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Abstract A discriminative local shape descriptor

plays an important role in various applications. In this

paper, we present a novel deep learning framework that

derives discriminative local descriptors for deformable

3D shapes. We use local ‘geometry images’ to

encode the multi-scale local features of a point, where

we introduce an intrinsic parameterization method

based on geodesic polar coordinates. By this new

parameterization, we could robustly generate the

geometry images for even badly-shaped triangular

meshes. Then a triplet network with shared

architecture and parameters is proposed to perform

deep metric learning, which aims to distinguish between

similar and dissimilar pairs of points. Additionally,

a newly designed triplet loss function is minimized

for improved and accurate training of the triplet

network. Besides, to solve the dense correspondence

problem, an efficient sampling approach is utilized

to achieve a good compromise between training

performance and descriptor quality. At the testing

stage, given a geometry image of a point of interest, our

network outputs a discriminative local descriptor for

it. An extensive comparison for non-rigid dense shape

matching on a variety of benchmarks demonstrates the

superiority of the proposed descriptors over the state-

of-the-art alternatives.
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1 Introduction

With the rapid increase of available 3D models, 3D

shape analysis becomes an important research topic

in the field of visual media computing. Designing

local shape descriptors is one of the fundamental

analysis tasks. Typically, a local descriptor refers

to an informative representation stored in a multi-

dimensional vector that describes the local geometry

of the shape around a point. It plays a crucial role in a

variety of vision tasks, such as shape matching [15],

object recognition [23], shape retrieval [35], shape

correspondence [57, 61], and surface registration [51],

to name a few.

Over the last decades, a large number of

local descriptors have been actively investigated

by the research community. Despite the recent

interests, however, designing discriminative and robust

descriptors is still a non-trivial and challenging task.

Early works focus on deriving shape descriptors based

on hand-crafted features, including spin images [29],

curvature features [19], heat kernel signatures [54],

etc. Although these descriptors can represent the

local behavior of the shape effectively, the performance

of these methods is still largely limited by the

representation power of the hand-tuned parameters.

Recently, convolutional neural networks (CNNs)

have achieved a significant performance breakthrough

in many image analysis tasks. Inspired by the

remarkable success of applying deep learning in many

fields, recent approaches have been proposed to learn

local descriptors for 3D shapes in an either extrinsic

or intrinsic manner. The former usually takes multi-
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Fig. 1 Our newly-learned descriptor can be easily used

to establish dense correspondences between pairs of non-rigid

shapes. The Human Body shapes (left) are from SCAPE [2] and

Dog shapes (right) are from TOSCA [11].

view images [26] or volumetric representations [66] as

input, but it suffers from strong requirements on view

selection and low voxel resolutions. While the latter

kind of methods generalizes the CNN paradigm to

non-Euclidean manifolds [42], they are able to learn

invariant shape signatures for non-rigid shape analysis.

However, since these methods learn information

relating to shape types and structures (e.g., mesh scale,

topological structure, spatial resolution, etc.) that vary

from different datasets, their generalization ability is

defective. As a result, these methods perform unstable

on different domains.

In this paper, we propose another novel approach for

local descriptors learning, that can capture the local

geometric essence of a 3D shape. We draw inspiration

from the work of [52] which used geometry images for

learning global surface features for shape classification.

Different from their work, we present an efficient

intrinsic parameterization to construct a small set of

geometry images from multi-scale local patches around

each point on the surface. Then, the fundamental low-

level geometric features can be encoded into the pixels

of these regular geometry images, on which standard

CNNs can be applied directly. We leverage a triplet

network [60] to perform deep metric learning with a pre-

training phase and an improved triplet loss function.

The objective is to learn a descriptor that minimizes

the corresponding points distance while maximizes the

non-corresponding points distance in descriptor space.

In summary, our main contributions are the following:

• We develop a new 3D local descriptor based

on specially designed triplet networks, which is

dedicated to processing local geometry images

encoding low-level geometric information. To

generate geometry images, a robust intrinsic

parameterization is constructed by utilizing the

geodesic polar coordinates.

• We design a novel triplet loss function that can

control the dispersion of anchor-positive descriptor

distance, thus improving the performance of our

descriptor effectively. We also present a tractable

and efficient feature points sampling approach,

where selecting informative and sufficient number

of feature points can lead to efficient and accurate

training.

• We show that the proposed concise framework

is discriminative for solving dense correspondence

problem of deformable shapes. In addition, it

has better generalization capability across different

datasets than existing descriptors.
We note that a shorter conference version of this

paper appeared in [59]. Our initial conference paper

did not address the dense correspondence problem.

