i |z)

(7)

3.3 Continuous Normalizing Flow for Shape Prior

The original normalizing flow [40] applies invertible map-
pings (f1, ..., fn) to latent variable y from distribution P (y).
This transforms an initial distribution into a more complex
one, generating output (x = fn ◦ fn−1 ◦ ... ◦ f1(y)). To
find the output’s probability density, we use the change of
variables formula. The inverse flow operation y = f−1

1 ◦
... ◦ f−1

n (x) computes y from x, as shown in Fig 3. In prac-
tical implementations, these mappings are neural networks
designed for efficient Jacobian determinant computation.

Chen et al. [41] extended the concept of normalizing
flow from a discrete sequence to a continuous transfor-
mation. This extension involves defining the transforma-
tion f using a continuous-time dynamic equation: ∂y(t)

∂t =

f(y(t), t), where f is a neural network with a flexible ar-
chitecture. Consequently, the continuous normalizing flow

(CNF) model for the distribution P (x), given a prior distri-
bution P (y) at the initial time, can be expressed as follows:

x = y(t0) +

∫ t1

t0

f(y(t), t)dt, y(t0) ∼ P (y),

logP (x) = logP (y(t0))−
∫ t1

t0

Tr

(
∂f

∂y(t)

)
dt

(8)

To find the value of y at time t0 (y(t0)), we use the in-
verse flow operation: y(t0) = x +

∫ t0
t1

f(y(t), t)dt. For es-
timating outputs and input gradients, a black-box ordinary
differential equation (ODE) solver is utilized. This solver
efficiently approximates the necessary solutions and gradi-
ents.
Shape prior based on CNF: The performance of the gen-
erative model can be constrained when sampling the latent
variable z from a fixed Gaussian prior distribution. To ad-
dress this limitation, we introduce the continuous normaliz-
ing flow (CNF) to parameterize a trainable prior. Mathemat-
ically, we redefine the KL divergence term in the following
equation to incorporate the CNF-based prior:

DKL(Qϕ(z|x)||Pδ(z)) = −EQϕ(z|x)[logPδ(z)]−H[Qϕ(z|X)]

(9)

where the prior distribution, denoted as Pδ(z) (δ represents
the learnable parameters), is derived by applying a continu-
ous normalizing flow (CNF) to a simple Gaussian distribu-
tion P (w) = N(0, I). The entropy term H quantifies the
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Fig. 4 The pointwise feature learning involves three stages: STN ap-
plies transformations like rotation and translation. Then, KNN extracts
low-level geometric details for each point in the 3D point cloud.



6 Ting Yu et al.

𝑷𝑷𝟏𝟏

𝑪𝑪𝟐𝟐

𝑷𝑷𝟐𝟐

𝑷𝑷𝟓𝟓 𝑪𝑪𝟑𝟑

𝑪𝑪𝟏𝟏

𝑪𝑪𝟒𝟒

(a)

𝑷𝑷𝟏𝟏

𝑪𝑪𝟐𝟐

𝑷𝑷𝟐𝟐

𝑷𝑷𝟒𝟒

𝑷𝑷𝟓𝟓 𝑪𝑪𝟑𝟑

𝑪𝑪𝟏𝟏

𝑪𝑪𝟒𝟒

(b)

visual word （x,y）

Fig. 5 PointWiseNet’s VLAD module indirectly represents high-level
semantic features by linking each point’s low-level geometric descrip-
tor with select visual words. PointNetVLAD extends PointNet and
NetVLAD’s success to enable large-scale place recognition using 3D
point cloud data retrieval.

uncertainty or disorder of the distribution.

z = Fδ(w(t0))

≜ w(t0) +

∫ t1

t0

fδ(w(t), t) dt, w(t0) ∼ P (w)
(10)

The flow’s continuous-time dynamics (Fδ) are governed
by the function fδ . Earlier, we discussed obtaining the in-
verse of Fδ through the expression fδ(w(t), t)dt, where
w(t1) = z. The logarithm of the prior distribution’s prob-
ability can be calculated using this equation:

logPδ(z) = logP
(
F−1
δ (z)

