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Isotropic Surface Remeshing without Large
and Small Angles

Yiqun Wang, Dong-Ming Yan, Xiaohan Liu, Chengcheng Tang, Jianwei Guo,
Xiaopeng Zhang, Peter Wonka

Abstract—We introduce a novel algorithm for isotropic surface remeshing which progressively eliminates obtuse triangles and
improves small angles. The main novelty of the proposed approach is a simple vertex insertion scheme that facilitates the
removal of large angles, and a vertex removal operation that improves the distribution of small angles. In combination with
other standard local mesh operators, e.g., connectivity optimization and local tangential smoothing, our algorithm is able to
remesh efficiently a low-quality mesh surface. Our approach can be applied directly or used as a post-processing step following
other remeshing approaches. Our method has a similar computational efficiency to the fastest approach available, i.e., real-time
adaptive remeshing [1]. In comparison with state-of-the-art approaches, our method consistently generates better results based
on evaluations using different metrics.

Index Terms—Isotropic remeshing, non-obtuse remeshing, local operation, triangle quality.
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1 INTRODUCTION
Triangle meshes are omnipresent representations of
three-dimensional (3D) data in scientific and engineer-
ing applications from geometry modeling to physi-
cal simulation, due to its efficiency, simplicity, and
flexibility. With the recent progress in acquisition
hardware and reconstruction techniques, acquiring
point clouds with fine geometric details and creating
highly complicated raw meshes with a large amount
of points connected by badly shaped triangles (i.e., tri-
angles with angles that are too small or too large) are
considerably easy. However, for memory consump-
tion reduction, computational efficiency and accuracy,
reducing the number of points and simultaneously
improving the mesh quality are often necessary. The
goal of recent developments in remeshing is creating
high-quality triangle meshes that could be used by
practical applications based on raw data [2].

Three desired qualities are involved when dis-
cussing a good remeshing algorithm: fidelity, simplic-
ity, and element quality [3]. As the premise of surface
representation, the fidelity, measured by various dis-
tance metrics between the triangle mesh and refer-
ence geometry, must be able to faithfully represent
a geometric object. Moreover, for a memory-efficient
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representation and computation, the number of ver-
tices and the complexity of mesh connectivity should
be reduced, which is encoded as the requirement
of mesh simplicity. Finally, the applications related
to solving partial differential equations often require
triangle meshes with well-shaped triangles, namely,
good element quality, to construct stable basis functions
or enable robust numerical integrators [4]. The most
important criterion of the element quality is the mini-
mal/maximal angles. For example, for a wide variety
of applications such as geodesic distance computa-
tion, acute meshes (i.e., meshes with only acute tri-
angles) are often desirable [5], [6], [7]. However, these
goals are often in conflict with each other. For exam-
ple, reducing the complexity will lower the fidelity,
and vice versa. Numerous remeshing algorithms have
been proposed to achieve a balance among the three
desired qualities of triangle meshes, with the addi-
tional concern of the computational speed.

Existing algorithms always consist of two main
parts: resampling geometry and rebuilding connectiv-
ity. Local mesh operations can be used for these parts.
The geometry can be updated by vertex relocation, and
the connectivity can be updated through edge flipping,
edge collapsing, and edge splitting. For example, mesh
simplification attempts to reduce the complexity of
meshes by iteratively applying edge collapsing oper-
ations [12]. This method tends to preserve the fidelity
as much as possible, but without considering the
angle quality. Another example is the Delaunay mesh
construction, which aims at converting input meshes
into new meshes that satisfy the so-called Delaunay
property without altering the input geometry [13]. A
Delaunay mesh can be constructed efficiently using
only edge splitting and edge flipping. However, this
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Fig. 1: Comparisons of the remeshing results of the vase-lion model using different approaches. The top row shows the
input mesh (leftmost) and the remeshing results of previous approaches, including RAR [1], MAI [8], SPP [9], IFM [10],
NOB [11] (from left to right), using approximately 6.5 k vertices. The bottom row presents the results of our method
(leftmost) and those obtained by using the corresponding meshes in the top row as initializations. Our algorithm is able
to directly remesh the input surface, and can also be used as a post-process to improve the mesh quality of previous
approaches. The light red color indicates a triangle whose maximal angle is greater than the desired upper bound, βmax
(90◦ in this example), and the light blue color shows a triangle whose minimal angle is smaller than the lower bound,
βmin (30◦ in this example). Table 1 presents the detailed quality statistics.

method does not improve the angle quality. Note that
our results can be seen as a special type of Delau-
nay mesh with only acute triangles. To achieve an
even distribution of mesh vertices, numerous meth-
ods focus on minimizing surrogate energy functions
such as the centroidal Voronoi tessellation (CVT) [14]
and optimal Delaunay triangulation (ODT) [15] . The
underlying operations involved in CVT and ODT
computation can be seen as a combination of vertex
relocation and edge flipping. Although they produce
good results in practice, these energy functions are
not directly related to the mesh quality criteria previ-
ously discussed and our method can improve upon
these techniques. The local mesh operations can be
used directly for dynamic surface tracking [16] and
real-time remeshing [17], [1], while guaranteeing the
minimal angle bound [8]. However, to the best of our
knowledge, no existing method can explicitly control
both the minimal/maximal angle bounds at the same
time for remeshing.

The main motivation behind our work is designing
powerful tools to optimize important mesh quality
criteria directly, e.g., the minimal and maximal angle.
The newly designed algorithm should have a similar
performance to the real-time remeshing approach [1],
and allow users to explicitly control the element

quality. Additionally, we provide optional control to
allow users to gain balance between the fidelity and
computation time. Similar to previous works, we use
local remeshing operations, e.g., edge collapsing for
mesh simplification, edge splitting for subdivision,
and edge flipping for valence/angle optimization.
The main novelty of our approach is that it explores
new combinations of local remeshing operations and
proposes new trigger conditions that determine how
the local remeshing operations are combined. More-
over, our method can be applied directly to the input
mesh, or be used as a post-process of other existing
techniques. Figure 1 shows an example of remeshing
a complex input geometry. The key contributions of
this approach include the following aspects:

• We propose new combinations of local operations
for angle improvement.

• Our method produces meshes with superior an-
gle quality compared with current state-of-the-art
methods. In addition, we can also improve the
general triangulation quality reflected through
multiple statistics.

• We provide optional control to trade off com-
putation speed with feature-sensitivity (fidelity).
Moreover we provide optional control for users
to switch between fast remeshing and feature-
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sensitive remeshing (high fidelity).

