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Abstract
Neural Radiance Field (NeRF) can render complex 3D scenes with viewpoint-dependent effects. However,
less work has been devoted to exploring its limitations in high-resolution environments, especially when
upscaled to ultra-high resolution (e.g., 4k). Specifically, existing NeRF-based methods face severe limitations
in reconstructing high-resolution real scenes, e.g., a large number of parameters, misalignment of the input
data, and over-smoothing of details. In this paper, we present a novel and effective framework, called De-

NeRF, based on NeRF and deformable convolutional network, to achieve high-fidelity view synthesis in
ultra-high resolution scenes: 1) marrying the deformable convolution unit which can solve the problem of
misaligned input of the high-resolution data. 2) presenting a density sparse voxel-based approach which
can greatly reduce the training time while rendering results with higher accuracy. Compared to existing
high-resolution NeRF methods, our approach improves the rendering quality of high-frequency details and
achieves better visual effects in 4K high-resolution scenes.
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1 INTRODUCTION

Synthesizing novel views of complex scenes from sparse observed images is a long-standing problem in computer graphics and
vision. Recently, NeRF1 and its variants2,3,4,5 have provided a new approach for such 3D scene reconstruction and rendering
task through deep neural networks. They possess strong performance in learning geometric 3D representations from images, and
the resulting high-quality representations of the scene compare well with traditional viewpoint interpolation methods3. However,
current 3D reconstruction techniques usually use low-resolution datasets (e.g., 1K HD format), compared to which high-
resolution data tend to contain richer and more accurate detail rendering. Since ultra-high resolution is becoming increasingly
popular as a standard for recording and displaying images and videos, 3D reconstruction of ultra-high-resolution scenes is
essential for many applications, such as providing a more immersive virtual experience in AR and VR.

The original NeRF1 uses a simple 8-layer MLP to associate each 3D position given a viewing direction with its corresponding
radial color and volume density, whereas achieving view-dependent effects requires querying a large network hundreds of times
through ray cast of each pixel. However, it is difficult for NeRF’s simple network to synthesize novel high-resolution views
directly. Regarding this phenomenon, we have conducted experiments on the rendering effect of NeRF with different resolutions,
as shown in Fig. 1. We found that the clarity of details and the accuracy of the rendered images do not improve as the resolution
of the training data increases, or even decreases, which poses an obstacle to the reconstruction of high-resolution real scenes. In
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F I G U R E 1 Illustrating the motivations of our work. We applied the original NeRF for rendering pictures on three scenes
with different resolutions, and we found that the PSNR metrics of the rendered images are essentially unchanged, or even
declining when the resolution of the picture is increasing (2k–4k data in the figure). We hypothesize that NeRF still has a
bottleneck in processing high-resolution scenes.

this work, we focus on the new high-resolution view synthesis task and investigate the challenges of achieving high-fidelity
reconstruction results at high resolution.

NeRF requires ray casting of every pixel of every viewpoint image, leading to a long training time on the ultra-high definition
(UHD) dataset. To address this problem, previous methods (NSVF4, DVGO6, and instant-ngp7) use a bounded implicit
representation of voxels consisting of a set of voxels in a sparse voxel octree. Using sparse voxels could accelerate rendering
significantly at inference time by skipping empty voxels with no scene content. However, we found that by raising the number of
voxel grid layers and the resolution of the voxel grid, we can make the rendered images more accurate.

Moreover, NeRF needs accurate camera poses for still scenes if it is to render high-quality images with high-frequency details.
However, in practice, camera poses of real scene images recovered by the COLMAP program based on the SFM algorithm8

inevitably contain pixel-point inaccuracies after they have been captured. These inaccuracies are not noticeable when training
low-resolution images but lead to blurring when NeRF is trained with higher-resolution inputs. In addition, the real scene being
photographed may also contain the motion of non-rigid objects, such as moving clouds and plants. Such inclusion of motion
breaks the assumption of a static scene and reduces the accuracy of the estimated camera poses. Due to inaccurate camera poses
and scene motions, the rendered output of NeRF tends to be slightly misaligned with the ground truth (GT) image.

