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✦

In this document, we detail our 2D instance segmenta-
tion neural network, including an explanation of InstFormer
and the training loss functions. Besides, we demonstrate the
new 2D and 3D urban datasets and present more compari-
son and reconstruction results on these datasets. Our code
and datasets will be released to facilitate future research.

1 2D BUILDING INSTANCE SEGMENTATION

1.1 Network architecture of InstFormer

Fig. 1 summarizes the network architecture of InstFormer
that predicts accurate instance masks for buildings at the
pixel level. InstFormer adopts a 3-stage cascade structure
comprising of three Box branches (i.e., see the Bounding Box
Heads in Fig. 1). The Box branches in the first two stages
are responsible for gradually outputting coarse bounding
boxes, and the counterpart in the last stage refines the box
predictions and generates instance masks.

InstFormer is mainly composed of three essential com-
ponents: Backbone, Neck, and Head, detailed as follows:
Backbone: The backbone of most current segmenta-
tion/detection methods is the feature pyramid (FP) struc-
ture based on convolution neural networks (CNNs). Though
Vision Transformer (ViT) has shown superior performance
in image classification, it performs poorly and has a high
computational overhead when directly applied to dense
prediction tasks, such as instance segmentation. Inspired by
the FP structure of CNNs, we utilize Pyramid ViT [1] as
a backbone to extract feature pyramids from images with
dense instances and output high-resolution feature maps.
The detailed structure of the PVT encoder is shown in Fig. 2.
Because buildings in environments can be quite dense and
have varying scales, high-resolution feature maps have to
be processed, which is what PVT encoders are good at
rather than ViT and CNNs. The key difference between
PVT encoder and ViT encoder is that the former uses the
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spatial reduction attention (SRA) layer to replace the multi-
head attention (MHA) layer in the latter. In addition, the
computational/memory costs of the attention operation in
SRA have been greatly reduced compared to those in MHA,
which enables PVT encoder to handle larger input feature
maps.
Neck: In existing feature pyramid networks (FPN) for
segmentation, bi-linear interpolation or deconvolution is
mostly used for upsampling. To increase the receptive
field to aggregate contextual information, we integrate
CARAFE [2] as a lightweight upsampler in the neck to
efficiently perform content-aware handling calculations and
reduce computational overhead. The detailed up-sampling
process of CARAFE is shown in Fig. 1.

Moreover, to improve the capacity of feature expression
in the detection branch, we add a dynamic detection head
(DyHead) [3] combined with multiple self-attention mech-
anisms in the last part of the neck so that the model can
better carry out spatial perception, scale perception, and task
perception. As illustrated in Fig. 1, DyHead is composed of
three attention modules, namely πL, πS , and πC , which are
concatenated together. Among them, πL serves as a scale-
aware attention function, dynamically fusing features from
different scales of the feature pyramid based on semantic
importance. Meanwhile, πS , as a spatial-aware attention
module, aims to discover discriminative regions that coexist
consistently between spatial positions and feature levels
based on the fused features. πC , serving as a task-aware
attention layer, is designed for joint learning and general-
ization of different object representations. Please refer to [3]
for detailed constructions of these three attention modules.

Overall, the role of the neck is to improve the perception
capacity of the model to secure more accurate instance
masks for the subsequent multi-view instance fusion.
Head: To fully exploit the useful information in FPN, we
employ a Generic RoI extractor with non-local building
blocks and attention mechanisms to improve segmentation
performance. At the same time, we use the Region Proposal
Network (RPN) head to locate regions that may contain
objects of interest. The RPN head consists of a series of con-
volutional layers followed by two sibling output layers: one
for predicting the objectness score (foreground/background
classification) and the other for regressing bounding box
coordinates. These output layers enable the RPN to propose
regions likely to contain objects of interest, which are subse-
quently refined and classified by downstream components
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Fig. 1: InstFormer: Network architecture for dense and multi-scale building instance segmentation. The InstFormer adopts a
hybrid task cascade (HTC) architecture. First, multiple tasks such as detection, mask prediction, and semantic segmentation
are combined at each stage to form a joint multi-stage processing pipeline, allowing each stage to benefit from the other
tasks. Second, contextual information goes through an extra branch for stuff segmentation, and a directional path is added
to allow direct information flow across stages. Overall, the HTC architecture effectively improves the flow of information
not only across stages but also between tasks.
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Fig. 2: Pyramid Vision Transformer (PVT) Encoder: The feature map (FM) extraction process of PVT can be divided into
4 stages. The input of stage i is the FM output from the previous stage (i.e., stage i− 1). The FM of the next stage is output
through patch embedding and Li× Transformer layers.