2 RELATED WORK

Various types of remeshing techniques exist depend-
ing on specific applications. In this section, we focus
our discussion on the works that are most relevant to
ours. Specifically, we emphasize the recent approaches
for non-obtuse remeshing. A further systematic in-
troduction to remeshing can be found in the survey
papers [2], [18] and textbooks [19], [20].

The non-obtuse (or acute) triangulation is first stud-
ied on the 2D plane [21], [22], [23], [24], [25]. Un-
fortunately, none of these approaches can be directly
generalized to surfaces in 3D. To the best of our
knowledge, Li and Zhang [26] are the first ones to
propose a non-obtuse remeshing algorithm on the
basis of Laplacian smoothing and mesh simplification.
Although they are able to generate non-obtuse meshes
for smooth surfaces, they failed to eliminate small
angles at the same time.

Recent advances show that mesh optimization and
smoothing techniques can drastically improve the
mesh quality. These approaches include CVT [27],
[14], centroidal Delaunay triangulation [28], ODT [15],
blue-noise sampling [29], and discrete optimiza-
tion (e.g., edge splitting, edge collapsing, and local
smoothing). However, not all of them can produce
non-obtuse remeshing.
CVT-based approaches have been proven to gener-
ate meshes with the highest quality. Considering a
sampling domain and the number of sample points,
the CVT energy is minimized by using either classic
Lloyd iterations [30] or Newton-like methods [14].
The final triangulation is extracted as the dual of
the optimized Voronoi diagram. The main differences
among different approaches are the methods used to
approximate the Voronoi diagram on surfaces. Earlier
works are pioneered by Alliez and coauthors [31], [3],
[32]. They first parameterize the input mesh on a 2D
parameter domain, and apply CVT to this 2D domain.
Then, the points and triangulation are lifted back to
the original surface to obtain the remesh. Generally,
the parameterization-based approaches are able to ef-
ficiently generate high-quality meshes. However, they
suffer from the issues of robustness and distortion
introduced during the parameterization.

Recent works of Yan et al. [33], [34], [11] and
Du et al. [35] directly compute CVT on mesh sur-
faces, where the Voronoi diagram on surfaces is
approximated by the restricted Voronoi diagram
(RVD) [36]. The RVD-CVT-based approaches can gen-
erate high-quality meshes. Additionally, the most re-
cent work [11] is able to produce non-obtuse meshes
for smooth surfaces. However, the approach fails for
inputs with sharp features or highly varying density
functions, as discussed in the paper. Sun et al. [37]
propose to reduce the number of obtuse triangles for

anisotropic remeshing, where a hexagonal metric is
used to replace the Euclidean metric. However, this
approach also cannot remove all the obtuse triangles.

Another type of CVT-based remeshing is to use
the geodesic distance for computation [38], [39], [40],
[41], [42], [43]. Although geodesic-based methods can
generate meshes with the same quality as that of
RVD-based methods, they involve frequent geodesic
path computations, which drastically slow down the
remeshing process.
Blue-noise sampling has also been introduced for
surface remeshing, including capacity-constrained
blue-noise sampling [44], maximal Poisson-disk sam-
pling (MPS) [29], [45], [46], [47], farthest point op-
timization (FPO) [48], and the simple push-pull
(SPP) [9] approaches. The main goal of this category
of approaches is to produce point samples with the so-
called ”blue-noise” property. The mesh quality is then
improved under certain constraints while keeping the
randomness of the point distribution.
Discrete optimization improves the mesh quality
by repeatedly applying local operators on the input
geometry, e.g., edge splitting, edge flipping, edge
collapsing, and vertex relocation. Our approach falls
into this category. Botsch and Kobbelt [17] propose a
simple and efficient framework for uniform remesh-
ing, which contains four key components: splitting
long edges, collapsing short edges, valence optimiza-
tion by edge flipping, and tangential smoothing. This
framework can generate uniform remeshing in real
time, which has been used for multi-resolution shape
modeling. Later, Dunyach et al. [1] generalized the
framework to real-time adaptive remeshing (RAR)
and applied it to mesh deformation applications. Both
[17] and [1] are able to remesh input surfaces in
real time, but without considering any bounds of the
output angles. To address this problem, Hu et al. [8]
improved the smallest angle of the mesh by repet-
itively applying edge collapsing, vertex relocation,
and edge splitting while bounding the approximation
errors and implicitly preserving features. Although
this algorithm could increase the smallest angle to
a user-specified threshold (up to 40◦), it introduces
numerous obtuse triangles at the same time, as shown
in Sec. 5. Liu et al. [13] proposed an efficient method
to construct Delaunay meshes by inserting fewer ad-
ditional points than the previous approach [49]. Only
simple operations, such as edge splitting and edge
flipping, are involved in the computation. Although
this algorithm does not alter the geometry of the
input mesh, it does not improve the angle quality
either. In our work, we simultaneously improve min-
imal angles and decrease maximal angles to produce
meshes without too large and too small angles up
to the user specified angle bounds. As a method in
the category of discrete optimization, our approach
repeatedly applies local operations but with newly
designed trigger conditions.
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To improve the regularity of the vertices (e.g.,
valence-6 vertices are considerably preferred in the
interior of a mesh), multiple other approaches can
be used, such as explicit remeshing [50], valence
editing [51], and global parameterization [52], [53],
[10]. These approaches can generate meshes with
highly regular patterns. However, the triangles are
always distorted and are difficult to use for adaptive
remeshing due to strong constraints enforced by the
regularity.

3 OVERVIEW

In this work, we present a simple yet effective ap-
proach for isotropic remeshing by repeatedly elimi-
nating large angles and improving small angles. These
goals are achieved by designing two novel high-
level operations, i.e., large angle removal and small
angle improvement, which are combinations of the
standard local mesh operations, i.e., edge splitting,
edge collapsing, edge flipping, and vertex relocation
(cf. Fig. 2). The large angle removal operation is
achieved by point insertion (edge splitting), whereas
the small angle improvement operation is attained by
point deletion (edge collapsing). By combining both
operations, we are able to keep the number of vertices
in the output mesh equal to a user-specified value.

Fig. 2: Illustration of the standard local mesh operations,
i.e., edge collapsing, edge splitting, edge flipping and vertex
relocation (from left to right).

