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A B S T R A C T

Reconstructing high-fidelity 3D facial texture from a single image is a quite challenging
task due to the lack of complete face information and the domain gap between the 3D
face and 2D image. Further, obtaining re-renderable 3D faces has become a strongly de-
sired property in many applications, where the term ’re-renderable’ demands the facial
texture to be spatially complete and disentangled with environmental illumination. In
this paper, we propose a new self-supervised deep learning framework for reconstruct-
ing high-quality and re-renderable facial albedos from single-view images in the wild.
Our main idea is to first utilize a prior generation module based on the 3DMM proxy
model to produce an unwrapped texture and a globally parameterized prior albedo.
Then we apply a detail refinement module to synthesize the final texture with both
high-frequency details and completeness. To further make facial textures disentangled
with illumination, we propose a novel detailed illumination representation that is recon-
structed with the detailed albedo together. We also design several novel regularization
losses on both the albedo and illumination maps to facilitate the disentanglement of
these two factors. Finally, by leveraging a differentiable renderer, each face attribute
can be jointly trained in a self-supervised manner without requiring ground-truth fa-
cial reflectance. Extensive comparisons and ablation studies on challenging datasets
demonstrate that our framework outperforms state-of-the-art approaches.

© 2024 Elsevier B.V. All rights reserved.

1. Introduction1

Reconstructing high-fidelity 3D human faces is a longstand-2

ing problem in computer vision and graphics communities.3

This task aims to estimate a realistic 3D facial representa-4

tion, i.e., predicting face geometry, appearance, expression, and5

scene lighting from the input source. Faithfully reconstructing6

3D faces is a crucial prerequisite for many downstream appli-7

cations including face recognition [1, 2], face editing [3], face8

alignment [4, 5], and virtual avatar [6, 7].9

Recently, single image based 3D face reconstruction has10
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gained much attention. However, it is a highly challenging 11

and ill-posed problem due to the domain gap between the 3D 12

face and 2D image. To learn the mapping from a single im- 13

age to a 3D face, a parametric model called 3D Morphable 14

Model (3DMM) [8] is developed as the prior model of a 3D 15

face that transforms the 3D reconstruction to a parameter es- 16

timation problem. However, 3DMM largely limits the rep- 17

resentation capability of the parametric model because it was 18

constructed by applying linear subspace modelling techniques 19

on a limited number of 3D face scans, thus leading to poor 20

reconstruction fidelity when being applied to in-the-wild im- 21

ages [9, 10, 11]. Recently, many attempts have been conducted 22

to tackle the detail lacking drawback of 3DMM by adding non- 23

linearity into the parametric model, for example, replacing the 24
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Fig. 1. We learn to reconstruct high-fidelity facial textures from in-the-wild
images. Left: input single images; Middle: detailed albedo maps gener-
ated by our neural network; Right: re-rendered results using our detailed
albedo and fine-grained illumination maps.