of the object detection pipeline. Moreover, we also use the
global context head combined with the feature relay head
to strengthen the relevance of classification, detection, and
segmentation tasks.

Besides, to ensure the consistency of the sample IoU
distribution of the model during training and inference, we
adopt the interleaved execution [4] between the box branch
and the mask branch, where we apply the direct information
flow in the mask head. To sum up, the function of the

head is to fully utilize the features in FPN and strengthen
the correlation between different tasks and improve the
generalization capability of the neural network.

Because of the advantages of the three components de-
signed above, our transformer architecture is quite attractive
for urban analysis.
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Fig. 3: Visual comparison of the results of different 2D instance segmentation methods on our validation dataset.

1.2 Loss functions

The proposed InstFormer can be trained in an end-to-end
manner using multi-task loss as follows:

L =
3

∑

t=1

αt

(

Lcls
t + Lreg

t

)

+ βLmask + γLglbctx. (1)

Since we mainly focus on two categories (i.e., buildings
and background), the Lcls

t used for the binary classification
adopts the cross-entropy (CE) loss. To make the Bounding
Box more accurate, we use the CIoU [5] as the regression
loss function Lreg

t . The Lmask is the cross-entropy loss used
to calibrate the instance mask output by the mask head
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Fig. 4: Some examples of the annotated images, randomly
chosen from our building instance segmentation dataset.

module. We also utilize the loss term Lglbctx in SCNet [6]
to obtain better global contextual features, which eventually
improves the accuracy in instance fusion. The Lglbctx is also
implemented with the binary cross-entropy loss. In Eq. 1,
the hyperparameter vector α = [α1, α2, α3] are the weights
of classification and regression losses corresponding to each
stage. The hyperparameter β is the weight of the mask loss.
Since the instance mask is the output after three stages of
adjustment, it makes β :=

∑3
t=1 αt more reasonable, and

[6] have pointed out that this setting of β can maintain
the consistency of IoU distribution between training and
inference samples, thus reducing over-fitting. The hyper-
parameter γ corresponds to the loss weight of the global
contextual feature.

As Lcls, Lglbctx, and Lmask are all computed as a binary
CE loss, they share the same expression as:

BCE Loss = −
1

N

[

y(i) log (pi) +
(

1− y(i)
)

log (1− pi)
]

,

(2)

where pi denotes the prediction score of the i-th sample.
y(i) is the indicator variable, i.e.,

y(i) =

{

1,Labeli is positive

0,Labeli is negative
(3)

Moreover, the expression of regression loss Lreg is:

Lreg = 1− IoU +
d2

(

b, bgt
)

c2
+ αv, IoU =

|B ∩Bgt|

|B ∪Bgt|
,

(4)

α =
v

1− IoU + v
, v =

4

π2

(

arc tan
wgt

hgt
− arc tan

w

h

)2

,

(5)

TABLE 1: Density comparison between SfM sparse point
cloud and mainstream point cloud datasets.

Datasets
Surface Density Volume Density

Mean Std Mean Std
ScanNet [7] 81122.09 10049.15 6731752.20 833908.68

S3DIS [8] 11931.49 4291.97 656057.25 235995.89
STPLS3D [9] 8.31 1.56 13.30 2.51
SFM Sparse 0.88 0.54 0.20 0.12

where d2
(

b, bgt
)

represents the square Euclidean distance
between the centers of a predicted box B and ground truth
box Bgt. c denotes the diagonal length of the minimum
common circumscribed rectangle of B and Bgt, and IoU
represents the area ratio of the intersection and union of B
and Bgt. The purpose of the penalty term αv is to keep the
aspect ratios of B and Bgt as consistent as possible, where
(w, h) and (wgt, hgt) denote the frame sizes of B and Bgt,
respectively.