To address these issues, we propose De-NeRF, a new neural network that corrects alignment errors and can be trained more
efficiently than 4k-NeRF9 and AligNeRF10. Our approach combines explicit voxel grids and NeRF as the overall pipeline. To
avoid a drastic increase in the compute resources of NeRF under high-resolution data, we adopt a multi-layer sparse voxel grid
structure, which can greatly speed up the rendering during inference by skipping empty voxels with no scene content to ensure
that the size of the overall work overhead and will not take as long as the training time of the super-resolution module behind the
4k-NeRF9. We add the deformable feature unit module to the back end of the NeRF training. Instead of aligning at pixel-level
as in the flow-aligned AligNeRF10, we operate in the feature space, which will accelerate the error training of the deformable
alignment unit and can save training resources even more in the case of ultra-high-resolution data.

In summary, the main contributions of this work include the following:
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F I G U R E 2 Network architecture of our proposed De-NeRF. The high-resolution image first passes through the hybrid
volumetric representations module, due to its voxel grid embedding feature representation it can generate the rendering frames
needed by the next alignment module quickly, then the deformable alignment unit module calculates the offset of the features
and aligns them, and finally boosts the resolution to complete the final rendering process.

• A deformable alignment unit that employs a deformable network to correct the offset of the feature-level image, saving more
compute resources as opposed to employing pixel-level offset correction (e.g., AligNeRF10).

• A direct training method, avoiding the need to use flow-align to align the rendered image with the GT image multiple times,
can simplify the training process.

• A NeRF strategy using voxel-based feature encoding representation, which can significantly speed up the training and
improve the accuracy of the final rendered image after increasing the voxel grid density.

2 RELATED WORK

2.1 Neural Radiance Field

NeRF utilizes a deep neural network to directly learn continuous mapping from spatial coordinates and view orientations to
view-dependent color and volume densities and obtains pixel colors through volume rendering techniques. Implicit neural
representations associated with it have demonstrated its effectiveness in representing shapes and scenes, which typically utilize
multi-layer perceptrons (MLPs) to encode signed distance fields 11,12, occupancy 13,14,15, or volume density 16,1. These methods
utilize microscopic rendering17,18 to reconstruct the geometry and appearance of objects and scenes 4,16,19. Several optimized
extensions of NeRF have also emerged, e.g., few view inputs 3,20, reconstruction of non-rigid scenes 5,21,22 and object categories
20,23,24. 24,25,26 accelerates the rendering speed from initially multi-second to millisecond. 27,5,21,28 introduced a volumetric
radiation field and successfully reduced the training cost by an order of magnitude. Several approaches have focused on
improving the rendering quality of NeRF1. 2 introduced mipmap for anti-aliasing, while 15,19 improved NeRF’s ability to model
surfaces with high reflectivity.

2.2 Super-Resolution

This work is very similar to the super-resolution task requirements in 2D images. Currently mainstream deep learning-based
approach using CNNs is to learn the relationship between HR and LR images in CNNs by minimizing the mean square error
between SR images and GT images27,29. It has also become popular to introduce generative adversarial networks (GANs) 30 in
super-resolution tasks, which can produce high-resolution details that match human intuition through adversarial learning 25,26,31.
However, the pixels generated by the network may have a large disparity compared to the real ground truth, resulting in a decrease
in accuracy 9. Furthermore, these 2D methods have some problems when applied directly to 3D reconstruction: they all obtain
feature information from large-scale datasets or existing HR and LR pairs and do not take into account view consistency, which
is sub-optimal for the current new view synthesis task.32 uses the flow-based pixel-level alignment of neighboring frames in the
video, but due to the pixel-level in high-resolution video consumes substantial compute resources, the subsequent 33,34 and other
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work to solve this problem by using the flow-free feature-level operation before entering the neural network to downsample the
image into the feature space, which achieves better results. The deformable convolution module35 in the deformable convolution
network work used in these two works to align pixels in neighboring frames is also the inspiration for our work.