linear 3DMM with a completely non-linear one [12, 13, 14]1

or complementing non-linearity upon the 3DMM coarse recon-2

struction [15, 16, 17]. In these methods, facial details are either3

represented in geometry by a displacement map or encoded into4

appearance by a detailed texture map (or albedo map). In this5

work, we focus on high-fidelity appearance reconstruction and6

apply a coarse-to-fine approach to generate textures that capture7

facial details.8

The methods for reconstructing facial textures can be fur-9

ther roughly divided into two categories. The first category10

extends the basic idea of the parametric model and utilizes11

a self-collected facial texture dataset to train a generative12

model [18, 10, 12]. When estimating a new image, these ap-13

proaches fit the closest texture in the subspace to the input.14

They could achieve high-quality results even when the inputs15

are occluded or in extreme light conditions. However, their gen-16

eration results can not maintain the idiosyncrasy of the human17

faces well because of the limited representation capacity of the18

generative model.19

The other category typically reconstructs the texture directly20

from the input image [16]. Although their reconstruction cor-21

responds to the input image better, the reconstruction quality is22

highly influenced by the input, and noise-like occlusion and ex-23

treme environmental illumination will cause artifacts baked in24

the reconstructed texture. Apart from the requirements of high-25

fidelity texture reconstruction, many applications (e.g., virtual26

avatar) demand the texture to be re-renderable. Specifically,27

the texture should be not only faithful to the input image, but28

also disentangled with illumination (which is referred to as an29

albedo). However, above mentioned methods can not solve the30

disentanglement of face albedo with illumination. The reasons31

are two-fold: (1) real facial textures are difficult to capture with-32

out illumination [12]; (2) the widely used three-band spherical33

harmonics (SH) lighting model has a limited representational34

capacity [11].35

To address these mentioned issues, we propose a new self-36

supervised learning algorithm that takes both the advantages37

of above two categories of methods to generate high-fidelity38

and re-renderable facial albedos. Our method adopts a coarse-39

to-fine paradigm which first utilizes a prior albedo generation 40

module to produce a coarse re-renderable albedo as a prior, then 41

adds facial details on the prior by a detail refinement module. 42

Specifically, we adopt a pre-trained inference network based on 43

3DMM to produce a prior albedo from the input image. Then, 44

we transform the prior albedo into a complete and detailed fa- 45

cial texture by employing an image-to-image translation net- 46

work to preserve high-frequency details. In addition, we intro- 47

duce a novel detailed illumination representation and propose 48

a decoder to make the albedo disentangled from environmental 49

illumination. This property is especially useful for rendering 50

from novel viewpoints. Several regularization loss functions 51

are designed on both the illumination side and albedo side for 52

achieving a high-fidelity and re-renderable albedo. Finally, our 53

pipeline can be efficiently trained in a self-supervised manner 54

with the help of differentiable rendering [10]. Fig. 1 gives two 55

examples of our reconstruction results. In summary, our work 56

makes the following contributions: 57

• We propose a new self-supervised neural network to ob- 58

tain a high-fidelity and re-renderable facial albedo. We are 59

able to deal with potential occlusions commonly existed in 60

facial images. The self-supervised learning further makes 61

our approach generalize well among other unseen data in- 62

the-wild. 63

• We devise a novel representation of detailed illumination 64

by a localized spherical harmonics to achieve a more ac- 65

curate illumination estimation, which alleviates the limited 66

expressiveness of widely used SH-based lighting model. 67

• We design several novel regularization losses to ensure 68

that the detailed albedo is similar to the prior coarse albedo 69

while keeping high-frequency details. Especially, the cross 70

perceptual loss is effective to disentangle lighting from 71

person-specific details such as beards and wrinkles. 72

2. Related work 73

2.1. Parametric Models for the Human Face 74

The seminal parametric model of 3DMM was introduced 75

by [8], which applies subspace modeling on collected 3D face 76

scans and produces low-dimensional representations for facial 77

identity, expression and albedo. Many variants [19, 20, 21, 78

22, 23] have extended it to obtain better performance [24]. 79

To improve representation power, parametric models with non- 80

linearity are introduced [25, 26, 27, 13]. Although this model 81

expands the representation capacity of 3DMM, the local mod- 82

eling scheme leads to stitching artifacts in the generated re- 83

sults. Ganfit [12] utilizes a progressive GAN [28] to construct 84

a generative model, which collects a dataset of high-resolution 85

human facial textures and trains the network on it. However, 86

the model has the drawback that the illumination is baked into 87

the texture. Lattas et al. [6] extend Ganfit by post-processing 88

(super-resolution, de-lighting and BRDF inference) the derived 89

texture. Its limitation is that the captured dataset does not con- 90

tain sufficient samples of different ethnicities and may produce 91

unfaithful results. 92



Preprint Submitted for review / Computers & Graphics (2024) 3

Texture

Encoder

Diffuse Albedo

Decoder

Illumination

Decoder

𝑆ℎ𝑎𝑝𝑒 𝑃𝑎𝑟𝑎𝑚𝑠
𝑃𝑜𝑠𝑒 𝑃𝑎𝑟𝑎𝑚𝑠

𝐴𝑙𝑏𝑒𝑑𝑜 𝑃𝑎𝑟𝑎𝑚𝑠

𝐼𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛
𝑃𝑎𝑟𝑎𝑚𝑠

Unwrap

3DMM

Reconstruction

3DMM

Decoder

𝑰

𝑻

𝑨

𝑳

D
if

fe
re

n
ti

a
b

le
 R

en
d

er
er

𝑹(𝑨′, 𝑳′)

𝑹(𝑨′, 𝑳)

(b) Detail Refinement Module

Trainable models

Pretrained models

Detail Refinement Module

𝑨′

𝑳′

Texture Encoder

Illumination 

Decoder

Diffuse Albedo 

Decoder

(a) Overview

Adversarial Loss
GAN 

Discriminator

𝑹𝒂𝒏𝒅𝒐𝒎 𝑰𝒎𝒂𝒈𝒆

𝑰

𝑹(𝑨′, 𝑳′) Cross-perceptual 

Loss

Arcface

Encoder

(c) Training Loss

Regularization Loss

𝑨 𝑨′

𝑳′𝑳

Image & Image Gradient Loss

𝑰 𝑹(𝑨′, 𝑳′)

Fig. 2. Network architecture for 3D face reconstruction: The left part of the upper box shows our prior module that takes a 3DMM as proxy model and
generates unwrapped facial texture map (T ), prior albedo map (A) and prior illumination (L). Our prior module includes a pre-trained 3DMM encoder
(which is trained seperately) to regress 3DMM parameters from input image (I) and a fixed 3DMM linear decoder to generate corresponding attributes
of the 3D face. The unwrapped facial texture map and prior albedo map are then fed into our detail refinement module (right part of the upper box) to
generate the detailed albedo (A′ ) and detailed illumination (L′ ). The detail refinement module (elaborated on the green box) contains one texture encoder
with a light decoder and a diffuse albedo decoder. After getting the detailed illumination map and the detailed albedo map, they are sent to a differentiable
renderer with other 3D face attributes to obtain re-rendered images (R(A

′
, L
′
),R(A

′
, L)) for self-supervision. The main training losses are further illustrated

in the orange box.