)
−
∫ t1

t0

Tr

(
∂fδ
∂w(t)

)
dt (11)

3.4 Network Structure

The analysis of 3D point cloud structures is notably im-
pacted by both the geometric and semantic details they con-
tain. Nevertheless, employing deep learning for semantic
understanding of 3D point clouds presents challenges owing
to the inherent unordered nature of the data. Referring to the
previous work [42], we use PointWiseNet as the core neural
network for fitting point cloud distributions in our diffusion
model. The pointwise feature learning process (see Fig. 4)
comprises three phases: STN, KNN, and VLAD. Firstly, the
STN module applies transformations such as rotation and
translation. Secondly, the KNN module extracts the low-
level geometric information for each point in the 3D point
cloud.

Drawing inspiration from the PointNetVLAD [43] and
NetVLAD [44] approaches, PointWiseNet’s VLAD module
indirectly describes high-level semantic features via the rela-
tionship between each point’s low-level geometric descrip-
tor and a few visual words. PointNetVLAD has been devel-
oped to perform 3D point cloud-based retrieval for large-
scale place recognition by building on the success of Point-
Net and NetVLAD. As shown in Fig. 5 (a), given six 2-
dimensional points pi|i ∈ [1, 6] as input, and four cluster

Algorithm 1: Training Algorithm
Data: q(X(0)): Point cloud dataset
repeat

z = z ∈ qϕ(z|X(0))
t = t ∈ U [1, T ]
X(0) = X(0) ∈ q(X(0))
X(t) = X(t) ∈ q(X(1,T )|X(0))

LX := DKL(q(X
(t−1)
i |X(t)

i , X
(0)
i )∥pθ(X(t−1)

i |X(t)
i , z)))

Lz := DKL(qφ(z|X(0))∥p(z))
∇ := ∇θ(LX + Lz)
execute gradient descrent

until Converged;

centers (”visual words” centers) Ck|k ∈ [1, 4] as VLAD pa-
rameters, the output VLAD image representation V is a 4×2

matrix. The (j, k) element of V is computed as follows:

V (j, k) =

6∑
i=1

ak(pi)(pi(d)− ck(d)) d ∈ [1, 2] (12)

The VLAD module’s formal computation involves pi(d)
and ck(d), representing the d-th dimension of the i-th point
and k-th cluster center, respectively. The membership ak(pi)

signifies the descriptor pi’s association with the visual word
ck. When ck is the closest cluster to pi, ak(pi) equals 1; oth-
erwise, it’s 0. This design in PointNetVLAD aggregates lo-
cal features into visual words, facilitating the VLAD feature
for image retrieval.

For illustration, consider six 2D points {pi|i ∈ [1, 6]} as
VLAD module input (Fig. 5 (b)), with four learnable visual
words (Ck|k ∈ [1, 4]) initialized via backpropagation. Each
pi aligns with a visual word Ck, represented by the residual
vector pi−Ck, signifying the difference between them. The
relationship of the i-th point pi to the four visual words is
denoted as r, and its (i, d) element is computed as follows:

r(i, d) =

4∑
k=1

ai(ck)(pi(d)− ck(d)) d ∈ [1, 2] (13)

3.5 Training objective

Drawing upon the principles of the aforementioned diffu-
sion model, we crafted the training process outlined in Al-
gorithm 1. Subsequently, we will elaborate on our training
objectives and loss functions in detail.

The objective of training the reverse diffusion process is
to maximize the log-likelihood of the point cloud, denoted
as E[logpθ(X

(0))]. However, directly optimizing the exact
log-likelihood is intractable. Hence, we maximize a varia-
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Fig. 6 Generated point clouds from our model and comparative methods are depicted in the examples. The figure illustrates the superiority of
our method in accurately representing shape details, like chair armrests, airplane wings, and car tires, compared to previous methods. Each point
cloud, rendered by Mitsuba, contains 4096 points.

tional lower bound as a substitute:

E
[
log pθ(X

(0))
]
≥ Eq

[
log

pθ(X
(0:T ), z)

q(X(1:T ), z|X(0))

]
= Eq

[
log p(X(T )) +

T∑
t=1

log
pθ(X

(t−1)|X(t), z)

q(X(t)|X(t−1))

− log
qφ(z|X(0))

p(z)

]
.