2.3 Super-Resolution for 3D Reconstruction

Our aim is to reconstruct the scene in 3D from a set of images, and instead of performing the super-resolution (SR) task in
the 2D image space, we perform the 36,37,38,9,10 in the 3D scene space. 38 is able to synthesize higher-resolution images than
low-resolution images by super-sampling strategy. 36,37 are classical methods for optimizing geometry and texture. 37 integrates
low-resolution depth, color, and RGB-D sensors into SR key frames then fuses these key frames into a texture map, and 36 uses
convolution with a gaussian kernel to describe their SR process. 9 uses SR networks at the end of NeRF to output a more detailed
image. All of the above work can’t depart from the idea of 2D SR tasks. 10 suggests that the problem that causes blurring of the
new perspective for high-resolution NeRF rendering comes from the fact that the real captured UHD dataset has misalignment
due to its bit-pose being generated by COLMAP. We continue along this line in this work and make a more precise proof of this
problem (e.g., Fig. 1).

3 PROBLEM STATEMENT AND OVERVIEW

The input to our algorithm consists of high-resolution images and the corresponding five-dimensional coordinate poses (3D
location x = (x, y, z) and 2D viewing direction (θ,ϕ)). Such image coordinates in real scene datasets are usually generated using
COLMAP, which may be unaligned with small biases. Our goal is to render the new viewpoint image as the original NeRF and
to minimize the MSE with the GT image:

Lphoto =
1

|R|

∑
r∈R

∥∥∥Ĉ(r) – C(r)
∥∥∥2

2
, (1)

where R is the set of rays in each batch , C(r) is observed pixel color of GT and Ĉ(r) is the rendered color.
The major steps of our algorithm are shown in Fig. 2. We start by applying the explicit hybrid volumetric grid8,7 to encode the

images of the UHD dataset, and we increase the number of voxel grid layers as well as raise the resolution of the grid at each
layer, thus improving the accuracy of the final generated images. Next, the core of our approach is that we correct the offsets
between different video frames based on the deformable network, which are widely used in the field of computer vision and
video super-resolution. Therefore, the rendered images of the new views generated based on the NeRF principle are corrected
according to our proposed deformable alignment unit which learns the offsets. In addition, the unaligned feature of the input
image can be aligned and ensure the generation of more accurate photos.

4 METHODOLOGY

We introduce the method of voxel-based NeRF and discuss the limitations of modeling and rendering scenes with extremely
high resolution. In the following, we will present principles of implementation of each part in our framework and introduce the
training strategy with loss functions.

4.1 NeRF

The main idea of NeRF takes a 3D point position X = (x, y, z) and a viewing direction d(θ,ϕ) as input and learns a continuous
mapping function to estimate the color c = (r, g, b) and volume density σ.NeRF accomplishes view synthesis by training a
continuous mapping function that predicts the color c ∈ R3 and volume density σ ∈ R of a 3D point position x ∈ R3 and a
viewing direction d ∈ R3. This mapping function, denoted as Φ : (x, d) 7→ (c,σ), allows for estimating the appearance and
properties of each point in the scene. When rendering an image with a given camera pose, the expected color Ĉ(r) of a camera
ray r = o + td, where o represents the camera center, is determined by sampling multiple points along the ray and integrating
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their colors. This integration process approximates the volumetric rendering integral39, resulting in a synthesized image that
captures the desired viewpoint.

Ĉ(r) =
N∑

i=1

Ti · αi · ci, (2)

αi = 1 – exp(–σiδi), Ti =
i–1∏
j=1

(1 – αj), (3)

where αi denotes the ray termination probability at the point i, δi = ti+1 – ti represents the distance between two adjacent points,
and Ti indicates the accumulated transmittance when reaching i.