2.2. 3D Face Reconstruction1

Monocular face reconstruction. Zollhöfer et al. [29] give2

a state-of-the-art report summarizes recent trends in monocu-3

lar facial reconstruction, tracking, and applications. Given the4

lack of depth information in RGB images, 3DMM is always5

included as a proxy model in monocular face reconstruction6

pipeline. A variety of works [30, 31, 32, 16, 12, 3, 9, 33, 10, 17,7

11] utilize this paradigm to transform the reconstruction to a pa-8

rameter estimation problem. Tian et al. [34] and Zollhoefer et9

al. [29] provide comprehensive surveys for face reconstruction10

approaches. These works can be further divided into two cate-11

gories by the inferring approaches: fitting-based and learning-12

based methods. The former provides more accurate reconstruc-13

tion results but consumes more time, while the latter leverages14

deep convolutional neural networks to estimate 3DMM param-15

eters leading to a fast inference.16

High-fidelity 3D face reconstruction. Although 3DMM can17

reconstruct 3D faces roughly, it lacks detailed information and18

certain characteristics such as wrinkles and pores. Recently,19

many methods were proposed for high-fidelity 3D reconstruc-20

tion. The direct idea is to capture a dataset with high-quality21

3D face ground-truth and train the inference deep network on22

the dataset [35, 16, 36] to achieve authentic reconstruction re- 23

sults. However, constructing such datasets requires expensive 24

capture equipment (e.g., LED sphere) and leads to laborious 25

work. Meanwhile, the data are mostly captured in a controlled 26

environment and the network trained on it is hard to handle in- 27

the-wild face images. Chen et al. [37] utilize a combination 28

of synthetic and realistic face images, and propose a domain- 29

transfer cGAN to reduce the domain gap between these two 30

kinds of data. Different from this work, we propose a self- 31

supervised framework that depends only on the in-the-wild re- 32

alistic face dataset. 33

With the development of CNNs and differentiable rendering, 34

a self-supervised paradigm with re-rendering loss is incorpo- 35

rated into the facial detail reconstruction [38, 39, 17, 15, 14, 36

13, 40]. These works add a regression network to comple- 37

ment detail information upon the 3DMM coarse reconstruction. 38

However, the coarse model and detail model are often trained 39

separately. These approaches are trained in in-the-wild image 40

datasets and resolve the drawbacks of supervised approaches. 41

[41] leverage the symmetry in the human face and directly 42

regress the depth maps; however, it is unable to reconstruct 43

a complete face model and produce artifacts when encounter- 44



4 Preprint Submitted for review / Computers & Graphics (2024)

ing extreme inputs (e.g., images with non-frontal faces). Some1

face texture completion and frontalization approaches [42, 43]2

may help eliminate the artifacts to some extent. Another work3

branch focuses on human portrait video (or multi-view images)4

synthesis [44, 45, 46, 47]. They still utilize the 3DMM as a5

proxy model and generate high-fidelity dynamic details upon6

it. However, these works do not produce any detailed 3D mesh7

model; hence, graphic renderers cannot directly utilize their re-8

construction results.9

Representation of facial details. 3D facial detail information10

can be modeled in either geometric space as displacements or11

normal [43, 48, 49, 13, 16, 14, 50] or in appearance space as12

texture or albedo [39, 12, 51], or both of them [52]. Consider-13

ing the representation space, details can be represented as maps14

in uv-space, or maps in frontal-face space, or vertex attributes15

on a 3D face mesh. The methods of [16, 13] represent facial de-16

tail in uv-space. [16] unwrap partial image texture from image17

and regress a detailed displacement map from it; [13] directly18

generate a uv representation of texture and geometry from the19

input image. [39] utilize graph convolutional network (GCN)20

and model texture as three-channel vertex attributes on a 3D21

face mesh to obtain competitive results. [41] take advantage of22

the symmetry characteristic of human faces and represent the23

depth, albedo and illumination maps in the frontal-face space.24

Although applying GCN on mesh could produce convincing re-25

sults, we argue that uv-representation is still a valid represen-26

tation for detail reconstruction because the proper face param-27

eterization keeps most of the face topology and can be easily28

processed by 2D CNN. In this work, we present a monocular29

high-fidelity 3D face reconstruction approach and represent the30

detail information by a detailed texture map in the uv-space.31

2.3. Image Formation Modeling32

Image formation is the process that maps a 3D model with33

an environmental condition to a 2D image space. The core in34

the process is the reflectance models that include illumination35

modeling and interaction pattern between light and the model36

surface. In 3D face modeling, three-band RGB spherical har-37

monic lighting representation [53] and Lambertian surface are38

often considered the default settings [39, 9, 13]. Spherical har-39

monics is a set of orthonormal basis defined on a sphere that40

is analogous to Fourier basis in the Euclidean space, and it can41

be a proper approximation to illumination in the natural light-42

ing. Lambertian surface assumes that the surface irradiance is43

irrelevant to the observer’s position and only depends on the44

incident light direction. Although these two assumptions pro-45

vide proper approximation, they neglect other reflection effects46

(such as specular reflection) in the real scenario and limit the47

capability to capture complete illumination when encountered48

with complex environmental light, which is harmful to recover49

detailed face albedo. This observation motivates us to also re-50

fine the reflectance models in our method. Therefore, we pro-51

pose to retain the Lambertian assumption and attribute all the52

complex reflectance into our detailed illumination map which53

is an extension of 3-band spherical harmonics.54

3. Overview 55

Given a single facial image, our goal is to reconstruct a 3D 56

human face, with the emphasis on generating a high-fidelity and 57

re-renderable facial texture that is complete, detailed and disen- 58

tangled with illumination. To this end, we propose to first gen- 59

erate a prior albedo by a prior generation module and enhance 60

it with the facial texture unwrapped from the image by a detail 61

refinement module, see Fig. 2. We choose a traditional linear 62

3DMM [54] as our parametric model because a 3DMM albedo 63

excludes most of the illumination. The other parametric models 64

like [12] can also be directly applied in our pipeline. 65

The input facial image is first fed into the 3DMM encoder to 66

produce 3DMM parameters (including identity, expression, and 67

albedo), pose parameters and illumination parameters. Then, 68

these regressed 3DMM parameters are passed to a fixed 3DMM 69

decoder to acquire the prior albedo, 3DMM shape, camera pose 70

matrix and coarse illumination. Next, we obtain the facial tex- 71

ture by unwrapping the input image according to the projected 72

3DMM shape. The unwrapped facial texture map and prior 73

albedo map are fed into the detail refinement module, which 74

is composed of a modified version of image-to-image transla- 75

tion network, to generate a detailed albedo map and a detailed 76

illumination map. Finally, the detailed albedo and the detailed 77

illumination combined with the 3DMM shape projected in cam- 78

era space are rendered to the image space by a differentiable 79

renderer. 80

4. Prior Albedo Generation Module 81

Our prior albedo generation module takes a 3DMM as proxy 82

model and uses a convolutional neural network to estimate the 83

parameters of facial geometry, albedo, pose and illumination. 84

We adopt the state-of-the-art 3DMM coefficient regressor [9] 85

for the purpose. 86

Next, we can derive the prior albedo by 3DMM albedo de- 87

coding and generate an image texture by sampling the corre- 88

sponding projection pixels with 3DMM shape and pose param- 89

eters. After these two textures are obtained, they are projected 90

onto 2D uv-space to accommodate with 2D CNN structure of 91

detail refinement module. However, two problems occurred in 92

the image texture sampling procedure. First, the non-frontal 93

face and occlusion problem in the facial images may cause in- 94

completeness in the unwrapped texture. Second, the inaccurate 95

regression of pose and shape parameters in many cases may 96

cause the image texture to generate artifacts, especially in the 97

edge parts. Our detail refinement module introduced in the fol- 98

lowing can resolve these two problems. 99

5. Detail Refinement Module 100

Our detail refinement module adopts an image-to-image 101

translation network in the uv-space where the input includes 102

two maps: a prior albedo map and a partial facial image texture. 103

We first pad the unseen parts with Gaussian noises as being car- 104

ried out in [51] because filling the ’holes’ in the unwrapped im- 105

age texture is one of the goals of our detail refinement module. 106
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Fig. 3. Motivation of the cross perceptual loss. From left to right are image
of identity A, image of identity B, the rendered image constructed by de-
tailed albedo of A in combination with detailed illumination of B without
cross perceptual loss, the rendered image constructed by detailed albedo
of A in combination with detailed illumination of B with cross perceptual
loss.