(14)

As the mapping is one-to-one and onto, the precise prob-
ability of the target distribution can be calculated using the
change-of-variable formula:

p(z) = pw(w) ·
∣∣∣∣det ∂Fδ

∂w

∣∣∣∣−1

where w = F−1
δ (z) (15)

To enhance the applicability of the aforementioned in-
equality within our stochastic gradient descent algorithm,
we establish it as the training objective, denoted as L, that
requires minimization:

L(X; θ, φ, δ) = Eq[lp(X; θ) + ls(X;φ, δ)],

lp(X; θ) =
∑T

t=2 DKL

(
q(X(t−1)|X(t), X(0))∥pθ(X(t−1)|X(t), z)

)
,

ls(X;φ, δ) = DKL

(
qφ(z|X(0))∥pw(w) ·

∣∣∣∣det ∂Fδ

∂w

∣∣∣∣−1)
.

(16)

We can understand this objective as the combination of
two components.
Point cloud distribution loss lp(X; θ). During the reverse
diffusion process, there are two ways to sample the point
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CNF priorGaussian prior

新：

Fig. 7 Ablation study was conducted to compare the generation effects of our method under various shape priors. The findings highlight that our
approach, utilizing the continuous normalizing flow module as a shape prior learner, surpasses the practice of directly sampling random priors
from a Gaussian distribution in preserving intricate shape details.

cloud data at timestep (t − 1) from the Gaussian distribu-
tion of the point cloud. One method involves precomputing
the Gaussian distribution of the point cloud at time (t − 1)

based on the parameters of the forward diffusion and the
point clouds at time 0 and t (denoted as X(0) and X(t)). The
other method entails using the point cloud at time t and the
shape latent variable z as input parameters to train our neu-
ral network, which fits the Gaussian distribution of the point
cloud at timestep (t − 1). The calculation of the Kullback-
Leibler (KL) divergence between these two Gaussian distri-
butions forms the point cloud denoising fitting loss.

Shape prior loss ls(X;φ, δ). The shape prior loss encour-
ages the shape prior learning module, which is our continu-
ous normalization flow module as discussed earlier, to learn
the complex Gaussian distribution of the point cloud shape

prior. This enables the transformation of randomly sampled
latent variables from a standard Gaussian distribution into
shape latent variables conforming to a certain shape’s com-
plex Gaussian distribution in later stages.

4 Experiments

4.1 Experimental Setup

Dataset. ShapeNet [45] is a large-scale 3D shape bench-
mark that provides a comprehensive collection of 3D models
across different object categories. According to the official
website of ShapeNet, the dataset covers several main cate-
gories of 3D models. ShapeNetCore: This is the core part
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MMD-CD(↓) COV-CD(↑) 1-NNA-CD(↓) JSD-CD(↓)

Gaussian prior CNF priorAirplane

Gaussian prior CNF priorChair
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新：

Fig. 8 Empirical evaluation of diverse shape generation scenarios employing distinct prior assessment metrics, with variations in the number of
iterations. (For visual considerations, we accept Tensorboard’s smoothing of curves by default, and the original data curves are displayed in the
background of the chart with a certain transparency.)

of the ShapeNet dataset, containing around 55 object cate-
gories, covering various common object categories such as
furniture, vehicles, and electronics. In our point cloud gener-
ation task, we employ the ShapeNetCore dataset to train our
model. Referring to mainstream practices in this field, we
have selected three types of point clouds: Airplane, chair,
and car for more detailed quantitative and visual evaluation.
Evaluation Metrics. Several metrics have been proposed in
the literature to assess the quality of generated point clouds
quantitatively. However, some of these metrics have inher-
ent limitations. Building upon the work of Yang et al. [24],
it has been observed that metrics such as COV (Coverage)
and MMD (Maximum Mean Discrepancy) may not provide
reliable evaluations of point cloud generation performance.
In contrast, the 1-Nearest Neighbor Accuracy (1-NNA) met-
ric has been identified as a more suitable measure. Addition-
ally, the Jensen-Shannon Divergence (JSD) is occasionally
employed as an alternative metric for evaluating point cloud
generation performance. Following the recommendations of
Yang et al. [24] and Zhou et al. [23], we adopt 1-NNA as
our primary evaluation metric to assess the quality of point
cloud generation. Given a generated set of point clouds Sg

and a reference set Sr, the detailed formula for these metrics
is as follows :

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

D(X,Y ) (17)

where D(·, ·) is either the Chamfer distance (CD) or earth
mover distance (EMD).COV is a metric that quantifies
the number of reference point clouds that are successfully
matched to at least one generated shape.