4.2 Hybrid Volumetric Representations

4.2.0.1 Voxel-grid representation.
A voxel-grid representation explicitly models the modalities of interest (e.g., , density, color, or feature) in its grid cells. Such an
explicit scene representation is efficient for querying for any 3D positions via interpolation:

interp(x, V) :
(
R3,RC×Nx×Ny×Nz

)
→ RC , (4)

where x is the queried 3D point, V is the voxel grid, C is the dimension of the modality, and Nx · Ny · Nz is the total number of
voxels. Trilinear interpolation is applied if not specified otherwise.

4.2.0.2 Density voxel grid for volume rendering.
We instantiate the front network based on the formulation defined in the DVGO6 and instant-ngp7, where voxel-grid-based
representations are learned to encode geometric structure explicitly,

(x, V) :
(
R3,RNc×Nx×Ny×Nz

)
→ RNc , (5)

whereNc represents the channel dimension for density (Nc = 1) and color modality. For each sampled point, the density is
estimated using trilinear interpolation with a softplus activation function, given by σ = softplus (interp (x, Vd)). The colors are
estimated using a shallow Multi-Layer Perceptron (MLP),

c = fMLP (interp (x, Vc) , x, d)

= fRGB
(
gθ(interp(x, Vc), x, d)

)
,

(6)

where gθ(·) extracts volumetric features for color information, and fRGB denotes the mapping (with one or multiple layers) from
the features to RGB images. The output g = g(θ; x, d) represents the volumetric feature for a point x with a given viewing
direction d. By accumulating the features of the sampled points along the ray r, we obtain the descriptor for each ray (or pixel)
following Equation 2,

f(r) =
N∑

i=1

Ti · αi · gi. (7)

To leverage the geometric properties encoded in the encoder, we also generate a depth map by estimating the depth along the
camera axis for each ray r. This is achieved using the following equation:

M(r) =
N∑

i=1

Ti · αi · ti, (8)

where ti denotes the distance of the sampling point i to the camera center as in Eqn.2. The estimated depth map provides a strong
guidance for understating the 3D structure of a scene, e.g., nearby pixels on the image plane may be far away in the original 3D
space. Assume the spatial dimension is H′ × W ′, the formed feature maps Fen ∈ RC′×H′×W′

and the depth map M ∈ RH′×W′

are fed into the decoder for pursuing high-fidelity reconstruction of fine details.
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4.3 Deformable Convolution Network

The 2D convolution consists of two steps: 1) sampling using a regular grid R over the input feature map x; 2) summation of
sampled values weighted by w. The grid R defines the receptive field size and dilation. For example,

R = {(–1, –1), (–1, 0), . . . , (0, 1), (1, 1)}

defines a 3 × 3 kernel with dilation 1. For each location p0 on the output feature map y, we have

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn), (9)

where pn enumerates the locations in R. In deformable convolution, the regular grid R is augmented with offsets {∆pn|n =
1, ..., N}, where N = |R|. Eq. (9) becomes

y(p0) =
∑

pn∈R
w(pn) · x(p0 + pn + ∆pn). (10)

Now, the sampling is on the irregular and offset locations pn + ∆pn. As the offset ∆pn is typically fractional, Eq. (10) is
implemented via bilinear interpolation as

x(p) =
∑

q

G(q, p) · x(q), (11)

where p denotes an arbitrary (fractional) location (p = p0 + pn + ∆pn for Eq. (10)), q enumerates all integral spatial locations
in the feature map x, and G(·, ·) is the bilinear interpolation kernel. Note that G is two-dimensional. It is separated into two
one-dimensional kernels as

G(q, p) = g(qx, px) · g(qy, py), (12)

where g(a, b) = max(0, 1 – |a – b|). Eq. (11) is fast to compute as G(q, p) is non-zero only for a few qs.

4.4 Loss Functions

Our De-NeRF model integrates the above-described modules in a unified network architecture, as shown in Fig. 2, which is
trained in a supervised fashion by an efficient loss function.