Then, these two maps are concatenated and fed into the refine-1

ment network which also produces two outputs: the detailed2

albedo map and the detailed illumination map. The detailed3

albedo map includes information about basic details in human4

faces, such as facial wrinkles, pores and etc. Meanwhile the5

detailed illumination map attempts to model spatially-complex6

environmental illumination that can not be captured in a pre-7

vious coarse reconstruction. In the following, we elaborate on8

each part of the module and explain the specifically-devised loss9

functions.10

5.1. Illumination Disentanglement11

Illumination regularization. With respect to the illumination12

modeling, directly utilizing the coarse illumination in the prior13

generation module does not fully capture the complex illumi-14

nation for in-the-wild images. This situation will lead to the15

leakage of light information to the albedo which makes it not16

rerenderable. Therefore, a detailed representation for illumina-17

tion is needed.18

Given that our framework is trained in a self-supervised way,19

disentangling the illumination with albedo is not trivial. We20

take advantage of the coarse illumination spherical harmonics21

generated by the prior module and develop our illumination rep-22

resentation from it. We introduce a novel representation in the23

uv-space called spherical harmonics map which models a spher-24

ical harmonics illumination for every vertex in the face model.25

With the illumination map, we could not only model complex26

illumination in facial images, but also disentangle light by min-27

imizing the distance with coarse spherical harmonics, which is28

named by illumination regularization loss. In particular, we rep-29

resent the detailed illumination map Ldetail ∈ R(B,27,H,W) in the30

uv-space and directly regress it from the detail refinement mod-31

ule. Then, we regularize local illumination by devising a mean32

square error (MSE) loss to penalize detail and coarse illumina-33

tion differences. The MSE loss is expressed as follows:34

Lreg−illu = ||Muv ∗ (Ldetail − Lcoarse)||2, (1)

where Lcoarse ∈ R(B,27,H,W) is the coarse SH-illumination vector35

expanding to uv map size, and Muv ∈ R(B,1,H,W) stands for the36

facial regions visible to the camera projected onto the uv-space.37

Cross perceptual loss. Despite utilizing the illumination reg-38

ularization loss mentioned above, we find in our experiments39

that a small amount of facial internal characteristics (such as40

wrinkles and beard) are mistakenly included in the illumination 41

map, which means that albedo and illumination are not com- 42

pletely disentangled, leading to the loss of details in our de- 43

tailed albedo map. Given that the attributes, such as wrinkles 44

and beard are individual specific, we propose to utilize a cross- 45

identity perceptual loss to conduct the further disentanglement. 46

The motivation is stated below. We assume that the re-rendered 47

image that combines person A’s detailed illumination map and 48

person B’s detailed albedo map should have the same identity 49

with person B in that the correctly-disentangled detailed illu- 50

mination map would only include environmental illumination 51

information in it. However, if the detailed illumination map is 52

not entirely disentangled, which refers to including the facial 53

attribute specific to person A, then it may change the identity 54

of the rendered image. These two samples can be seen from 55

Fig. 3. Owing to this observation, we utilize an illumination- 56

irrelevant facial recognition network[55] to distinguish whether 57

the two images are of the same identity. The cross perceptual 58

loss is represented as follows: 59

Lcross−percp = 1− < ArcFace(Ir), ArcFace(Igt) >, (2)

where ArcFace stands for the perceptual net, Ir represents the 60

rendered image with detailed illumination map A and detailed 61

albedo map B, and Igt means the ground-truth facial image of 62

B. We adopt the cosine distance as the measurement of the sim- 63

ilarity between two normalized facial feature vectors. 64

We sum these two losses together with corresponding 65

weights as our final illumination disentanglement loss: 66

Lid = λid1 ∗ Lreg−illu + λid2 ∗ Lcross−percp. (3)

5.2. Albedo Regularization 67

We utilize prior albedo and the intrinsic characteristics of 68

albedo map to construct several regularization losses for ob- 69

taining a complete and re-renderable albedo from the input im- 70

age. Here, we propose three losses : the symmetry loss, albedo 71

smooth loss, and conditional GAN losses. 72

(1) Symmetry loss: We propose a symmetry loss on the de- 73

tailed albedo map. Given that human facial albedos are mostly 74

symmetrical (especially when decoupled with light), we use 75

this loss to regularize an unseen texture problem induced by 76

the non-frontal face in the input image. Another advantage of 77

the albedo symmetry loss is that it ensures robust albedo recon- 78

struction in uneven scene illumination. The symmetry loss is 79

expressed as follows: 80

Lsymm = ||Muv ∗ (Adetail − ˆAdetail)||2, (4)

where ˆAdetail is the detailed albedo map flipped along the y-axis. 81

(2) Albedo smooth loss: We propose a smooth loss to regu- 82

larize the detailed albedo map. We expect the detailed albedo 83

map inherits this feature because the generated prior albedo is 84

decoupled with illumination. We utilize local weighted smooth 85

loss on the detailed albedo map to achieve this goal. To compute 86

the local weights, we assume the detailed albedo map shares the 87

same smoothness with the prior albedo map. Therefore, we use 88

the local difference between pixels in the prior albedo map to 89
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compute the smoothness weights of the detailed albedo map.1

The albedo smooth loss is defined as:2

Lsmooth =
∑

i

∑
j∈N(i)

ωi, j||Adetail(i) − Adetail( j)||2, (5)