Specifically, this journal paper extends our early

conference work through the following aspects:

(1) Since the neural network in the previous

conference paper is only trained using rigid keypoints,

its performance on points defined in highly deformable

regions is not satisfactory. To address this issue,

two modifications are adopted in this paper. First,

rather than only using rigid keypoints to train the

neural network, we generate local geometry images

from both landmark keypoints on the rigid parts and

the points on truly deformable regions. Second, we add

one more intrinsic feature (HKS) to generate a better

local descriptor. In this sense, the applicability of the

proposed approach to learn dense descriptor fields is

achieved.

(2) We introduce a new and more robust

parameterization method for local geometry images

generation. Instead of the previously used authalic

parametrization, we further introduce a more robust

parameterization method based on geodesic polar

coordinates. This approach works efficiently for

badly-shaped triangular meshes, while the authalic

parametrization may fail to parameterize some local

patches due to imperfections on meshes. In doing so,

the process of preparing training data can be greatly

accelerated.

(3) Extensive experiments and analysis using more

standard quality measures are conducted to verify the

effectiveness of our approach. We also study the

resistance to noise and partiality, and compare to our

early conference work to show the advantages of the

new approach.

2 Related Work

A large variety of 3D local feature descriptors have

been proposed in literature. These approaches can be

roughly classified into two categories: traditional hand-

2



Learning Local Shape Descriptors for Computing Non-Rigid Dense Correspondence 3

crafted descriptors and learned local descriptors. The

relevant work for matching shapes undergoing non-rigid

correspondences are also revisited.

Hand-crafted local descriptors. Early works focus

on deriving shape descriptors based on hand-crafted

features[24]. A detailed survey is out of the scope of

this paper, so we briefly review some representative

techniques. For rigid shapes, some successful

extrinsic descriptors have been proposed, for example,

spin images (SI)[29], 3D shape context (3DSC)[18],

MeshHOG descriptor[65], signature of histogram of

orientations (SHOT)[56], shape google [10], rotational

projection statistics (RoPS)[25]. Obviously, these

approaches are invariant under rigid Euclidean

transformations, but not under deformations. To deal

with isometric deformations, there have been some

intrinsic descriptors based on geodesic distances[17]

or spectral geometry. Such descriptors include heat

kernel signature (HKS)[54], wave kernel signatures

(WKS)[3], intrinsic shape context (ISC) [32] and

optimal spectral descriptors (OSD)[37]. In addition,

several methods are proposed to compute shape

similarities and correspondences across a large shape

database, such as exploring large model repositories [20]

or finding high quality point-to-point maps among

a collection of related shapes [27]. However, both

extrinsic and intrinsic descriptors rely on a limited

predefined set of hand-tuned parameters, which are

tailored for task-specific scenarios. Thus, these local

descriptors are not discriminative enough to describe

various 3D shape transformations.

Deep-learned local descriptors. Wei et al.[62]

employe a CNN architecture to learn invariant

descriptors in arbitrary complex poses and clothings,

where their system is trained with a large dataset of

depth maps. Zeng et al.[66] present another data-

driven 3D keypoint descriptor for robustly matching

local RGB-D data. Since they use 3D volumetric CNNs,

this voxel-based approach is limited to low resolutions

due to the high memory and computational cost. Qi et

al. [48] propose a deep net framework, called PointNet,

that can directly learn point features from unordered

point sets to compute shape correspondences. Khoury

et al. [30] present an approach to learn local compact

geometric features (CGF) for unstructured point clouds

by mapping high-dimensional histograms into low-

dimensional Euclidean spaces. Huang et al.[26] recently

introduce a new local descriptor by taking multiple

rendered views [4] in multiple scales and processing

them through a classic 2D CNN. While this method

has been successfully used in many applications, it still

suffers from strong requirements on view selection, as

a result the 2D projection images are not geometrically

informative. In addition, whether this approach can be

used for non-rigid shape matching is somewhat elusive.

Another family of methods are based on the notion

of geometric deep learning [12], where they generalize

CNN to non-Euclidean manifolds. Various frameworks

have been introduced to solve descriptor learning or

correspondence learning problems, including localized

spectral CNN (LSCNN)[7], geodesic CNN (GCNN)[39],

Anisotropic CNN (ACNN)[8], mixture model networks

(MoNet)[42], deep functional maps (FMNet)[36], and

so on. Different from this kind of methods, our work

utilizes geometry images to locally flatten the non-

Euclidean patch to the 2D domain so that standard

convolutional networks can be used.