We found that only using distortion-oriented loss (e.g., MSE, ℓ1 and Huber loss) as objective tends to produce blurry or
over-smoothed visual effects on fine details. In order to solve the problem, we add the adversarial loss and the perceptual loss to
regularize fine detail synthesis. We use ℓ1 loss instead of MSE for directly supervising the reconstruction of high-frequency
details,

L1 =
1

N2
p

∣∣C(p̂) – C(p)
∣∣ . (13)

We add an auxiliary MSE loss to facilitate the training of the encoder with down-scaled training views, the ray features produced
by the encoder are fed into an extra fully connected layer to regress RGB values in the lower-resolution images. The overall
training objective is defined as,

L = λhL1 + λlLl
MSE. (14)

where λh and λl denote the hyper-parameters for weighting the losses.

4.5 Implementation Details

Our De-NeRF framework is implemented in PyTorch on a server equipped with an Intel Xeon Gold 6226R CPU and NVIDIA
RTX A6000 (48 GB memory) graphics cards. The operating system is Ubuntu 20.04.3. So we train the network via Adam with
the batch size B = 1024. In our network, both learning rate of Hybrid Volumetric Representations and Deformable Alignment
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Unit is 0.1, and the learning rate of the RGB net (MLP) is 0.001. The total number of iterations is 10000. We multiply the
learning rate by 0.1 per 1000 iterations.

T A B L E 1 Quantitative performance comparison of different registration methods on LLFF dataset. The best results are
marked in red color, and the second best results are in blue color.

Metrics Methods fern flower fortress horns leaves orchids room trex
NeRF 33.57 34.77 37.92 33.95 36.78 34.03 39.21 32.15

PSNR↑ 4K-NeRF 34.73 36.95 38.65 35.10 38.71 35.63 40.88 34.23
ours 34.84 37.11 38.68 35.24 38.85 35.79 41.14 34.42

NeRF 0.647 0.783 0.759 0.704 0.581 0.566 0.783 0.681
SSIM ↑ 4K-NeRF 0.721 0.843 0.772 0.791 0.647 0.751 0.881 0.701

ours 0.767 0.848 0.767 0.772 0.691 0.767 0.893 0.736
NeRF 0.529 0.575 0.495 0.492 0.520 0.427 0.432 0.549

Lpips ↓ 4K-NeRF 0.307 0.289 0.258 0.296 0.231 0.242 0.394 0.192
ours 0.241 0.294 0.261 0.282 0.227 0.225 0.327 0.198

5 EXPERIMENTAL RESULTS

In this section, we present the settings of our experiment and details for reproducing the results. The main principle of our
experimental setup is to fairly compare the original NeRF5 with the existing open-source usable 4K-NeRF9 work to exemplify
the advantages of the proposed new approach. Our experimental settings will uniformly follow original papers to produce the
baselines, unless we specify otherwise.

5.1 Experimental Setting

Datasets. LLFF dataset40 is utilized in our experiments and ablation studies due to its provision of real-world scenes with
4K ultra-high resolution. This dataset consists of eight scenes captured from the forward-facing perspectives, with different
amount of training views ranging from 20 to 60. The original resolution of the datasets is 4032 x 3024 pixels. However, existing
NeRF-based methods typically use 4x down-scale the images (resulting in 1008 x 756 pixels) for both training and inference. In
our experiments, we deviate from this practice and use the original 4K images as ground truth (GT) for training and evaluation
in the primary experiments. For the ablation study, we employ corresponding lower-resolution images to assess the framework’s
impact on visual quality improvement at different resolutions, specifically 2K and 1K. We adopt the camera poses estimated by
COLMAP41, following the same procedure as other methods in the field.