ωi, j = exp(−α ∗ ||Aprior(i) − Aprior( j)||2), (6)

where Adetail and Aprior represent the detailed albedo map and3

the prior albedo map respectively, N(i) indicates the neighbors4

of texel (pixel in uv-space) p(i), ωi, j represents the similarity5

of two texels, which is measured by a decreasing function of6

corresponding texels’ difference in the prior albedo map. α is7

a super-parameter which we here choose 80 empirically. In the8

above equation, our albedo smooth loss penalizes more to those9

texels whose neighborhood difference shares less similarity be-10

tween the detailed albedo map and the prior albedo map.11

(3) GAN loss: Our devised GAN loss includes an L1 distance12

loss and an adversarial loss [56] to force the detailed albedo to13

share the same distribution as prior albedo map. The L1 distance14

loss can be written as:15

LL1 = |Muv ∗ (Adetail − Aprior)|. (7)

We then define the adversarial loss as:16

LGAND =EG(z)∈Adetail log(1 − D(G(z)))+ (8)
Ex∈Aprior logD(x),

LGANG =EG(z)∈Adetail log(D(G(z))). (9)

where D symbolizes the discriminator to judge whether the gen-17

erated albedo map falls on the support set of the prior albedo18

map distribution. G(z) represents the detailed albedo map gen-19

erator which means the whole framework.20

Our albedo regularization loss is then computed by combin-21

ing above four loss terms with proper weights:22

Lar =λar1 ∗ Lsymm + λar2 ∗ Lsmooth+ (10)
λar3 ∗ LL1 + λar4 ∗ LGANG (11)

5.3. Detail Preservation23

Besides above regularization losses, we also utilize basic24

reconstruction losses to facilitate high-fidelity reconstruction.25

These losses are all applied on the image space; thus a face26

mask is required for concentrating penalization of the differ-27

ences on face regions in the images. We adopt the face parsing28

approach [57] to generate face masks before training. Coarse29

reconstruction may not be well-suited to image mask because of30

the inaccurate estimation of 3DMM and camera pose. Hence,31

we generate our final face mask by multiplying a pre-generated32

mask with projected face mask. The final face mask can be33

computed as:34

M f ace = Mparsing ∗ Mpro j. (12)

After face masks are obtained, we propose two reconstruc-35

tion losses applied in the mask regions, which contain image36

gradient loss and image loss.37

(1) Image gradient loss: We now propose an image gradient38

loss to encourage the similarity between the re-rendered facial39

image gradient and the ground-truth facial image gradient for 40

reconstructing facial details as authentic as possible. This loss 41

is designed according to the assumption that the detail informa- 42

tion can be mostly captured by image gradient. We define such 43

gradient loss function as: 44

Lgrad =
∑
||M f ace ∗ (Grad(Ir) −Grad(Igt))||2, (13)

where M f ace is the pre-extracted face mask, Ir and Igt are the 45

rendered image and the input facial image, respectively; and 46

Grad represents the gradient operator. Specifically, we first 47

calculate two directional gradients along the x-axis and y-axis, 48

then compare them with corresponding ground-truth gradient 49

maps. Finally, we obtain the summation. 50

(2) Image loss: We also adopt image loss to penalize pixel 51

difference between the rendered image and the input facial im- 52

age, which can be expressed as follows: 53

Limg =
∑
||M f ace ∗ (Ir − Igt)||2. (14)

We combine these two losses together to obtain our detail 54

preservation loss: 55

Ldp = λdp1 ∗ Lgrad + λdp2 ∗ Limg. (15)

6. Network Architecture and Training Details 56

We train our neural network on a public dataset CelebA [58] 57

which is a large-scale facial attribute dataset that has more 58

than 200K facial images collected from the internet. We sep- 59

arate the dataset into disjoint training data (85%) and testing 60

data (15%). We pre-process the images by first generating 68- 61

landmarks [59] before feeding them into our detail generation 62

network. Then, we utilize the generated landmarks to crop and 63

scale the images to keep the human faces staying in the center of 64

the images and resize them to 224 × 224. After pre-processing, 65

these images are fed into our pre-trained prior albedo genera- 66

tion module. In this work, a 3DMM parameter regressing net- 67

work and a fixed 3DMM decoder [54] are utilized to obtain the 68

prior albedo and other attributes (geometry, camera and illumi- 69

nation). The camera parameters and 3DMM shape are lever- 70

aged to unwrap the texture from the input image. Next, the 71

unwrapped texture and prior albedo (in uv-space) are concate- 72

nated and fed into the detail reconstruction network to acquire 73

detailed albedo maps and detailed illumination maps. 74

We adopt the ResNet-50 [60] as the backbone network of 75

our prior albedo generation module and pre-train it on 300W- 76

LP [61] following the state-of-art 3DMM reconstruction work 77

[9]. 300W-LP is a dataset that contains 122,450 facial images 78

with a variety of head poses generated from the original 300W 79

dataset by face profiling techniques. Similar to the training pro- 80

cess in [9], we train the network in a self-supervised way with 81

pixel-level, landmark-level, and perceptual-level discrepancy in 82

combination with the parameter regularization loss. 83

In the detail reconstruction network, we adopt the basic 84

pix2pix network [56] as our backbone and abandon the skip- 85

connection because it may cause the output to inherit the noise 86

from the unwrapped image texture. We also extend pix2pix 87
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with two decoders, one for detailed albedo generation and the1

other for detailed illumination modeling. The light decoder and2

albedo decoder share the same structure but with different out-3

put layers, where the light decoder outputs a 27-channel map4

while the albedo decoder outputs a 3-channel one. Finally, We5

use the face mesh renderer [62] for differentiable rendering. We6

combine the loss functions mentioned above to train our net-7

work, which is expressed as follows:8

Ltotal = Lid + Lar + Ldp. (16)