2 DATASETS

2.1 Instance segmentation dataset

For the training and evaluation of InstFormer, we have
created a new dataset that consists of 720 nadir images
from four cities captured with varying flight altitudes, and
all building instances in these images have been manually
annotated by eight students of computer science, using
the annotation tool of LabelMe [10]. Fig. 4 shows a few
annotated images from the building instance segmentation
dataset. Fig. 3 shows the visual comparison of different 2D
instance segmentation methods on our proposed validation
dataset. It reveals that our InstFormer has better capability
to localize the buildings accurately and can generate more
complete instance masks.

2.2 3D synthetic benchmark dataset

To quantitatively evaluate the effect of the proxy geometry
on the final reconstruction, we introduce three new cus-
tomized synthetic urban scenes. Compared to the synthetic
scenes proposed by previous work [11], [12], [13], [14], our
dataset contains a larger number of buildings with different
building styles and diverse distribution densities. In addi-
tion, we also generate rich ground textures and a variety
of ground objects, such as trees, streetlights, garbage cans,
benches, etc. Fig. 5 demonstrates our newly built virtual
scenes with natural-looking colored textures and detailed
close-ups of the underlying geometry.

2.3 Comparison between SfM sparse point cloud and

dense point cloud datasets

As for 3D instance segmentation, it is difficult to extract
sufficient point features from sparse point clouds, making
direct 3D instance segmentation a challenging task. To show
the characteristics of SFM sparse points, we compared the
density of SfM points with several public popular point
cloud datasets. Table 1 shows the quantitative analysis. We
use the software of CloudCompare to estimate the den-
sity by counting for each point the number of neighbors*.

*. https://cloudcompare.org/doc/wiki/index.php?title=Density
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Fig. 5: The three newly built virtual scenes used for quantitative evaluation in our work. Top: AK-1; Middle: JPN-1; Bottom:
CT-1. The left column shows the synthetic scenes with texture, and the right column shows the corresponding scenes
without texture (to better reveal their geometry).

Specifically, we compute the surface density (the number
of neighbors divided by the neighborhood surface) and the
volume density (the number of neighbors divided by the
neighborhood surface).

The inputs to previous learning-based methods are laser
scanning (e.g., ScanNet with an average volume density of

6731752) or MVS dense points (e.g., STPLS3D [9] with an
average volume density of 13.30). Not much work tried
directly using the sparse data (with an average volume
density of 0.20) for instance segmentation. Compared to
sparse 3D points, 2D nadir images provide more useful
information, especially the building roofs that have good
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Fig. 6: Our proxy and final reconstruction results on the virtual scenes. For each scene, the SfM point cloud, proxy, final
model without texture, and final model with texture are demonstrated.

visibility in aerial images. Thus, we adopt a voting-based
instance fusion mechanism to effectively overcome sparsity
and incompleteness in sparse points.

3 ADDITIONAL RESULTS

For layer-based proxy reconstruction, in Fig. 6 and Fig. 7
we demonstrate our generated proxies of virtual and real
scenes, as well as corresponding final reconstruction results.
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Fig. 7: Our proxy and final reconstruction results on real scenes. For each scene, the SfM point cloud, proxy, final model
without texture, and final model with texture are demonstrated.
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Fig. 8: In the virtual scene evaluation, we show the aerial path planning results based on different proxy models.

Fig. 8 presents the visualization results of path plan-
ning [14] for different proxy models using virtual scenes. In
Fig. 9, Fig. 10, and Fig. 11, we present the visual comparisons
on two virtual scenes (i.e., JPN-1 and CT-1) and two real
scenes of SI-PARK and Polytech.
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Fig. 9: Visual comparison on two virtual scenes (i.e., JPN-1 and CT-1), for evaluating the effect of different proxy generation
methods on the quality of the final reconstruction.
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Fig. 10: Visual comparison on the real scene SI-PARK, which demonstrates the effect of different proxy generation methods
on the quality of the final reconstruction.
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Fig. 11: Visual comparison on the real scene Polytech, which demonstrates the effect of different proxy generation methods
on the quality of the final reconstruction.