The proposed framework consists of two main com-
ponents, i.e., initialization and optimization. First, the
output mesh is duplicated from the input mesh, and
is initialized by either inserting or removing vertices
to reach a user-desired target number of vertices
(Sec. 4.1).

Next, we analyze the initial output mesh and label
the triangles whose angles are not bounded by the
user specified minimal and maximal values, e.g., the
default bounds used in our experiments are [35◦, 86◦].
Then, we repeatedly optimize the triangle quality by
removing large angles and by improving the small
angles (Sec. 4.2). Fig. 3 illustrates the remeshing pro-
cess of our framework using the botijo model as an
example. Moreover, we provide optional extensions
that can improve the fidelity of the output mesh in
Sec. 4.3. We explain the details of each step in the
next section.

4 OUR APPROACH

The inputs to our method include a two-manifold
triangle mesh,M; the specified minimal and maximal
angle bounds, βmin and βmax, respectively; and the
desired number of target vertices in the output mesh,
nt (optional). We assume that the feature curves of the
input mesh to be preserved are pre-specified by the
user or provided as input, if any.

4.1 Initialization
The goal of this step is to generate an initial mesh with
the user-specified number of target vertices, which
matches a sizing function defined on M.

In the context of uniform remeshing, we introduce a
constant target edge length, L, computed on the basis
of the total surface area, |M|, of the input mesh. In the
ideal case where the triangles are identical equilateral
triangles, the average triangle area roughly equals to
|M|
2N . Accordingly, the reference edge length can be

deduced as L = 2
4√3

√
|M|
2N by using the relationship

between the area and edge length of equilateral trian-
gles. Thus, the sizing function for uniform remeshing
is defined as ρ(x) = L.

For adaptive remeshing, we compute a smoothly
varying sizing function, ρ(xi), on every vertex by
using an approximation error, ε and the curvature
radius, ri, on each vertex of the input mesh [1]. We set
ρ(xi) =

√
6 ε ri − 3ε2 , computed by the relationship

between ri and the edge length ρ(xi), which means
that the specified length can approximate the mesh
surface within the approximation error. In addition,
we introduce two parameters, namely, hmin and hmax,
which are the minimal and maximal edge length
bounds of the sizing function ρ(xi). In the work of
Dunyach et al. [1], these parameters (i.e., ε, hmin, and
hmax), which are difficult to adjust, have to be set
manually by the user. Here, we introduce a simple
method to compute the recommended parameters.
Considering the input mesh, we first compute the
curvature radius, ri, on each vertex and the total
surface area |M|. Subsequently, we establish the rela-
tionship among |M|, ri, and ε in the ideal case where
the triangles are identical equilateral triangles, i.e.,
S =

∑
i

{√
3
4 ρ(xi)

2
}

=
∑
i

{√
3
4 (6εri − 3ε2)

}
. ρ(xi), as

is a function of ri and ε, can be seen as a quadratic
equation of ε, which can be solved efficiently. Then,
we can deduce hmin and hmax from the maximum
and minimum edge length ρ(xi).

Once the sizing function has been computed, we
iteratively perform edge splitting for long edges
(‖xa,xb‖ > 4

3 min(ρ(xa), ρ(xb))) or edge collapsing
for short edges (‖xa,xb‖ < 4

5 min(ρ(xa), ρ(xb))) in
order to generate an initial output mesh with nt
vertices. We also remark that our approach can be
used as a post-processing step of numerous previous
remeshing approaches, by using their outputs as our
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Fig. 3: Remeshing processing of our approach. From left to right are: the input meshes (3353 and 2991 triangles with
large and small angles, respectively), initialized after splitting long edges (3368 and 3006, respectively), and results of one
iteration (758 and 201, respectively), two iterations (171 and 13, respectively), three iterations (44 and 2, respectively), and
15 iterations (0 and 0, respectively). Both large and small angles are eliminated progressively.

initial results, and keeping the number of vertices
unchanged.

4.2 Optimization

The goal of this step is to improve the mesh quality
by jointly eliminating large angles and improving
small angles. All the triangles with small or large
angles outside the desired bounds [βmin, βmax] are
processed. The default angle bounds are [35◦, 86◦]
if not explicitly specified. Our optimization is based
on standard local mesh operators, i.e., edge splitting,
edge collapsing, edge flipping, and vertex smoothing.
However, we propose several novel trigger conditions
and combinations of these operators, which can be
efficiently used to achieve our goal. Alg. 1 presents the
pseudo code of the proposed optimization procedure.

Algorithm 1: Optimization
input : Initialized mesh Mi , parameter k, βmin, βmax
output: Output mesh M′ whose angles θ ∈ [βmin, βmax]

1 repeat
2 LargeAngleRemoval(k);
3 ValenceOptimization();
4 VertexSmoothing();
5 SmallAngleImprovement(k);
6 ValenceOptimization();
7 VertexSmoothing();
8 until ∀ θ, θ ∈ [βmin, βmax];

Alg. 1 shows four main components in this step:
large angle elimination, small angle improvement, valance
optimization, and vertex smoothing. In each iteration,
we first scan all the triangles in the output mesh M′
and store those triangles whose angles are outside the
angle bounds in two separate lists Ll and Ls (one for
triangles with angles larger than βmax, and the other
for triangles with angles smaller than βmin). Then, we
use an additional internal parameter k to control the
number of triangles to be processed in each routine.

To eliminate the large angles, we apply vertex
insertion for the first k triangles with large angles

following the procedure described in Sec. 4.2.1. Then,
we further locally apply edge flipping for valence
optimization in accordance with Sec. 4.2.2. Finally, we
apply local smoothing to the neighborhoods affected
by the previous operations. To improve the small
angles, we apply the same procedure as the large
angle elimination. The major difference is that, the
core component, instead of applying vertex insertion,
is the vertex removal operation mentioned in Sec. 4.2.4
with edge collapsing. Note that each large angle
elimination operation inserts one new vertex, whereas
each small angle improvement operation deletes one
vertex. By applying both operations at the same time,
we can keep the number of the vertices unchanged
during the optimization procedure.