The coefficients in those loss functions are chosen as λid1, λid2,9

λar1, λar2, λar3, λar4, λdp1, λdp2 : 1.0, 0.5, 5.0, 5.0, 1, 1.0, 0.001,10

1.0, 5.0, where λar3 is set as 0.0 after first epoch training.11

We trained our entire network end-to-end for 10 epochs us-12

ing the Adam optimizer. The initial learning rate was set to 10−4
13

and reduced with attenuation coefficient of 0.98 every 1 epochs14

until we reached 10−5 to avoid overfitting. The batch size was15

16 and momentum was 0.9. The training task was completed16

in 2 days on a workstation with one Nvidia RTX-2080 TI GPU.17

Once trained, our network can process approximately 30 im-18

ages per second in the inference stage.19

7. Experimental Results20

We evaluate our algorithm qualitatively and quantitatively by21

performing a complete comparison with current state-of-the-art22

approaches. We further conduct ablation studies to provide a23

comprehensive evaluation of the individual components of our24

neural network.25

7.1. Self Evaluation26

Performance on CelebAHQ dataset. We first analyze the ca-27

pability of our method by using the CelebAHQ database [63],28

which includes 30k 1024 × 1024 facial images generated by29

applying super-resolution algorithm to a subset of CelebA im-30

ages. Given that the images in CelebAHQ contain more details,31

we test our neural network on it to demonstrate whether our32

approach could capture details on high-definition images and33

achieve high-quality reconstructed albedos. Note that our neu-34

ral network is only trained on the original CelebA.35

Fig. 4 qualitatively shows our reconstruction results on sev-36

eral images randomly selected from CelebAHQ. Our proposed37

approach successfully keeps facial details in the reconstructed38

detailed albedo map, and there exists no reflection effects other39

than diffuse reflection in the albedo map or rendered results40

with coarse illumination. This phenomenon verifies that most41

of the environment illumination are explained by the detailed42

illumination, which leads to a clean diffuse facial albedo. In43

addition, our albedo regularization loss ensures that the detailed44

albedo map also exhibits smoothness and completeness which45

are beneficial to re-render applications. The detailed albedo46

generated by our network can be directly sent into a renderer47

with Lambertian reflector to achieve high-fidelity re-rendered48

results owing to these two characteristics.ior 3DMM albedo by49

a white map (so it includes no prior information) to evaluate the50

effect of the inputs.51

Fig. 4. Our reconstruction results on CelebAHQ. The first column is input,
and the second and third columns show the results generated by our de-
tailed albedo combined with coarse illumination and detailed illumination
respectively. The last column shows the detailed albedo in the uv-space.

Fig. 5. Evaluation of prior albedo and detail refinement module. The first
three columns are input images, unwrapped image textures, and white
facial albedo which replaces the coarse albedo. The right two columns
show the output rendered images by using white albedo and original coarse
albedo. The figure verifies the capability of our model to transfer as much
details from the input texture.

Evaluation of prior albedo and detail refinement module. 52

Given that the detail refinement module in our framework takes 53

two inputs, namely the prior albedo generated by 3DMM and 54

the unwrapped texture from the input image, we are interested 55

in exploring what these two inputs are responsible for in the de- 56

tail refinement module. Accordingly we conduct an experiment 57

by substituting the input prior 3DMM albedo by a white map 58

(so it includes no prior information) to evaluate the effect of the 59

inputs. Fig. 5 shows the experimental results, where the ren- 60
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Fig. 6. Effectiveness of eliminating artifacts in unwrapped image texture.
From top to bottom are original input facial images, the unwrapped tex-
tures from input images and detailed albedos reconstructed by our method.

dered image with white map absorbs most details in the input1

but loses the appearance consistency with the original image.2

This phenomenon indicates that our detail refinement module3

takes these two inputs independently, where the prior albedo4

guides entire appearance generation and the unwrapped texture5

is responsible for the detail supplement.6

Texture artifact removal. We now evaluate the capability of7

our detail refinement module in dealing with the textures con-8

taining artifacts. The two main artifacts that exist in facial im-9

ages are show in the second row of Fig. 6. First, the non-frontal10

face images would lead to incompleteness in the unwrapped im-11

age texture. Second, the geometry parameters (including cam-12

era pose and shape parameters) regressed from the coarse re-13

construction step are not accurate in many cases, which would14

result in severe stripe-like artifacts in the unwrapped texture, es-15

pecially in the boundaries of human face. Our detail refinement16

module can remove these two kinds of artifacts and produce a17

smooth, complete and high-fidelity albedo (Fig. 6). This phe-18

nomenon is mainly due to the introduction of prior albedo and19

our designed albedo regularization loss, which endow the final20

reconstructed albedo with completeness and smoothness.21

7.2. Qualitative Comparison22

For qualitative comparison, we first compare our approach23

against recent learning-based texture reconstruction and gener-24

ation methods [19, 12, 10, 39]. Then, we focus on the qualita-25

tive evaluation in extreme illumination condition and compare26

our reconstructed albedo with advanced facial texture genera-27

tion method [12]. Finally, we compare our albedo reconstruc-28

tion performance with [36] which shares similar goal with ours29

whereas utilizing a self-collected high-fidelity dataset.30

Comparison on MOFA data. Fig. 7 illustrates the compari-31

son results with state-of-the-art reconstruction and generation32

works on a subset of MOFA test dataset [11]. Han et al. [19]33

proposes to utilize low-cost publicly-available data to construct34

a full 3D face texture space containing not only diffuse but also35

spatially-varying specular materials. As a generation-based36

model, [12] capture 10,000 high-resolution human facial tex-37

tures in the uv-space and train a progressive growing GAN to38

model the distribution human face texture. They leverage this39
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Fig. 7. Qualitative comparison to other competitive methods. The first row
is the input images while the remaining rows show the reconstruction re-
sults of all methods. Our reconstructions are shown in the second and third
rows where Ours DI stands for reconstruction with detailed illumination
and Ours CI means reconstruction with SH illumination (including only
details in diffuse albedo).

progressive GAN as the generative model and utilize fitting- 40

based paradigm to estimate the parameters in latent space. 41

Deng et al. [9] and Genova et al. [10] are the two represen- 42

tative 3DMM-based facial reconstruction methods that are also 43

trained in the self-supervised way on in-the-wild facial image 44

datasets. Lin et al. [39] aims to reconstruct high-fidelity fa- 45

cial texture from a single image self-supervised using GCN in 46

a coarse-to-fine manner. As illustrated in the Fig. 7, not only 47

our reconstruction achieves the best detail preservation com- 48

pared with other competitive approaches (see the second row, 49

Ours DI), but our diffuse albedo also decouples the environ- 50

mental illumination and shadows (see the third row, Ours CI). 51

Comparison on extreme illumination data. Facial images un- 52

der extreme illumination condition, including uneven lighting 53

or shadow, are commonly encountered in real-world applica- 54

tions. Due to the loss of information and low quality represen- 55

tation of illumination (three-band Spherical Harmonics), recon- 56

structing high-fidelity 3D face under such circumstances is still 57

challenging thus reconstruction-based methods always fail to 58

reconstruct complete face albedos. Meanwhile, a generation- 59

based approach can deal with extreme lighting because they 60

map the facial texture space to a latent space with a support 61
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Fig. 8. Comparison to Ganfit [12] in extreme lighting. From left to right
are input images, reconstructed albedo of [12], our generated albedo, and
our re-illuminated results using a different illumination condition, where
the used environmental map is illustrated at the left-bottom.