COV(Sg, Sr) =
|{argminY ∈Sr D(X,Y )|X ∈ Sg}|

|Sr|
(18)

where D(·, ·) is again either CD or EMD. The concept behind
MMD is to compute the average distance between the point
clouds in the reference set and their nearest neighbors in the
generated set. In order to address the limitations of COV and
MMD, Yang et al. [10] introduced the use of 1-NNA (one
nearest neighbor accuracy) as a metric for evaluating point
cloud generative models:

1-NNA(Sg, Sr) =

∑
X∈Sg

I[NX ∈ Sg] +
∑

Y ∈Sr
I[NY ∈ Sr]

|Sg|+ |Sr|
(19)

where I[·] is the indicator function and NX is the nearest
neighbor of X in the set Sr ∪Sg −X . Moreover, we employ
both Chamfer Distance (CD) and Earth Mover’s Distance
(EMD) to compute these metrics, following common defini-
tions in the field of point cloud generation:

CD(X,Y ) =
∑
x∈X

min
y∈Y

||x− y||22 +
∑
y∈Y

min
x∈X

||x− y||22 (20)
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EMD(X,Y ) = min
γ:X→Y

∑
x∈X

||x− γ(x)||2 (21)

It is essential to acknowledge that within the domain
of deep learning, the fluctuation in the number of point
clouds holds considerable importance. Despite this variabil-
ity, researchers often prioritize the geometric quality of the
point cloud rather than focusing solely on quantity. To en-
sure enhanced comparability and simplify the issue at hand,
the customary approach involves employing the Chamfer
Distance (CD) formula cumulatively, without normalizing
based on the quantity of point clouds.

4.2 Comparison

In our pursuit of advancing point cloud generation, we em-
barked on a rigorous comparative analysis pitting our model
against several notable prior works: TreeGAN [46], SP-
GAN [47], SetVAE [48], and PointFlow [10]. We conducted
comparative assessments within the point cloud generation
task, employing three specific shapes (cars, airplanes, and
chairs) extracted from the ShapeNet dataset [45] as our
benchmark. While recognizing the capability of our method
to generate objects across a wider range within the ShapeNet
dataset, we chose to concentrate on these three representa-
tive shapes for the sake of brevity and to avoid redundancy.

The results of these comparative experiments, which in-
volved the incorporation of continuous normalizing flow
as a prior learning component, suggest that our diffusion-
based point cloud generation framework exhibits competi-
tive performance compared to traditional VAE-based gen-
eration methods and models relying solely on continuous
normalizing flow as a generation module.

These observations are visually represented in Fig. 6,
offering a compelling demonstration of our model’s pro-
ficiency in point cloud generation. Our approach consis-
tently demonstrates effectiveness, not only in generating
point clouds but also in preserving intricate shape details.
These details include elements such as airplane wings, chair
armrests, and car wheels, as highlighted in Fig. 6.

Quantitative assessments provide additional support for
the effectiveness of our model. We have diligently tabulated
these results in Tab. 1, enhancing clarity by scaling the val-
ues of the Chamfer Distance (CD) and Earth Mover’s Dis-
tance (EMD) indices for easy interpretation. Our method
demonstrates competitive performance across these metrics,
indicating its ability to generate point clouds that can be on
par with, and in some cases, surpass those generated by ear-
lier methods. The quantitative evaluation results are affected
by factors such as data shape, training parameters, and train-
ing conditions, and vary greatly in different situations. As
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Fig. 9 Reconstructed point clouds from various auto-encoders illus-
trate the robust performance of our autoencoder module in reconstruct-
ing point clouds, providing additional confirmation regarding the effi-
cacy of our encoder and shape prior learning modules.

can be seen from the table, our method achieved good re-
sults for the category of Airplanes and Chairs. Although it
has not always achieved the best results for the category of
Car, the visualization results show that the point cloud gen-
erated by our method still retains good shape details.