4.2.1 Large angle removal
Vertex insertion is the essential operation for remov-
ing large angles. Starting with the list Ll of triangles
with angles larger than βmax, we apply k times vertex
insertion for the the first k triangles in Ll. We use two
different strategies for the smooth and feature cases
(for triangles that are incident to one or more feature
edges). Here, we make the assumption that all the
triangles in Ll are isolated for easy explanation.
Smooth case. If the current triangle to be processed
has no incident feature edge, then it is treated as the
smooth case. A majority of the triangles in Ll fall into
this category. For such case, we first merge the triangle
with the neighboring triangle sharing the longest edge
to form a quadrilateral Q. Then we split the common
edge shared by two triangles on the midpoint. Next,
we flip one of the four edges of the quad Q. We
select the edge after flipping whose affected angles
are optimal, i.e., the root mean square of the summed
difference between affected angles minus the optimal
value (60◦). The position of the newly inserted vertex
is further optimized by local tangential smoothing.
Figs. 4(a) and 4(b) illustrate this process.
Feature case. For input meshes with tagged feature
information, we have to exert additional effort in this
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(a) (b) (c) (d) (e) (f)

Fig. 4: Vertex insertion strategy for the smooth (a,b) and feature (c∼f) cases. The feature edges are drawn in blue. (a) After
merging the triangle with large angles with a neighbor along the longest edge to create a quadrilateral and subsequently a
pentagon, a vertex is inserted. This operation is equivalent to edge splitting followed by edge flipping. (b) This procedure
also works for the smooth case near the features. (c) The basic case where a single short edge is a feature is resolved
by pentagon pointer insertion, topologically equivalent to edge splitting followed by another edge flipping. (d) The case
where the long edge is a feature is reduced to case (c) by edge splitting. (e) The case where both the two short edges are
features is converted to case (c) by pentagon insertion. (f) A special case that can be resolved directly by edge flipping.

step. Figs. 4(c) to 4(f) present the typical cases when an
edge of the triangle to be processed lies on the bound-
ary or is labeled as a feature edge. Specifically, Fig. 4(c)
shows that the most common case we encountered is
that a single short edge is a feature edge (the edge
opposite to the maximal angle is a non-feature edge).
This case can be handled by the method for smooth
case discussed previously. The other cases could also
be easily deduced to this basic case. For example,
Fig. 4(d) shows that if the longest edge lies on the
boundary or the feature, we apply a local modification
by equally splitting the edge at the mid-point, and
then proceed as the basic case in Fig. 4(c). Similar
procedures are applied for the case when two short
edges are features, as shown in Fig. 4(e). We also show
another case that can be resolved directly by edge
flipping rather than edge splitting in Fig. 4(f). In these
situations, several adjacent triangles with large angles
on the feature edges could be handled together.

4.2.2 Valence optimization
Once the new vertices are inserted, we further im-
prove the regularity of M ′ by valence optimiza-
tion [17], [1], which can be efficiently achieved by ap-
plying a serial of edge flipping. The goal of this step is
to minimize the square sum of the difference between
the valance of each vertex and its corresponding op-
timal valance. Note that the optimal valences for the
inner and boundary vertices are 6 and 4, respectively.

4.2.3 Vertex Smoothing
Next, we apply several iterations (3 ∼ 5 in our imple-
mentation) of tangential Laplacian vertex smoothing
to improve the angle quality of M ′. We use the
following formula for vertex smoothing:

ci =

∑
j∈N(vi)

wjpj∑
j∈N(vi)

wj
, pi ← ci − ninTi (ci − pi), (1)

where vi is the current vertex to be smoothed, ni
denotes the unit normal vector of vi, N(vi) represents
the one-ring neighboring triangle of vi, and wj and
pj indicate the weight and centroid of the j-th neigh-
boring triangle, respectively. This step is necessary as
the previous angle optimization steps have modified
the geometry, whereas the valence optimization step
has changed the connectivity of the output mesh. If
the number of affected triangles is considerably less
than the total number of triangles, then we only apply
smoothing in a local neighborhood of the affected
regions, e.g., two or three rings of the affected ver-
tices. Otherwise, we apply global smoothing for the
whole output mesh. After each smoothing iteration,
we project the vertices in M ′ to the original input
surface M to maintain a high approximation fidelity.

4.2.4 Small angle improvement
After the large angle elimination, we use edge collaps-
ing for small angle improvement (vertex removal).
First, we collect all the triangles with small angles
less than βmin in a list Ls. Then we traverse the first
k triangles in Ls. For each visited triangle ts ∈ Ls,
we collapse the edge (if the collapse is legal) opposite
to the smallest angle of ts. Then local smoothing is
applied to further improve the angle quality of the
affected regions. In practice, if Ls is empty or less
than k, then we can temporarily increase the lower
bound βmin to guarantee that k triangles are collected
in Ls. Note that in the large angle removal step, k
new vertices are inserted. In this step, k vertices are
removed. The number of vertices in the output mesh
remains unchanged. Moreover, the internal parameter
k is important to the performance of the proposed
algorithm. We shall discuss the influence of k in Sec. 5.

4.3 Error-aware extensions
The previously described algorithm is efficient, be-
cause only standard local operations are involved
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for computation. However, as a consequence of high
performance, the fidelity (especially in highly detailed
regions) of the output mesh might be sacrificed due to
over smoothing. To balance between the fidelity and
efficiency, we propose the modified local operations
that can reduce approximation errors when applied.
Note that these modified operations are optional.

The approximation error is introduced by opera-
tions that modify the geometry of the input mesh. As
edge splitting does not affect geometric fidelity, we
only focus on vertex relocation, edge collapsing, and
edge flipping to reduce approximation errors.
Error-aware vertex smoothing. Recall that, in tangen-
tial smoothing (Eqn. 1), the update vector ui of vertex
vi is in the vertex normal plane. This formulation
works well in smooth regions but has problems in
regions with rich details when the number of ver-
tices is not adequate. Fig. 5 presents a 2D illustra-
tion of this issue. Inspired by the feature sensitive
term introduced in Lp centroidal Voronoi tessellation
(LpCVT) [54], we slightly modify the magnitude of
|ui| to alleviate the error caused by tangential smooth-
ing. We first project the updated vector ui to every
adjacent triangle, and then project back to the vertex
normal plane. The smoothing distance |ui| can be
resized by

ui ←
∏

j∈N(vi)

{(
nui [nui ]

t
)

Nv
i N

fj
i

}d

ui,

Nv
i =

(
I3×3 − nvi [nvi ]

t
)
,

N
fj
i =

(
I3×3 − n

fj
i [n

fj
i ]

t)
,

where n
fj
i denotes the adjacent triangle normal, nvi

indicates the vertex normal weighted by the circum-
jacent facet normal, nui is the unit vector of ui, and
d indicates the number of projections controlling the
degree of feature preservation. If d→∞, then ui → 0.
An infinite number of projections mean that the vector
is simultaneously fixed on all faces, so the value
must be zero. In highly detailed regions (e.g., the hair
of the vase-lion model), the smoothing distance |ui|
becomes smaller. The smoothing distance can even
become equal to zero on sharp features, whereas in
smooth situations, |ui| is not considerable. During the
projection phase, we construct the vector ui formed
by the projection and steepest points on the reference
mesh vertices or edges near the projection point. The
place where the original geometry changes drastically
will be maintained adaptively in the same way. With
this modified smoothing operation, the approximation
error could be reduced in some extent, compared with
standard tangential smoothing.
Error-aware edge collapsing. For the edge collapsing
step, we carefully designed a simple vertex intensity
to measure the sharpness of a vertex.