Input image Ours Yamaguchi et al. Ours Yamaguchi et al.

Fig. 9. Comparison to [36] for albedo reconstruction. The first column
shows input images; the second and third columns are the reconstructed
albedos of our approach and [36]; the last two columns display the ren-
dered images with different viewpoints and illumination conditions.

set. Our proposed model merging these two methods together1

should also have the capability to reconstruct convincing face2

albedos from the facial images under extreme illumination. In3

Fig. 8, we compare our reconstruction results in extreme light-4

ing to Ganfit [12]. The second and third columns show that5

our albedo decouples the complex environmental illumination6

and outperforms [12] by preserving more facial details from7

Table 1. Quantitative comparison on CelebA dataset. Ours OD means the
rendered image constructed by our detailed albedo combined with our de-
tailed illumination, while Ours OC means the result by using coarse illu-
mination. The best result of each measurement is marked in bold font.
Symbol ’/’ means that we could not test the corresponding method since no
open-source implementation.

Methods L1 ↓ PNS R ↑ S S IM ↑ LightCNN ↑ evoLVe ↑
Deng et al. [9] 0.05 26.58 0.83 0.72 0.64
Gercer et al. [12] / 26.5 0.898 / /
Lin et al. [39] 0.034 29.69 0.89 0.90 0.85
Dib et al. [38] 0.032 28.72 0.807 / /
Ours OC 0.02 24.88 0.89 0.91 0.83
Ours OD 0.01 28.90 0.93 0.93 0.86

the input face. This phenomenon is because of the coopera- 8

tion between the prior albedo generation module with the de- 9

tail refinement module of our framework. The former module 10

is responsible for generating the guided albedo and the latter 11

can complement details upon it. As a result, our method not 12

only inherits the advantage of generation-based methods which 13

maintain the diffuse texture smooth in the whole but also has 14

the ability to preserve the details as in a reconstruction-based 15

method. We outperform Ganfit and achieve more convincing 16

results. The fourth column shows re-illuminated results accord- 17

ing to our reconstructed albedo, where we apply different illu- 18

mination conditions to the reconstructed albedo and render it to 19

images where the illumination is randomly selected from a face 20

illumination prior database [64]. The re-illuminated results are 21

rather realistic and keeps the identity information of the original 22

image. 23

Comparison on albedo reconstruction from a single image. 24

To evaluate the quality of our reconstructed (diffuse) albedo, 25

we compare with the state-of-the-art method [36]. As shown in 26

Fig. 9, both [36] and our approach can decouple environmen- 27

tal illumination well. However, thanks to the novel illumina- 28

tion representation and disentanglement loss, our reconstructed 29

albedos keep more performers’ idiosyncrasy than [36], which 30

can be observed from the nasolabial folds from the third and 31

fourth rows. 32

7.3. Quantitative Comparison 33

For quantitative comparison, we mainly focus on the crite- 34

ria for measuring the image-level difference. First, L1 distance 35

loss is applied as the basic pixel-level criterion. Then, we uti- 36

lize two commonly-used image similarity criteria, namely the 37

structural similarity index measure (SSIM) and peak signal-to- 38

noise ratio (PSNR), to evaluate the similarity between the ren- 39

dered face image and original input face image. With regard to 40

the human face problem, we also leverage two well-known pre- 41

trained face recognition networks as maps from image space 42

to feature space and evaluate the difference between rendered 43

face image and input face image in the facial feature space. The 44

two facial recognition networks we adopted are LightCNN [65] 45

and evoLVe [66], since their state-of-the-art performance and 46

widely acceptance [39]. In summary, we calculate the differ- 47

ence between two face images in both pixel-level (including L1 48

distance loss, PSNR and SSIM) and face feature-level (includ- 49

ing LightCNN and evoLVe). 50
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Image w/o  𝐿𝐿𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 w/o  𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡−𝑔𝑔𝑡𝑡𝑔𝑔 Full model

Fig. 10. Ablation study of the proposed gradient loss and texture regular-
ization loss: our full model produces the most convincing results than oth-
ers.

The numerical statistics for each method are reported in Ta-1

ble 1, where the competing methods we choose are state-of-the-2

art ones trying to reconstruct details in albedo. The table illus-3

trates that our reconstruction results with detailed illumination4

are better than those of the competing algorithms. Besides, our5

framework also achieves competitive results by using only de-6

tailed albedo combined with coarse illumination, which further7

demonstrates that our detailed albedo is able to capture most8

facial details in the input image.9

7.4. Ablation Study10

Effectiveness of gradient and texture regularization losses.11

We first demonstrate the functionality of the gradient loss and12

texture regularization loss in our pipeline using the detailed ren-13

dering results with coarse illumination and detailed albedo. As14

shown in Fig. 10, our proposed Lgrad helps our model to capture15

the detailed information from the facial image. Our Ltex−reg loss16

contributes to the disentanglement of illumination and com-17

pletes the occlusion part according to the prior albedo which18

renders the detailed albedo map more similar to the prior albedo19

map. By contrast, our full model produces the most convincing20

results than others.21

Effectiveness of light regularization. To evaluate the effect22

of our light perceptual regularization loss, we perform an abla-23

tion study by showing the rendered detailed illumination images24

with and without this loss. In Fig. 11, the light perceptual reg-25

ularization loss helps the disentanglement of illumination with26

facial characteristics. The illumination map recovered with the27

help of light perceptual regularization loss includes less facial28

wrinkles and beard than the one that recovered without this loss.29

This phenomenon indicates that the facial details are all mostly30

encoded in the detailed albedo map. Our illumination map has31

only environmental light information as far as possible thus, it32

is more suitable for re-renderable 3D facial generation.33

7.5. Limitations34

Although our model achieves competitive results on most of35

the in-the-wild facial image datasets, it may still generate un-36

reliable results on huge occlusion cases. The reason is that the37

prior model we used is only able to produce low-fidelity prior38

Image w/o  𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙−𝑟𝑟𝑟𝑟𝑙𝑙 Full model