Non-rigid shape correspondence. Plenty of

algorithms are proposed to compute correspondence

between geometric shapes, and several recent

surveys [5, 57] and tutorials [45] are available for

an in-depth review of this area. Broadly speaking,

these approaches can be classified into three major

categories. First, point-wise correspondence methods

establish the matching between (a subset of) the

points on two or more shapes by minimizing metric

distortion, which can include similarity of local

descriptors [37, 46, 65], geodesic [13, 41, 58] or

diffusion distances [14]. Second, soft correspondence

methods aim to establish approximate correspondences

between probability density functions. A family of

such methods are based on functional maps [44], which

model correspondences as linear operators between

spaces of functions on manifolds [33, 43, 47]. Third,

learning-based methods formulate the correspondence

computation as a learning problem [49] or design

convolutional neural networks on Euclidean [62] and

non-Euclidean [8, 36, 42] domains.

3 Methodology Overview

Given a feature point (or any point of interest) p on

a surface shape S ⊂ R3, our goal is to learn a non-

linear feature embedding function f(p) : R3 → Rd
which outputs a d−dimensional descriptor Xp ∈ Rd
for that point. The embedding function is carefully

designed such that the distance between descriptors of

geometrically and semantically similar points is as small

as possible. In this paper, we use the L2 Euclidean

norm as the similarity metric between descriptors:

D(Xpi , Xpj ) = ||Xpi − Xpj ||2. Since our approach is

built on the notion of geometry image, in this section,

we first briefly review the concept of geometry image,

3
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Fig. 2 Overview of our local descriptor training framework. We start with extracting local patches around the keypoints (shown

in purple color), and generate geometry images for them. Then a triplet is formed and further processed through a triplet network,

where we train this network using an objective function (triplet loss function).

then the pipeline of our framework is introduced.

Geometry image. The geometry image is a new kind

of mesh representation technique introduced by Gu et

al. [22]. It represents an irregular mesh of arbitrary

topology using a completely regular grid of samples on

a square domain. Given a 2-manifold surface mesh,

the creation of a geometry image includes three steps:

cutting, parametrization and quantification. The first

step converts the surface into a topological disk using

a network of cuts, the second step parametrizes this

disk onto a square domain, and the third step creates a

regular grid over the square and resamples the surface

via the parametrization. Using this representation, the

geometric properties (e.g. positions, normals) as well as

other attributes of the original mesh can be resampled

and encoded into the pixels of an image. Geometry

images has been demonstrated to be useful in various

graphics applications, such as rendering, remeshing and

shape compression.

Pipeline. The core part of our approach is a

full end-to-end learning framework as illustrated in

Fig. 2. At off-line training phase, we propose to

learn the descriptors by utilizing a triplet network,

which are composed of three identical convolutional

networks (“ConvNet” for simplicity) sharing the same

architecture and parameters. We feed a set of

triplets into the ConvNet branches to characterize

the descriptor similarity relationship. Here, a triplet

t = (I(p), I(p+), I(p−)) contains an anchor point p,

a positive point p+, and a negative point p−, where

I(p) represents a geometry image encoding the local

geometric context around p. By “positive” we mean

that p and p+ are correspondingly similar surface

points, and by “negative” we mean p− is dissimilar

to the anchor point p. Based on the training data, we

optimize the network parameters by using a minimized-

deviation triplet loss function to enforce that, in the

final descriptor space, the positive point should be

much closer to the anchor point than any other negative

points. Once trained, at the testing stage, we first

generate a local geometry image for a point of interest

on the surface, then we generate a 128-d local descriptor

for this point by applying the individual ConvNet on

the geometry image.

4 CNN Architecture and Training

In this section, we describe the details of our network

architecture and how it can be trained automatically

and efficiently to learn the embedding function.

4.1 Training Data Preparation

A rich and representative training dataset is the

key to the success of CNN-based methods. For

our non-rigid shape analysis purpose, a good local

descriptor should be invariant with respect to noise,

transformations, and non-isometric deformations. To

meet above requirements, we choose the most recent

and particularly challenging FAUST dataset [6], which

contains noisy, realistically deforming meshes of

different people in a variety of poses. Furthermore, full-

body ground-truth correspondences between the shapes

are known for all points.

However, note that our proposed approach is

generalizable, that is to say, our network is trained on

one dataset, but can be applied to other datasets. In

Sec. 5, we will demonstrate the generalization ability of

4
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Fig. 3 Illustration of our sampled 256 feature points on two

human models in dynamic poses from the FAUST dataset.

our method.