Φi = min
j∈N(vi)

{
cos
(
θ
〈
n
fj
i , n

v
i

〉)m}
,

v

f
f

v

Fig. 5: 2D illustration of the error-aware vertex smoothing
scheme. The blue line represents a surface mesh, V1 and
V2 are the vertices on the mesh, the black horizontal line
indicates the normal plane of these vertices, nv1 and nv2
denote the vertex normal vectors, respectively, and nf1 and
nf2 stand for the face normal vectors. V1 is sharper than
V2. Meanwhile, u1 and u2 (black) are updating vectors
before applying projections. After multiple projections, the
magnitude of updating vector u′1 is significantly reduced
compared with that of u′2.

where nfji is the adjacent triangle normal, nvi denotes
the vertex normal weighted by the adjacent triangle
normal, and θ

〈
n
fj
i , n

v
i

〉
measures the angle between

two faces. The vertex intensity is between 0 and 1.
In practice, the parameter m is set to 3 in practice.
After defining the feature intensity, we designed an
adaptive condition for the collapse, which can be
interpreted as follows: vi can be collapsed to another
vertex vj , if Φi − Φj > −Ψ ·

(
Φi

2 − 0.5
)
.

Error-aware edge flipping. We apply the flipping
operation on the basis of the dihedral angle parameter
Θ, whenever θ

〈
nf0e , n

f1
e

〉
< Θ. We set Θ = 10◦ in

practice. Here nf0e and nf1e are two triangle normals
that are incident to the flipping edge e.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate experimental results
of the proposed remeshing framework. Then, we
analyze the choice of the parameter k and the per-
formance and convergence behavior of the proposed
framework. Next, we evaluate the meshing quality
with standard metrics, and compare our method with
recent representative approaches. Finally, we perform
limit tests and discuss the limitations of our algorithm.
Our algorithm is implemented in Visual Studio 2015,
under the Windows 10 operating system. All the
results shown in the paper are conducted on a PC
with 4.2 GHz CPU and 8 GB RAM.

As discussed in Sec. 1, our algorithm can either
work directly on the original input, or start from
the results produced by any of the previous meth-
ods. Figs. 1 and 6 show four examples of adap-
tive remeshing on smooth surfaces. Our algorithm
achieves the best angle bounds compared with pre-
vious approaches. When applied on the outputs of
other algorithms, our algorithm is able to further
improve the mesh quality by efficiently eliminating
large/small angles. We show two examples of remesh-
ing inputs with sharp features (Fig. 7) or boundaries
(the Mask example in supplemental materials). Our
algorithm can successfully produce desired results
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[MAI] [OUR][NOB][IFM][SPP][RAR]

Fig. 6: Comparison of adaptive remeshing using the bunny, the gargoyle and David models. For each test model, the
top row presents the input mesh and the remeshing results of previous approaches, including RAR [1], MAI [8], SPP [9],
IFM [10], and NOB [11]. The bottom row of each test contains the results of our method (left most) and the results by
using the corresponding mesh as initialization.
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[IFM] [OUR][NOB][FPO][MAI][RAR]

Fig. 7: Comparison of the remeshing results on models with sharp features or boundaries. The joint, sculpt, and mask
models are presented from top to bottom. For each test model, the top row is the input mesh and the remeshing results
of previous approaches, including RAR [1], MAI [8], FPO [48], IFM [10], and NOB [11]. The bottom row of each test
contains the results of our method (left most) and the results by using the corresponding mesh as initialization. Note that
the results of SPP [9] are not shown here as it does not support feature preservation.
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Fig. 8: Comparing the convergence of our algorithm on
different k at each iteration. The x-axis is the number
of iterations, and the y-axis represents the percentage of
triangles with large/small angles. Left: uniform remeshing.
Right: adaptive remeshing. Here, the number of iterations
refers to each individual step in Alg. 1.

while preserving the features and boundaries, due
to our carefully designed feature handling schemes.
We further tested our algorithm on a large variety of
input meshes with different numbers of vertices, and
obtained the desired output meshes robustly.
Parameter selection. The parameter k is important.
A small k value can improve the output mesh quality
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Fig. 9: Comparing the performance of our algorithm on
different k at each iteration. The x-axis is the number of
vertices in the output mesh M′, and the y-axis indicates the
time used for the convergence of each result. Left: uniform
remeshing. Right: adaptive remeshing.

but this reduces algorithm performance. Meanwhile, a
large k value can improve the performance of the pro-
posed algorithm, but this might affect the distribution
of the mesh vertices, which leads to the unsatisfactory
fidelity of the output mesh. In our experiments, we
set k equals to 20% of the number of triangles with
large angle in each iteration by default, and k equals
to 5 for error-aware remeshing. We have tested the
influence of k for all the models used in this paper.
We illustrate the influence of k on convergence and
performance using the bunny and fertility models, as
shown in Figs. 8 and 9, respectively. The results of
other models can be found in supplemental materials.
Performance. We further analyze the performance
and the robustness of our algorithm. We apply the
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Fig. 10: Remeshing results of the vase-lion model with decreasing resolutions. The numbers of vertices of these multi-
resolution are 115, 61, 42, 22, 10, 7, 4 and 2 k. Table 1 in supplementals presents the statistics.
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Fig. 11: Comparing the performance of our algorithm with
that of RAR [1] and IFM [10]. The x-axis is the number of
vertices in the final remeshing, and the y-axis represents
the time used for the convergence of each result. OUR
indicates our method using standard local operations, and
OUR-ERR refers to our method using modified operations.
Left: uniform remeshing. Right: adaptive remeshing.We set
20% of bad triangles as k in this experiment. Moreover, the
performance of our method using standard local operations
is in the same order of magnitude as RAR.