Fig. 11. Ablation study of the proposed perceptual loss for lighting disen-
tanglement: the illumination image generated by our full model separates
the facial intrinsic details better.

albedo and the lack of information in significantly occluded re- 39

gions cannot be complemented with only symmetry regulariza- 40

tion. Moreover, though our model takes 3DMM reconstructed 41

albedo as prior, our reconstructed albedo is not completely inde- 42

pendent of input image quality and generate better result when 43

inputs are of high resolution. 44

8. Conclusion and Future Work 45

We have presented a novel self-supervised neural network for 46

3D face reconstruction, emphasizing generating re-renderable 47

high-fidelity textures from single images. We utilize the coarse 48

3DMM model as a prior and fine-tune on it to capture more 49

facial details. We compare our results with state-of-the-art 50

methods in qualitative and quantitative ways. The compari- 51

son demonstrates that our method does not require capturing 52

high-resolution face texture datasets and we can generate re- 53

renderable and realistic facial textures. 54

However, our approach still falls short in fully addressing 55

face reconstruction under extreme conditions, such as top-down 56

viewpoints or exaggerated facial expressions. This limitation is 57

primarily due to the constrained representative capacity of the 58

3DMM albedo prior or the potential for inaccurate geometry 59

reconstruction by the 3DMM when dealing with exaggerated 60

facial expressions. In the future, we plan to construct a high- 61

fidelity albedo map dataset and train a new generation model, 62

which would significantly improve the reconstruction quality 63

under extreme conditions. Second, we are interested in extend- 64

ing our model to reconstruct geometric details, because high- 65

fidelity geometry and texture would lead to a more competitive 66

and visually appealing result. Finally, we would like to add 67

more dynamics to our model and reconstruct animated facial 68

details from a single image or video. 69
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N, et al. 3d face reconstruction with dense landmarks. In: European 101

Conference on Computer Vision (ECCV). Springer; 2022, p. 160–177. 102

[31] Feng, Y, Feng, H, Black, MJ, Bolkart, T. Learning an animatable 103

detailed 3d face model from in-the-wild images. ACM Trans Graph 104

2021;40(4):1–13. 105

[32] Li, C, Morel-Forster, A, Vetter, T, Egger, B, Kortylewski, A. To fit 106

or not to fit: Model-based face reconstruction and occlusion segmentation 107

from weak supervision. arXiv preprint arXiv:210609614 2021;. 108

[33] Yi, H, Li, C, Cao, Q, Shen, X, Li, S, Wang, G, et al. Mmface: 109

A multi-metric regression network for unconstrained face reconstruction. 110

In: IEEE Computer Vision and Pattern Recognition (CVPR). 2019, p. 111

7663–7672. 112

[34] Tian, Y, Zhang, H, Liu, Y, Wang, L. Recovering 3d human mesh from 113

monocular images: A survey. IEEE Trans Pattern Anal Mach Intell 2023;. 114

[35] Yang, H, Zhu, H, Wang, Y, Huang, M, Shen, Q, Yang, R, et al. 115

Facescape: a large-scale high quality 3d face dataset and detailed riggable 116

3d face prediction. In: IEEE Computer Vision and Pattern Recognition 117

(CVPR). 2020, p. 601–610. 118

[36] Yamaguchi, S, Saito, S, Nagano, K, Zhao, Y, Chen, W, Olszewski, 119

K, et al. High-fidelity facial reflectance and geometry inference from an 120

unconstrained image. ACM Trans Graph 2018;:162:1–162:14. 121

[37] Chen, Z, Wang, Y, Guan, T, Xu, L, Liu, W. Transformer-based 3d face 122

reconstruction with end-to-end shape-preserved domain transfer. IEEE 123

Trans Circuit Syst Video Technol 2022;32(12):8383–8393. 124

[38] Dib, A, Thebault, C, Ahn, J, Gosselin, PH, Theobalt, C, Chevallier, L. 125

Towards high fidelity monocular face reconstruction with rich reflectance 126

using self-supervised learning and ray tracing. In: IEEE International 127

Conference on Computer Vision (ICCV). 2021, p. 12819–12829. 128

[39] Lin, J, Yuan, Y, Shao, T, Zhou, K. Towards high-fidelity 3d face recon- 129

struction from in-the-wild images using graph convolutional networks. In: 130

IEEE Computer Vision and Pattern Recognition (CVPR). 2020, p. 5891– 131

5900. 132

[40] Yang, M, Guo, J, Ye, J, Zhang, X. Detailed 3d face reconstruction from 133

single images via self-supervised attribute learning. In: SIGGRAPH Asia 134

2020 Posters. 2020, p. 1–2. 135

[41] Wu, S, Rupprecht, C, Vedaldi, A. Unsupervised learning of probably 136

symmetric deformable 3d objects from images in the wild. In: IEEE 137

Computer Vision and Pattern Recognition (CVPR). 2020, p. 1–10. 138

[42] Zeng, X, Wu, Z, Peng, X, Qiao, Y. Joint 3d facial shape reconstruction 139

and texture completion from a single image. Computational Visual Media 140



12 Preprint Submitted for review / Computers & Graphics (2024)

2022;8:239–256.1

[43] Kim, J, Yang, J, Tong, X. Learning high-fidelity face texture comple-2

tion without complete face texture. In: IEEE International Conference on3

Computer Vision (ICCV). 2021, p. 13990–13999.4

[44] Zheng, M, Haiyu, Z, Yang, H, Huang, D. Neuface: Realistic 3d neural5

face rendering from multi-view images. In: IEEE Computer Vision and6

Pattern Recognition (CVPR). 2023,.7
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