Feature points selection. Intuitively, we could use

all the points of the shape to generate geometry images

for training. However, this approach does not work

well in practice. The reason is two-fold: first, it

requires a huge amount of memory space that stores the

training data; second, the training process is very hard

to converge due to the existence of so many noisy and

uninformative local regions. To stay within the memory

budget, as well as reduce the training complexity,

we propose to use some representative feature points,

which consist of two kinds of points. First, 128

landmark keypoints are determined by leveraging any

existing 3D interest point detectors (e.g., 3D-Harris [53]

used in this paper). Then we randomly sample

another 128 points by using the farthest point sampling

method on surfaces [63], where the sampling points are

uniformly distributed to cover the entire shape. We

finally select 256 feature points on the FAUST dataset,

as shown in Fig. 3. By this means, we not only consider

the keypoints on the rigid parts of the shape, but also

take into account the points defined on truly deformable

regions. In addition, since the ground-truth point-wise

correspondence has already been defined in FAUST, the

feature point sampling operation is only performed on

one mesh, and each point can be easily retrieved in all

the other meshes.

Local geometry images generation. Partially

motivated by [52], we use the geometry image

representation to capture surface information, where

surface signals are stored in simple 2D arrays. Unlike

previous work converting the entire 3D shape into

a single geometry image for shape classification, we

generate a set of local geometry images for each point

of interest.

We now generate local geometry images for a surface

point p. A local patch mesh is first built by extracting

the neighbor triangles around the this point. Then we

map the local patch to a 2D square grid. To speed

up the training process and make the descriptor more

robust, we make two alignments of the local patch

before parameterizing it. First, we align the average

normal direction of the vertices inside the local patch

to the Z axis, and then we rotate the local patch around

Z axis to make the principal curvature direction located

in the X-Z plane (similar to [9]).

Now we perform a local intrinsic parameterization

with low metric distortion in the region of interest

around pi, which is invariant to non-rigid shape

transformations. In particular, an efficient method

of Discrete Geodesic Polar Coordinates (DGPC) [40]

is utilized to map each neighbor point pi to a polar

coordinate (ρ, θ) with respect to the base point p, where

ρ is the geodesic distance from pi to p, and θ is the

polar angle. After the local geodesic polar map is

constructed, we convert the geodesic polar coordinates

to Cartesian coordinates, hence one 2D geometry image

can be generated. This approach is very robust for

badly-shaped triangular meshes. The resolution of a

geometry image depends on specific applications, here

we set its size to be 32 × 32 for all our experiments.

To further solve the rotation ambiguity, we rotate the

2D geometry image K = 12 times at 30◦ intervals. For

each rotation, we generate a corresponding geometry

image. Finally, in order to capture multi-scale contexts

around this point, we extract the local patch at L = 3

scales, with neighbor geodesic radius 2.0ρ0, 3.5ρ0 and

4.5ρ0, respectively. Here ρ0 is computed as 1% of the

geodesic diameter of the entire mesh.

While geometry images can be encoded with any

suitable feature of the surface mesh, it also depends

on specific applications. For solving the sparse

correspondence problem, we found that using only two

fundamental low-level geometric features is sufficient

in our approach: (1) vertex normal direction ~nv =

{nx, ny, nz} at each vertex v, which are calculated

by weighted averaging face normals of its incident

triangles; (2) two principal curvatures κmin and κmax,

that measure the minimum and maximum bending in

orthogonal directions of a surface point, respectively.

Therefore, each geometry image is encoded with 15

feature channels: {nix, niy, niz, κimin, κimax}L=3
i=1 , where

i represents each scale. Fig. 4 shows some geometry

image examples with different scales and rotations. To

learn a dense descriptor, we only need to add one

more intrinsic feature: HKS [54]. We select HKS

because of its invariance to isometric deformations and
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Keypoint Local patch nx ny nz k max kmin

Fig. 4 Geometry images generated around a keypoint. From

top to bottom are the geometry images of a smaller scale local

patch, a larger scale local patch and a rotated larger scale local

patch (rotation angle is 90◦ in clockwise). From left to right

show the geometry images encoding normal {nx, ny, nz} and

curvature {κmax, κmin} features.

multi-scale property that captures the point’s local and

global geometric information. Specifically, it could

represent increasingly global properties of the shape

with increasing time. We will show its effect in the

results section.

4.2 Triplet Sampling

For fast training convergence, it is important to select

meaningful and discriminative triplets as input to the

triplet network. The purpose of training is to learn a

discriminative descriptor with the positive or negative

points that are hard to be identified from the anchor

point. That is to say, given an anchor point p, we

want to select a positive point p+ (hard positive) such

that argmax||f(pi)−f(p+
i )||2, and similarly, a negative

point p− (hard negative) such that argmin||f(p) −
f(p−)||2. Then, the question becomes: given an anchor

point p, how to select the hard positive and negative

points? The most straightforward way is to pick

samples by hard mining from all of the possible triplets

across the whole training set. However, this global

manner is time-consuming and may provide misleading

information that undermine the convergence of the

triplet network, because the noisy or poorly shaped

local patches would cause great difficulties for defining

good hard triplets.