algorithm on a complex input mesh, i.e., the vase-
lion model with 100 k vertices, which cannot be
handled satisfactorily by any of the previous methods.
We choose different numbers of vertices (Fig. 10)
to produce a series of multi-resolution non-obtuse
meshes. Fig. 11 shows the timing statistics versus the
level of resolution. We also compare the speed with
the currently most efficient algorithms, i.e., RAR [1]
and instant field meshing (IFM) [10] in Fig. 11, to
verify that our algorithm is almost as fast as RAR
and IFM. Other recent approaches, i.e., Non-obtuse
Remeshing (NOB) [11], Minimal Angle Improvement
(MAI) [8], and SPP [9], would spend minutes or even
cannot achieve the user-specified angle bounds on this
difficult input.
Convergence. To validate the convergence behavior
of the algorithm, we plot the number of triangles
with large/small angles vs. the number of iterations
for both our approach and RAR in Fig. 12. We also
measure the angle and valence energies. The angle
energy is defined as the average sum of the squared
distance between each angle and the optimal angle
(i.e., 60◦). The valence energy is defined as the average
sum of the squared distance of the valance of each
vertex and the optimal valence, i.e., 6 for interior
vertices and 4 for boundary vertices. Several examples
are selected for this experiment, i.e., fertility, moai,
botijo and sculpt. We observed the convergence of our
algorithm in all tests.

The convergence of our algorithm can be guaran-
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Fig. 12: Comparing the convergence of our algorithm with
that of RAR [1]. Top row: the x-axis is the number of
iterations, and the y-axis represents the percentage of
large/small triangles. Bottom row: the angle/valance ener-
gies vs the number of iterations. Left: uniform remeshing.
Right: adaptive remeshing.

teed algorithmically. In each iteration, we locally pro-
cess triangles with small/large angles. The operation
is accepted only if the small angle is improved or the
large angle is reduced. However, we also note that
processing angles in a region might affect neighboring
triangles(small spikes in Fig. 12). On the one hand,
these small fluctuations correspond to edge splitting
and edge collapsing in each iteration. Then, the angle
quality can be further experimentally optimized in
later smoothing iterations. On the other hand, the
smoothing operation is related to the ODT [15], [55]
energy function, which has been shown to improve
the triangle quality considering a fixed connectivity by
optimizing vertex positions. In contrast, our combined
operations (large angle removal and small angle im-
provement) can be seen as a connectivity optimization
via vertex teleportation, which helps to improve the
valence by jumping out of the local minima.
Evaluation and Comparison. Finally, we compare
the mesh quality with state-of-the-art approaches, in-
cluding 1) methods based on blue-noise sampling,
e.g., MPS [29], FPO [48], and SPP [9]; 2) CVT, e.g.,
standard CVT [33] and augmented CVT with obtuse
triangle suppression [11]; 3) discrete optimization,
e.g., RAR [1] and MAI [8]; and 4) IFM [10].

Table 1 lists the statistics. In each column, two
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Model Method |X| |t| Qmin Qavg θmin θ̄min θmax θ<βmax% θ>βmax% V6% dRMS(× 10−3) dH(×10−2)

Vaselion
(Standard

Local
Operations)
θ<βmin

= 35◦

θ<βmax = 86◦

Input/OUR 50k/6.5k 100k/13k 0.01/0.73 0.57/0.91 0.38/35.17 29.53/52.13 178.26/85.81 65.05/0.00 66.46/0.00 28.41/73.21 – /2.05 – /1.73
MPS/OUR 6.4k/6.4k 12.8k/12.8k 0.51/0.71 0.82/0.89 32.01/35.02 46.34/50.80 114.59/86.00 3.42/0.00 18.41/0.00 51.13/74.87 1.63/2.40 1.33/1.75
RAR/OUR 6.8k/6.8k 13.7k/13.7k 0.40/0.71 0.89/0.90 17.02/35.03 50.57/51.06 124.60/85.99 1.05/0.00 3.25/0.00 73.80/76.55 2.30/2.60 1.61/1.75
Mai/OUR 6.4k/6.4k 12.8k/12.8k 0.42/0.72 0.77/0.89 23.38/35.00 42.69/50.77 124.85/85.99 16.87/0.00 36.86/0.00 29.78/76.03 0.71/2.45 0.27/1.65
CVT/OUR 6.4k/6.4k 12.8k/12.8k 0.41/0.71 0.85/0.90 18.05/35.08 47.98/51.33 127.04/86.00 4.74/0.00 12.27/0.00 57.64/76.18 2.15/2.60 1.10/1.70
NOB/OUR 6.4k/6.4k 12.7k/12.7k 0.00/0.71 0.86/0.90 0.16/35.02 48.30/51.18 141.63/86.00 3.76/0.00 10.01/0.00 57.30/75.73 2.20/2.54 1.05/1.73
SPP/OUR 6.5k/6.5k 13k/13k 0.29/0.72 0.81/0.91 10.71/35.72 44.53/51.74 126.61/85.99 12.74/0.00 20.68/0.00 51.19/77.07 2.01/2.87 1.48/3.18
FPO/OUR 6.5k/6.5k 13k/13k 0.51/0.72 0.86/0.90 29.87/35.60 50.25/51.40 114.39/86.00 0.63/0.00 14.01/0.00 54.45/76.40 1.51/2.40 1.51/1.70
IFM/OUR 6.5k/6.5k 13k/13k 0.41/0.72 0.93/0.94 20.23/35.04 54.41/54.47 123.77/86.00 0.22/0.00 1.25/0.00 84.07/85.78 2.25/2.61 1.40/1.84