5.2 Evaluation Metrics

Peak signal-to-noise ratio (PSNR) is an engineering term for the ratio between the maximum possible power of a signal and the
power of corrupting noise that affects the fidelity of its representation. Because many signals have a very wide dynamic range,
PSNR is usually expressed as a logarithmic quantity using the decibel scale. PSNR is commonly used to quantify reconstruction
quality for images and videos subject to loss compression. PSNR is the most popular metric of image quality assessment42. For
simplicity, we take grey-level (8-bit) images as examples. Given a test image Ia and a reference image Ib, both of size W × H,
the PSNR can be defined as

(Ia, Ib) = 10 log10

(
2552

(Ia, Ib)

)
, (15)

where (Ia, Ib) = 1
WH

∑
i,j,k(Ib,ijk – Ia,ijk)2. It is easy to see that PSNR directly depends on MSE and overlooks the collective

information of a group of pixels.
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F I G U R E 3 Qualitative comparison of NeRF (a), 4K-NeRF (b), and our method (c).
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T A B L E 2 Ablation studies on LLFF dataset. The best result of each measurement is marked in bold font.
Module fern flower fortress horns leaves orchids room trex

base 34.47 36.84 38.35 34.94 37.61 35.43 40.76 34.23
base+vol 34.69 37.02 38.52 35.16 37.75 35.51 40.99 34.39

base+vol+def 34.84 37.11 38.68 35.24 38.85 35.79 41.14 34.42

We further evaluate the method with more metrics, including LPIPS (Learned Perceptual Image Patch Similarity) and SSIM
(Structure Similarity Index Measure) metrics for assessing perceptual effect, as well as another distortion-oriented metric SSIM.
LPIPS is calculated with AlexNet43.

5.3 Comparisons

Firstly, the four tables displayed in Fig. 1 show the line graphs of the original NeRF performance when rendering images of
different resolutions after training with the LLFF dataset at different resolutions of data, respectively. It is obvious that NeRF
doesn’t improve performance while training 2K-4K resolution images, even after using higher-resolution images. This is why
we explore the ultra-high-definition NeRF problem.

We compare our method with various existing competitive methods for ultra resolution: NeRF1, 4K-NeRF9 (alignNeRF10

cannot be tested uniformly due to the unopened source code). About the novel view synthesis tasks for ultra-high resolution
competitors, we select two representative methods, NeRF(use UHD data) and 4K-NeRF. For deep learning-based methods,
4K-NeRF performs image super-resolution after NeRF has rendered the novel view and fed it into the next super-resolution
network which is more complex than NeRF-SR38, making the details more accurate. Some common characteristics of works are
the insertion of a super-resolution module for resolution enhancement after NeRF reconstruction, while our work uses a similar
framework. We will primarily compare performances to 4k-NeRF which has the same structure and input data with us.

For a fair comparison with the baselines, we experimented with two settings for them: 1) with standard configuration expect
training on 4K resolution, and 2) using standard configuration with network parameters and voxel grid sizes if used and training
on 4K resolution. The statistical results of each method on the whole dataset are reported in Table 1. Our method also performs
competitively in terms of evaluation metrics compared to all baselines. The original NeRF method is poor at reconstructing
fine details in 4K scenes, resulting in lost or blurred details. Notably, our method can achieve even higher PSNR and most of
SSIM, Lpips values compared to 4K-NeRF. Although our method only uses the simplest combination of L2 loss and L1 loss and
has fewer computing resources consumed by the neural network, it is also very close to 4K-NeRF in terms of the generated
texture and visual quality, which despite having a more human-intuitive generation effect due to GAN network. It is also better at
generating details for some cases with fine textures (shown in Fig. 3). This is attributed to the deformable alignment unit module
connected to our framework. These results demonstrate that our method performs well on both qualitative and quantitative results.

Due to the voxel grid embedding approach and a feature-level alignment network with shallow layers, we achieve impressive
performance in terms of inference efficiency and memory cost, allowing a 4K image to be rendered within 300 ms. Compared
to the nearly half-day training time required for normal NeRF and the super-resolution networks of 4K-NeRF, our approach
achieves a significant improvement saving more than half of the time.