In our approach, we use a stochastic gradient descent

approach to generate the triplets within a mini-batch,

similar to the approach used in [50] for 2D face

recognition. Specifically, at each iteration of the

training stage, we randomly select 16 points out of 256

feature points, then randomly select 8 geometry images

out of K ×M geometry images across the shapes for

each point, where K = 12 is the number of rotated

geometry images of one feature point on one shape, M

is the number of shape models in training set. Totally,

the batch size equals to 128. Then for all anchor-

positive pairs within the batch, we select the semi-

hard negatives instead of the hardest ones, because

the hardest negatives can in practice lead to bad local

minima early in training process. Here a semi-hard

negative p−semi is defined as:

||f(pi)− f(p+
i )||2 < ||f(pi)− f(p−semi)||2. (1)

Indeed, the semi-hard negative is a negative exemplar

that is further away from the anchor than the positive,

but still closer than other harder negatives.

4.3 Min-CV Triplet Loss

According to the requirements in real tasks such

as shape matching and shape aligning, the pivotal

property of an appropriate local descriptor is its

discriminability. Since we employ CNNs to embed

geometry images of keypoints into a d−dimensional

Euclidian space, an effective loss function must be

designed. It encourages the CNNs to regard that a

geometry image of a specific type of surface point is

closer to all other geometry images of the same type of

surface point and farther from geometry images of any

other types of surface point. To achieve this goal, we

define the following classic triplet loss function [50]:

L =
N∑
i=1

[
Di
pos −Di

neg + α
]
+
, (2)

Di
pos = D

(
f(pi), f(p+

i )
)
,

Di
neg = D

(
f(pi), f(p−i )

)
,

where N is the batch size, α is the margin distance

parameter that we expect between anchor-positive and

anchor-negative pairs.

Combined with hard mining, such kinds of triplet

loss functions are widely used in various metric learning

tasks and perform well or at least acceptable. However,

it suffers from some problems in our evaluation dataset.

In particular, when training our model with this loss

function, the average loss was continually decreasing,

however, the single-triplet loss was oscillating violently.

Besides, we noticed that for a large number of

triplets, the distance between the anchor and the

positive geometry images in descriptor space are still

considerably large compared with the distance of

anchor and negative. Only a few triplets resulted in

almost zero loss that led to the decrease in average loss.

This phenomenon indicated that our CNNs were failed

to learn intrinsic local features but trapped into a local

optimum.

To solve this problem, we propose a new triplet

loss function, which minimizes the ratio of standard

6
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deviation to mean value (also called coefficient of

variation-CV) of anchor-positive distance among one

batch. This modification is inspired by the intuition

that measured by distance in our descriptor space, one

geometry image pair of a point should be as similar (at

least same order of magnitude) as other geometry image

pairs of the same keypoint. By adding this part to the

classic triplet loss, we get our minimized-CV (referred

to as ’Min-CV’) triplet loss:

LMin−CV = λ
σ(Dpos)

µ(Dpos)
+

N∑
i=1

[
Di
pos−Di

neg +α
]

+
, (3)

where λ is a tunable non-negative parameter, σ(·)
calculates the standard deviation among one batch,

and µ(·) calculates the arithmetic mean of one batch.

Note that recent work [34, 55] also introduced the mean

value and variance/standard deviation into traditional

triplet loss. Their loss functions, LKumar [34] and

LJan [55],are respectively defined as:

LKumar = (σ2(Dpos) + σ2(Dneg))+

λmax(0, µ(Dpos)− µ(Dneg) + α),
(4)

LJan = σ(Dpos) + σ(Dneg) + µ(Dpos)

+λmax(0, α− µ(Dneg)),
(5)

where σ2(·) calculates the variance among one batch.

Different from these two approaches, we minimize the

CV instead of the variance directly. The reason is

that compared to the variance, the CV could measure

the dispersion of Dpos without being influenced by

the numerical scale of the descriptor distance (or

the magnitude of the data), e.g., scaling down the

descriptor distance will decrease the variance but not

affect the CV. Thus, the CV better reflects the degree

of data deviation. We make a comparison with these

two loss functions in Sec. 5. Furthermore, extensive

experiments show that our Min-CV triplet loss is able to

help CNNs to learn significant features from one dataset

and generalize well to other datasets.

4.4 CNN Architecture and Configuration

Considering the particularity and complexity of our

task, we design a special CNN architecture dedicated

to processing geometry images in our triplet structure,

which is presented below.