Vaselion
(Modified

Local
Operations)
θ<βmin

= 30◦

θ<βmax = 90◦

Input/OUR 50k/6.5k 100k/13k 0.01/0.64 0.57/0.87 0.38/30.11 29.53/49.08 178.26/90.00 52.20/0.00 59.11/0.00 28.41/66.03 – /1.54 – /1.26
MPS/OUR 6.4k/6.4k 12.8k/12.8k 0.51/0.64 0.82/0.87 32.01/30.58 46.34/48.83 114.59/90.00 0.00/0.00 11.64/0.00 51.13/61.24 1.62/1.41 1.33/1.28
RAR/OUR 6.8k/6.8k 13.7k/13.7k 0.40/0.65 0.89/0.88 17.02/30.02 50.57/49.67 124.60/89.99 0.26/0.00 1.49/0.00 73.80/66.77 2.30/1.77 1.61/1.23
Mai/OUR 6.4k/6.4k 12.8k/12.8k 0.42/0.64 0.77/0.86 23.38/30.00 42.69/47.79 124.85/90.00 0.03/0.00 26.87/0.00 29.78/63.36 0.71/1.41 0.27/1.14
CVT/OUR 6.4k/6.4k 12.8k/12.8k 0.41/0.64 0.85/0.87 18.05/30.00 47.98/48.83 127.04/90.00 1.12/0.00 7.18/0.00 57.64/63.44 2.15/1.88 1.10/0.99
NOB/OUR 6.4k/6.4k 12.7k/12.7k 0.00/0.64 0.86/0.87 0.16/30.10 48.30/48.85 141.63/89.99 0.84/0.00 5.30/0.00 57.30/62.84 2.20/2.00 1.05/1.05
SPP/OUR 6.5k/6.5k 13k/13k 0.16/0.64 0.81/0.87 7.64/30.03 44.50/48.59 157.68/89.99 3.92/0.00 14.11/0.00 51.19/61.57 2.01/1.86 1.48/1.46
FPO/OUR 6.5k/6.5k 13k/13k 0.51/0.65 0.86/0.87 29.87/30.15 50.25/49.18 114.39/89.99 0.01/0.00 7.24/0.00 54.45/61.50 1.51/1.76 1.51/1.14
IFM/OUR 6.5k/6.5k 13k/13k 0.19/0.65 0.91/0.90 11.33/30.11 52.22/51.77 155.23/89.99 0.39/0.00 1.76/0.00 73.65/72.68 1.34/1.34 1.16/0.99

Botijo

Input/OUR 3k/5k 6k/10k 0.03/0.72 0.59/0.90 1.57/35.11 30.72/51.67 176.54/85.98 64.44/0.00 63.96/0.00 37.83/72.48 – /0.51 – /0.35
MPS/OUR 5k/5k 10k/10k 0.55/0.71 0.82/0.88 32.00/35.00 46.14/50.06 109.65/86.00 3.73/0.00 18.97/0.00 52.53/63.62 0.87/0.59 0.59/0.47
RAR/OUR 5k/5k 10k/10k 0.57/0.71 0.89/0.90 30.10/35.05 50.76/51.22 106.72/85.98 0.24/0.00 2.03/0.00 76.33/76.93 1.18/1.06 1.11/1.10
Mai/OUR 5k/5k 10k/10k 0.47/0.72 0.77/0.90 26.89/35.50 43.00/51.02 119.59/86.00 14.61/0.00 39.10/0.00 30.75/69.97 0.35/0.54 0.13/0.44
CVT/OUR 5k/5k 10k/10k 0.62/0.72 0.92/0.92 31.43/35.76 52.98/52.89 99.14/85.97 0.06/0.00 0.81/0.00 81.30/81.39 0.72/0.68 0.34/0.34
NOB/OUR 5k/5k 10k/10k 0.70/0.74 0.94/0.94 31.13/36.41 54.17/54.15 88.37/84.94 0.01/0.00 0.02/0.00 81.33/81.40 0.48/0.48 0.32/0.32
SPP/OUR 5k/5k 10k/10k 0.70/0.71 0.89/0.90 33.02/35.57 50.50/51.22 89.47/85.97 0.04/0.00 1.24/0.00 67.36/75.34 0.68/0.64 0.57/0.57
FPO/OUR 5k/5k 10k/10k 0.52/0.71 0.85/0.89 31.00/35.05 50.29/50.58 113.17/86.00 0.40/0.00 15.02/0.00 57.54/66.54 0.68/0.60 0.47/0.46
IFM/OUR 5k/5k 10k/10k 0.36/0.72 0.93/0.93 15.92/35.39 54.02/54.01 132.86/86.00 0.92/0.00 2.20/0.00 86.63/86.76 0.51/0.51 0.41/0.40

Bunny

Input/OUR 35k/8k 70k/16k 0.00/0.71 0.71/0.91 0.00/35.11 36.75/51.85 180.00/86.00 31.44/0.00 53.82/0.00 75.27/76.17 – /0.38 – /0.33
MPS/OUR 8k/8k 16k/16k 0.41/0.71 0.80/0.90 21.84/35.08 44.98/51.70 126.67/85.99 7.54/0.00 23.34/0.00 47.48/76.58 0.48/0.36 0.42/0.38
RAR/OUR 8k/8k 16k/16k 0.56/0.71 0.90/0.90 28.96/35.02 51.46/51.58 107.15/86.00 0.23/0.00 1.28/0.00 75.54/75.60 0.35/0.35 0.43/0.43
Mai/OUR 8k/8k 16k/16k 0.43/0.72 0.77/0.91 22.41/35.15 43.03/51.92 123.91/85.99 14.05/0.00 39.32/0.00 29.70/76.06 0.34/0.35 0.12/0.35
CVT/OUR 8k/8k 16k/16k 0.64/0.72 0.93/0.93 34.80/36.00 54.23/54.02 98.78/85.98 0.01/0.00 0.28/0.00 86.83/85.78 0.53/0.53 0.37/0.35
NOB/OUR 8k/8k 16k/16k 0.72/0.74 0.94/0.94 36.36/36.36 54.45/54.42 89.45/84.46 0.00/0.00 0.02/0.00 86.80/86.83 0.58/0.58 0.38/0.38
SPP/OUR 8k/8k 16k/16k 0.70/0.72 0.89/0.90 37.03/35.04 51.07/51.42 89.51/86.00 0.00/0.00 3.43/0.00 74.76/82.26 0.42/0.37 0.56/0.51
FPO/OUR 8k/8k 16k/16k 0.49/0.71 0.84/0.90 30.01/35.06 48.60/51.70 116.33/85.99 2.38/0.00 16.98/0.00 52.34/77.15 0.49/0.36 0.45/0.42
IFM/OUR 8k/8k 16k/16k 0.39/0.71 0.92/0.91 20.84/35.01 52.78/52.61 129.51/85.99 0.77/0.00 2.84/0.00 78.97/80.34 0.42/0.40 0.47/0.45