4.3 Ablation study

To validate the effectiveness of the autoencoder module and
shape prior learning module utilized in our approach, we de-
signed the following ablation experiments.
Shape prior learning: In our efforts to advance point cloud
generation, we turned to Yang et al. [10] on continuous nor-
malizing flow (CNF) as a vital component for learning the
latent variables that govern the shape prior of point clouds,
as referenced in their study. To emphasize the importance of
this module, we conducted a series of experiments to assess
its significance. In these experiments, we substituted CNF
with a fixed Gaussian prior, allowing for direct comparisons
with conventional generative approaches.

The results of these experiments are visually represented
in Fig. 7, providing visual comparisons that highlight the
substantial impact of our approach. We further quantified
our findings, as presented in Tab. 2, using various quantita-
tive metrics. Notably, we explain the transformation process
of the Chamfer Distance (CD) metric for both shape priors
during the training process in Fig. 8.
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Table 1 Quantitative evaluation of multiple models for generating point clouds. MMD-CD is multiplied with 1 × 103, and MMD-EMD is
multiplied with 1× 102.

Shape Model MMD(↓) COV(%↑) 1-NNA(%↓) JSD(↓)CD EMD CD EMD CD EMD

Airplane

TreeGAN [46] 0.558 1.460 31.85 17.78 97.53 99.88 15.646
SP-GAN [47] 0.403 0.766 26.42 24.44 94.69 93.95 9.472
SetVAE [48] 0.200 0.367 43.70 48.40 76.54 67.65 2.369

PointFlow [10] 0.224 0.390 47.90 46.41 75.68 70.74 1.536
Diff-PCG(Ours) 0.294 0.303 49.50 47.72 65.12 75.45 6.580

Chair

TreeGAN [46] 4.841 3.504 39.88 26.59 88.37 96.37 13.282
SP-GAN [47] 4.208 2.620 40.03 32.93 72.58 83.69 10.769
SetVAE [48] 2.545 7.820 46.98 45.01 58.76 61.48 8.242

PointFlow [10] 13.631 1.856 41.86 43.38 66.13 68.40 12.470
Diff-PCG(Ours) 6.311 1.341 50.75 48.32 55.62 62.31 6.360

Car

TreeGAN [46] 1.142 1.063 40.06 31.53 89.77 94.89 5.850
SP-GAN [47] 1.168 1.021 34.94 31.82 87.36 85.94 7.321
SetVAE [48] 0.882 0.733 48.58 44.60 59.66 63.35 1.322

PointFlow [10] 0.901 0.807 46.88 50.00 58.10 56.25 0.870
Diff-PCG(Ours) 2.502 2.115 43.75 40.02 66.50 69.27 0.781

The experimental results illustrate a compelling conclu-
sion: our method, based on the utilization of continuous nor-
malized flow as a shape prior learner, outperforms the con-
ventional practice of directly sampling shape priors from
a Gaussian distribution. This superiority is particularly ev-
ident in intricate details such as chair armrests and legs, air-
plane wings and tails, and car bodies, as demonstrated in
Fig. 7. Additionally, our approach consistently delivers su-
perior results across a range of quantitative metrics, empha-
sizing its ability to generate point cloud shapes that are not
only more accurate but also more stable.

Table 2 Ablation analysis. Our method combines different shapes
prior in generative experiments.

Model MMD(↓) COV(%, ↑) 1-NNA(%, ↓)
CD EMD CD EMD CD EMD

Airplane(Gaussian) 0.304 1.265 51.00 49.83 62.12 77.31
Airplane(CNF) 0.294 0.303 49.5 47.72 65.12 75.45

Chair(Gaussian) 6.472 1.462 49.25 47.81 54.37 63.44
Chair(CNF) 6.311 1.341 50.75 48.32 55.62 62.31

Car(Gaussian) 2.999 2.728 41.50 39.21 71.63 83.66
Car(CNF) 2.502 2.115 43.75 40.02 66.50 69.24

Table 3 Comparison of auto-encoding performance of point clouds
between Atlas(S1) representing the l-sphere variant and Atlas(P25)
representing the 2.5-square variant of AtlasNet. CD is scaled by a fac-
tor of 1000, while EMD is scaled by a factor of 100.