Network architecture. Fig. 5 illustrates the

architecture of our CNN model. In this figure, we have

a compact stack of three convolutional layers (“conv”,

colored in blue), three pooling layers and two fully

connected layers (“fc”, colored in green). In particular,

each convolutional layer is equipped with the size of

convolution kernel shown above and the number of

3×3
conv

128

geometry

image

size: 32

max 

pooling,

/2

size: 8

avg

pooling,

/2

size: 16

3×3
conv

256

3×3
conv

512
avg

pooling,

/2

512

fc

size: 4

128

fc

output

128-d descriptor

Fig. 5 Detailed network architecture of individual ConvNet

shown in Fig. 2.

output feature maps shown below. For each fully

connected layer, we show the number of units above.

The “size” represents the length and the width of the

tensor which is fed into next layer, e.g., from left to

right, the third layer is a convolutional layer that takes

an 8× 8× 256 tensor as input and operates 3× 3× 512

convolution on it, resulting in an 8 × 8 × 512 tensor

flowed to pooling operation. Next, we apply max

pooling with a stride of 2 on the output of the first

convolutional layer and average pooling with the same

stride on the outputs of the other two convolutional

layers. Batch normalization (BN) [28] is adopted after

each convolution or linear map of input but before non-

linear activation. Note that the function of BN layer

is different from that of our Min-CV loss: BN layer

normalizes the mean and variance of a batch data in

deep neural networks. It solves the vanishing gradient

problem and exploding gradient problem during back-

propagation stage of training. By contrast, our new loss

directly act on the output of our neural network and

influence the whole network by guiding the training.

It is more similar to a kind of prior knowledge based

on the intuition that the degree of difference among

descriptors of corresponding points should be as small

as possible.

CNN configuration. The detailed configuration of

our triplet CNN is set to adapt our architecture and

gain the best performance. Because triplet loss is not as

stable as other frequently-used loss functions, our old-

version CNN with traditional ReLU activation often

suffers from dying ReLU problem that may reduce the

effective capacity of our CNN model and then lead to

failure in generating meaningful descriptors. To avoid

this defect, we employ leaky ReLU [38] with slope =

0.1 for negative input as our activation function.

Experimental results demonstrate the effectiveness of

this strategy.

7
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In addition, we use a pre-training strategy to speed

up training. Firstly we train a classification network

constructed by a main part that is identical to the

anchor net in our triplet CNNs and a softmax layer

using FAUST dataset. The classification labels are

the indices of the vertices of the mesh. After

it converges, we use the parameters in the main

part of the classification network to initialize the

convolutional layers of our triplet CNN. Besides, Xavier

initialization [21] is adopted to initialize all layers of

the classification network and the fully connected layers

of our triplet CNNs. In training procedure, Adam

algorithm [31] is employed to optimize the loss function.

In all of our experiments, the learning rate starts with

0.01 and decreases by a factor of 10 every time when

the validation loss begins to oscillate periodically. To

avoid overfitting, L2 regularization is also used with

coefficient 0.005.

5 Experimental Results

In this section, we first give training details and

evaluate the performance of our Min-CV triplet loss.

Then we provide a complete comparison with state-

of-the-art approaches with qualitative and quantitative

evaluations for computing dense correspondence. We

also compare to our early conference work [59] to show

the advantages of the new approach. The shown results

are obtained on an Intel Core i7-3770 Processor with

3.4 GHz and 16GB RAM. Offline training runs on an

NVIDIA GeForce TITAN X Pascal (12GB memory)

GPU.

5.1 Experimental Setup

Datasets. In addition to FAUST, we further carry

out experiments on two other public-domain datasets.

The SCAPE [2] contains 71 realistic registered meshes

of a particular person in a variety of poses, while the

SPRING [64] contains 3000 scanned body models. In

these datasets, groundtruth point-wise correspondence

between the shapes are known for all points.

Training settings. We separate the FAUST dataset

into disjoint training models (70%, subjects 1-7 with

10 poses per subject), validation models (10%, subject

8), and testing models (20%, subjects 9-10). Any

geometry image triplet is generated from one of above

subsets depending on the stage it is used for, resulting

in the triplet training set, validation set, and testing

set, respectively. The training set contains, counted by

combination, up to 2.35 × 1013 different triplets that

could be fed into our triplet CNNs for training, while

the triplet validation set and testing set contains up

Fig. 6 Training behaviors using different triplet loss functions.

Left: positive-negative margin curves. Right: standard deviation

mean ratio curves.

to 5.08 × 1010 and 1.78 × 1011 triplets, respectively.