5.4 Ablation Study

Finally, we also conduct experiments on the dataset LLFF datasets to evaluate the performance of different components of
our designed network. To demonstrate the effectiveness of our proposed method in high-resolution novel view synthesis
tasks, we progressively add the proposed modules to a baseline network and prove the functionality of the Hybrid Volumetric
Representations module and Deformable Alignment Unit module, respectively. To build the baseline network, we remove the later
alignment module and only use networks with an explicit voxel grid number of 1 to facilitate the comparison operation afterward.
Hybrid volumetric representation. By comparing NeRF without voxel grid embedding, we validate the effectiveness of NeRF
after embedding based on Hybrid volumetric representations. As shown in Table 2, our work achieves better PSNR values than
the baseline on all 8 cases of LLFF data. This module contributes to that our training inference time can be reduced exponentially.
Furthermore, increasing the density of the voxel grid can lead to even higher PSNR values, as a denser voxel grid captures finer
image features, as shown in Figure 4.
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F I G U R E 4 Qualitative comparison of the baseline method (a), baseline with hybrid volumetric representation model (b),
without deformable alignment unit (c), and our full model with all components (d).

Deformable alignment unit. After adding the deformable alignment unit module, we obtain the feature map from the reference
frame image and the current rendering frame image through feature extraction CNN. Then we fed them into the deformable
CNN for unaligned feature offset calculation and concate the calculated offset to the current rendering frame for alignment. The
results show that the deformable alignment unit can further capture missing details from the reference frame to the rendered
frame, both in the PSNR values and the rendered results, as shown in Figure 4. The PSNR value of most cases is improved by
about 0.1-0.2, as shown in Table 2.

5.5 Limitations

We successfully apply our proposed method to high-resolution 3D reconstruction and synthesizing novel views tasks. However,
there still exist several limitations in our De-NeRF method.

Firstly, we found that our model does not perform very well for samples with overlapping floral details (e.g., comparison with
4K-NeRF shown in rows 1, 2, and 3 in Figure 3). A reasonable guess is that the image detail capturer CNN of our deformable
alignment network is simple due to the desire to save training time. If the deformable alignment network continues to deepen or
is fine-tuned using pre-training weights from more advanced super-resolution or other large models for 2D image vision tasks
may work better.

Secondly, the deformable alignment unit using deformable networks did not incorporate the training loss used to compute the
pixel or feature offsets of the image as in other video-resolution work 33,34. Joining this approach may reduce the probability of
overfitting and potentially improve the final rendering effect. However, it may result in a more complex model and increase the
training difficulty.

Finally, our deformable alignment network training is slow. Our current voxel grid embedding was implemented based on the
PyTorch approach and with native cuda-accelerated code like the original instant-ngp7. Theoretically, it still has plenty of room
for improvement in terms of generation speed and accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper, we have explored the challenges of 3D reconstruction on high-resolution datasets with NeRF and presented
an innovative framework for fast reconstruction with improved details. We first quantitatively and qualitatively analyzed the
performance bottleneck problem of NeRF while increasing the resolution of datasets. It motivates us to propose the alignment
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operation inspired by a deformable convolution network that shifts the spatial location of the unaligned image feature rendered
by the NeRF to the true position. In the case of high-resolution data causing problems with large network parameters and slow
training speeds, we use the voxel grid feature embedding strategy, which increases the training speed while generating a more
accurate rendered image when using a denser voxel grid. Our experiments on the challenging real-world high-resolution datasets
validate the ability of our framework to achieve high-fidelity rendering results.

In the future, we plan to extend this network as a generalized patch behind various NeRF networks which need to improve the
accuracy. We would also like to handle dynamic scene 3D reconstruction tasks. Dynamic scenes have richer linear frames just
like video super-resolution tasks, and the addition of our deformable alignment unit after the dynamic NeRF reconstruction work
is believed to achieve better results for the dynamic scene reconstruction.
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