Dataset Metric(↓) Atlas(S1) [49] Atlas(P25) [49] PointFlow [10] Ours

ShapeNet CD 5.873 5.420 7.550 6.574
EMD 5.457 5.599 5.172 5.112

Chair CD 5.479 4.980 6.795 5.632
EMD 5.550 5.282 5.008 5.447

Car CD 6.906 6.503 5.828 5.637
EMD 5.617 5.408 4.390 5.145

Airplane CD 2.000 1.795 2.420 2.112
EMD 4.311 4.366 3.311 3.433

Table 4 Unsupervised feature learning begins with training models on
ShapeNet to grasp shape representations, subsequently assessing their
performance on ModelNet40 and ModelNet10.

Method ModelNet10(↑ %) ModelNet40(↑ %)

LFD [50] 75.5 79.9
SPH [51] 68.2 79.8

VConv-DAE [52] 75.5 80.5
FoldingNet [53] 88.4 94.4

3D-GAN [2] 83.3 91.0
1-GAN [5] 84.5 95.4

PointFlow [10] 86.8 93.7

Ours 87.1 92.8

Auto-Encoder Learning: We evaluate the efficacy of the
proposed auto-encoder in reconstructing point clouds by
conducting a comparative analysis with relevant models
such as AtlasNet [49] and PointFlow [10]. Our comprehen-
sive assessment covers four datasets, encompassing three
ShapeNet categories—airplane, car, chair—and the entirety
of the ShapeNet dataset.

Our method’s performance, as outlined in Tab. 3,
demonstrates competitive outcomes compared to existing
approaches when evaluated using metrics such as Earth
Mover’s Distance (EMD). It can be observed that our ap-
proach achieves competitive metric results in most scenar-
ios, outperforming similar methods in the CD metric for
the Car category and in the EMD metric for the entire
ShapeNet dataset. Furthermore, the visualization of recon-
structed point clouds in Fig. 9 confirms our model’s effec-
tiveness in the reconstruction task.

We proceed by assessing the capacity of our auto-
encoders in learning representations. Specifically, we derive
the latent representations from our auto-encoder trained on
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the complete ShapeNet dataset. Subsequently, we employ
a linear SVM classifier atop these representations, utilizing
either ModelNet10 or ModelNet40 [54]. It’s important to
note that, uniquely for this task, we standardize each point
cloud to achieve zero mean per axis and global unit variance,
aligning with established methodologies [55]. Additionally,
we introduce random rotations along the gravity axis dur-
ing the auto-encoder training phase. This evaluation involves
comparing the accuracy of off-the-shelf SVMs, which are
trained to utilize the acquired representations.

As can be seen from Tab. 4, although our method has a
slight gap compared to the current best-performing method,
it is undeniable that it remains competitive and at a relatively
high level among similar approaches.

5 Conclusion and Future Work

We propose a novel probabilistic framework, namely Dif-
fusion Point Cloud Generation Conditioned on Continuous
Normalizing Flow (Diff-PCG), inspired by the Denoising
Diffusion Probabilistic Model (DDPM). Our model expands
upon the capabilities of DDPM by integrating the PVCNN
encoder and incorporating a learnable shape prior rooted
in Continuous Normalizing Flow (CNF), thereby enhancing
the representational capacity of the latent variable encoding.
Extensive experiments validate that our model achieves ex-
cellent results in generating high-quality point clouds with
remarkable fidelity.

Future work includes: (i) expanding the range of cur-
rently generated point cloud shapes to include a greater va-
riety of object shapes; (ii) increasing constraint adjustment,
such as image or text-based priors for point cloud genera-
tion; (iii) further enhancing control over point cloud details
to ensure the stability of generated shapes.
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