Our method is implemented based on TensorFlow [1].

Using our hardware configuration shown above, one full

training takes about 10 hours.

Evaluation metrics. To evaluate our learned local

descriptor and compare with others, we adopt various

measures that are commonly used in the literature:

• cumulative match characteristic (CMC) curve,

which evaluates the probability of finding a correct

correspondence among the k−nearest neighbors in

the descriptor space.

• Princeton protocol, which measures

correspondence quality by plotting the percentage

of nearest-neighbor matches that are at most

r-geodesically distant from the ground-truth

correspondence.

• similarity map, which qualitatively depicts the

Euclidean distance in the descriptor space between

the descriptor at a reference point and the rest

of the points on the same shape as well as its

transformations.

• point-wise map, which visualizes the

correspondence as a vertex-to-vertex map

(corresponding points w.r.t a ground-truth

reference are shown in the same color).
Description of competing algorithms. We

thoroughly compare our method against multiple local

descriptors of different types:

• extrinsic descriptors including hand-crafted like

features spin images (SI) [29], SHOT [56],

RoPS [25], and learning-based CGF-32 [30].

• intrinsic descriptors including hand-crafted like

features HKS [54] and WKS [3], learning-based

descriptor OSD [37], and the state-of-the-art

deep-learned descriptors LSCNN [7], MoNet [42],

FMNet [36].

5.2 Ablation Study of Loss Functions

First, we demonstrate the effectiveness of our

proposed Min-CV triplet loss by an ablation study. In

Fig. 6, we depict the training behaviors evaluated on

the validation dataset using classic triplet loss (Eq. 2),

8
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Fig. 7 Performance of different losses on FAUST testing

models, measured using the CMC (left) and Princeton protocol

(right) plots.

Kumar’s loss [34] (Eq. 4), Jan’s loss [55] (Eq. 5) and our

Min-CV triplet loss (Eq. 3), where the margin distance

parameter α is empirically set to a large number (e.g.,

100 in this paper) and λ is set to 1.0. To be fair,

we use the same network architecture and parameters

proposed in this paper for different losses. In Fig. 6,

the positive-negative margin curve shows the average

distance between anchor-positive and anchor-negative

pairs in each batch, and it is calculated by
∑N
i=1

[
Di
pos−

Di
neg

]
+

. The standard deviation mean ratio curve

shows the average ratio
σ(Dpos)
µ(Dpos) along the iterations.

From the curves, we see that Jan’s loss performs worst

in our task, and classic loss cannot control the degree

of deviation of anchor-positive distance, while both

Kumar’s loss and our Min-CV loss significantly reduce

it. Compared with Kumar’s loss, the training behavior

of our loss is better in both comparisons, thus it

effectively improves the robustness and generalization

ability of our learned descriptor. Taking advantage of

this, our descriptor performs stably on various datasets.

Further, we compare the performance of different losses

on the testing models. As shown in the CMC and

Princeton protocol curves (see Fig. 7), our loss still has

a better performance.

5.3 Dense Correspondence Task

We demonstrate the advantages of our local

descriptor in solving dense correspondences problem.

We retrain our CNN network by adding the geometry

images with HKS feature, and test it on FAUST,

SPRING and SCAPE datasets.

Comparison. We measure the performance of

all shape descriptors using the CMC and Princeton

protocol plots. For all comparisons, the learned

methods (OSD, LSCNN, MoNet, FMNet and ours)

are trained on FAUST dataset, then applied to other

datasets. Fig. 8 reports the comparison results.
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Fig. 8 Performance of different descriptors for solving dense

correspondences task on FAUST (top), SPRING (middle)and

SCAPE (bottom) datasets, measured using the CMC (left) and

Princeton protocol (right) plots.

we observe that MoNet has the best performance

on FAUST, however, MoNet does not learn a real

descriptor, and it casts shape correspondence as

a labelling problem. Thus, it cannot be directly

generalized to other datasets once it is trained

on FAUST, because the labelling spaces can be

quite different. Compared to other methods, our

performance is higher on FAUST. In addition, we show

that our approach has better generalization capability

than others on other datasets.

We further provide more results of shape matching

by using similarity map and point-wise map. Fig. 9 and

Fig. 10 show such results on FAUST. Note that for the

point-wise map, we show the matching results at top

k = 20 ranks in the CMC curves. From the similarity

map, we can see that the proposed approach is more

discriminative and robust to various transformations.

The point-wise map also demonstrates that our newly-

learned descriptor has a superior performance.
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Ours

SI

HKS

OSD

LSCNN

MoNet

Fig. 9 Similarity map in the descriptor space. We compute the distance between the descriptor at a point of the knee on the

reference shape (leftmost) and the descriptors at all other points on the same and on other shapes. Cold color indicates small distance

in the descriptor space.

Resistance to noise. To demonstrate our approach

is robust, we first train our descriptor only on the clean

data in FAUST. Then we test it on the noisy data,

which are obtained by adding three levels of Gaussian

noise. As shown in Fig. 12, our performance is slightly

reduced as the level of noise increases, but we still

perform well on noisy data.

Partial matching. Matching deformable 3D shapes

under partiality transformations is a challenging

problem. Since our approach only exploits local

geometry images, it does not necessarily require the

objects to be complete shapes. To demonstrate our

descriptor has certain robustness for this challenging

task, we run our method on the recent public

SHREC’16 Partial Correspondence dataset [16]. The

shapes in the benchmark are based on the TOSCA

high-resolution dataset and span different classes,

exemplifying different kinds of partiality. In Fig. 12,

the qualitative result shows our approach works well in

the case of partiality.

10
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Source Ground truth SI SHOT ROPS CGF-32

WKS OSD LSCNN FMNet Ours

HKS

MoNet

Fig. 10 Visualization of dense correspondence on FAUST dataset as vertex-to-vertex map (corresponding points are shown in the

same color). Full reference shape is shown on the top left.
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Fig. 11 Performance of our approach reacting with data at

different noise levels.

5.4 Comparison to our Conference

Work [59]

Since the neural network in the previous conference

paper [59] is only trained using rigid keypoints, its

performance on points defined in highly deformable

regions is not satisfactory, as shown in Fig. 13. By

learning from examples that are randomly sampled

on truly deformable regions, we now can achieve

better performance. Besides, using the authalic

parametrization [59], nearly 3% to 7% of local patches

cannot be parameterized correctly. Fig. 14 shows

the failure cases for the parametrization algorithm

used in [59], where the method easily interrupts when

handling degenerate and ill-shaped triangles in which

some elements of the input mesh have a very low mesh

quality. By contrast, our used DGPC method maps

each surface point to a polar coordinate based on the

geodesic distance. It works by propagating distances in

an ordered fashion, from vertices close to the base point

to those farther away. Thus it is robust for ill-shaped

triangles, and for our used dataset it can handle all the

points correctly. Meanwhile, at the testing stage, the

time processing one FAUST shape with 6890 points is

reduced from ∼ 8 minutes to ∼ 2 minutes.

5.5 Limitations

We successfully used deep neural networks to learn

local descriptors for 3D shapes. Nevertheless, since

our approach is based on the parameterized geometry

images, we require that the surface shapes should

be locally manifold triangular mesh. Thus, we

currently cannot handle non-manifold local patches

or other shape representations, such as point clouds

and triangle soups. However, thanks to the so

many existing meshing/remeshing and mesh repairing

algorithms, manifold triangle mesh can be easily

achieved nowadays.

Second, since we use low-level features (normal

vectors and curvature) for the construction of the

geometry images, our resulting descriptors is sensitive

to mesh resolution and sampling because such low-level

features are sensitive precisely to these nuisance factors.

We find that our approach, as well as other methods,

are not very robust to resolution. We would like to

address this issue in the future.
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Fig. 12 Results for partial matching on the SHREC’16 benchmark using point-wise map (at top k = 50 ranks). Each partial shape

is matched to the full shape on the left.
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Fig. 13 Comparison to our early conference work

(ECCV18) [59] for solving dense correspondences task on FAUST

(top) and SPRING (bottom), measured using the CMC (left)

and Princeton protocol (right) plots.

Fig. 14 The ill-shaped (left) and degenerate triangles (right)

which cause problems for the parametrization method used in

our early conference work [59].

6 Conclusion and Future Work

We presented a new approach for discriminative

descriptor learning for non-rigid 3D shapes. First,

we robustly parameterize the multi-scale localized

neighborhoods of a surface point into the so-called

geometry images, which encode more geometric

information in the local region than rendered views

or 3D voxels. Then the invariance to deformation

is obtained via an efficiently trained triplet network,

where we introduce a new metric learning loss

function to characterize the relative ordering of

the corresponding and non-corresponding point pairs.

An efficient feature points sampling approach is

also introduced to solve the dense correspondence

problem. We have experimentally demonstrated

better discriminability, robustness and generalization

capability of our approach on a variety of datasets.

In future work, we would like to investigate more

advanced training strategies or networks (e.g., graph

CNNs) to further improve the performance. We also

wish to extend our flexible approach to other data-

driven shape analysis, such as shape segmentation, 3D

saliency detection, point cloud recognition.
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