Gargoyle

Input/OUR 30k/10k 60k/20k 0.22/0.71 0.77/0.90 7.88/35.00 42.03/51.57 143.85/86.00 20.95/0.00 29.39/0.00 41.33/71.22 – /0.65 – /0.56
MPS/OUR 10k/10k 20k/20k 0.50/0.70 0.82/0.88 32.00/35.00 46.33/49.48 115.00/86.00 3.63/0.00 19.09/0.00 51.73/63.06 0.78/0.71 0.68/0.65
RAR/OUR 10k/10k 20k/20k 0.00/0.71 0.69/0.89 0.00/35.02 37.68/50.62 180.00/86.00 37.25/0.00 42.02/0.00 50.69/76.27 0.62/0.71 0.57/0.54
Mai/OUR 10k/10k 20k/20k 0.46/0.70 0.77/0.88 25.49/35.02 42.98/49.45 119.91/86.00 14.83/0.00 37.86/0.00 29.96/61.07 0.33/0.65 0.13/0.58
CVT/OUR 10k/10k 20k/20k 0.44/0.71 0.87/0.89 21.91/35.01 49.42/50.44 123.36/86.00 2.27/0.00 5.84/0.00 62.59/66.86 0.84/0.70 0.38/0.45
NOB/OUR 10k/10k 20k/20k 0.44/0.71 0.88/0.89 21.78/35.01 49.77/50.43 117.02/86.00 2.11/0.00 5.11/0.00 64.73/68.24 0.83/0.75 0.38/0.47
SPP/OUR 10k/10k 20k/20k 0.24/0.70 0.77/0.88 9.22/35.00 41.92/49.57 148.57/86.00 23.03/0.00 29.03/0.00 44.65/61.93 0.98/0.77 0.86/0.85
FPO/OUR 10k/10k 20k/20k 0.48/0.71 0.85/0.89 30.51/35.01 49.38/50.54 117.54/86.00 1.80/0.00 15.89/0.00 52.41/70.59 0.75/0.66 0.62/0.62
IFM/OUR 10k/10k 20k/20k 0.41/0.71 0.93/0.93 20.00/35.01 54.21/53.88 122.84/86.00 0.15/0.00 1.12/0.00 80.72/80.88 0.72/0.71 0.56/0.56

David

Input/OUR 12k/15k 120k/60k 0.00/0.70 0.88/0.89 0.04/35.00 50.06/50.26 178.18/86.00 1.46/0.00 6.62/0.00 64.18/66.81 – /0.37 – /0.39
MPS/OUR 15k/15k 59k/59k 0.41/0.71 0.81/0.90 23.41/35.00 45.39/51.19 126.68/86.00 5.45/0.00 22.10/0.00 49.29/67.87 0.65/0.56 0.54/0.54
RAR/OUR 15k/15k 60k/60k 0.63/0.71 0.91/0.91 31.03/35.00 52.07/52.05 99.85/86.00 0.08/0.00 0.53/0.00 74.05/74.09 0.57/0.56 0.95/0.94
Mai/OUR 15k/15k 60k/60k 0.53/0.70 0.82/0.89 28.95/35.00 46.73/50.26 111.83/86.00 0.07/0.00 23.75/0.00 41.68/65.30 0.18/0.47 0.08/0.50
CVT/OUR 15k/15k 60k/60k 0.56/0.71 0.92/0.92 33.10/35.04 53.08/52.87 107.82/86.00 0.01/0.00 0.92/0.00 80.06/79.81 0.63/0.61 0.59/0.59
NOB/OUR 15k/15k 60k/60k 0.69/0.71 0.92/0.92 36.04/35.00 53.20/53.13 89.97/86.00 0.00/0.00 0.62/0.00 79.92/79.94 0.54/0.54 0.30/0.30
SPP/OUR 15k/15k 60k/60k 0.16/0.71 0.74/0.88 5.92/35.00 39.62/50.13 150.30/85.00 32.05/0.00 35.66/0.00 41.10/67.05 0.88/0.63 1.06/0.85
FPO/OUR 15k/15k 10k/10k 0.50/0.70 0.85/0.89 27.90/35.00 50.25/50.72 115.32/86.00 0.60/0.00 14.44/0.00 56.62/68.15 0.61/0.57 0.68/0.67
IFM/OUR 15k/15k 60k/60k 0.47/0.70 0.94/0.94 26.51/35.06 54.80/54.64 119.47/86.00 0.05/0.00 0.65/0.00 85.49/85.49 0.55/0.55 0.59/0.59

Joint

Input/OUR 0.2k/3.4k 0.4k/6.8k 0.01/0.71 0.22/0.88 0.48/35.09 9.35/49.87 173.21/85.99 98.65/0.00 91.03/0.00 27.15/75.21 – /0.41 – /0.25
MPS/OUR 3k/3k 6k/6k 0.59/0.70 0.82/0.89 31.98/35.08 46.08/50.80 104.96/85.98 2.79/0.00 21.34/0.00 54.23/71.46 0.55/0.48 0.37/0.29
RAR/OUR 3.4k/3.4k 6.8k/6.8k 0.07/0.70 0.86/0.88 4.50/35.14 48.28/49.70 171.00/85.98 1.42/0.00 5.63/0.00 78.36/78.58 0.40/0.40 0.31/0.26
Mai/OUR 3k/3k 6k/6k 0.00/0.71 0.87/0.92 0.11/35.28 49.78/52.70 179.77/85.99 4.69/0.00 8.21/0.00 75.11/76.84 0.46/0.48 0.22/0.25
CVT/OUR 3.4k/3.4k 6.8k/6.8k 0.58/0.72 0.91/0.92 32.90/36.00 52.99/53.00 105.67/85.96 0.03/0.00 3.29/0.00 82.03/83.29 0.60/0.48 0.26/0.25
NOB/OUR 3.4k/3.4k 6.8k/6.8k 0.57/0.71 0.93/0.93 26.99/35.51 53.42/53.85 101.05/85.97 0.62/0.00 3.26/0.00 81.53/83.19 0.99/0.45 0.42/0.21
FPO/OUR 3.4k/3.4k 6.8k/6.8k 0.54/0.72 0.85/0.91 32.39/35.50 49.90/52.55 110.77/85.94 0.28/0.00 15.71/0.00 57.58/80.28 0.74/0.47 0.39/0.31
IFM/OUR 3.4k/3.4k 6.8k/6.8k 0.53/0.73 0.96/0.95 31.12/36.19 56.11/55.91 110.99/85.65 0.07/0.00 0.31/0.00 90.44/90.70 0.58/0.47 1.07/0.36

Sculpt

Input/OUR 3.7k/3k 7.3k/6k 0.68/0.70 0.92/0.90 36.43/35.06 53.90/51.10 94.48/85.98 0.00/0.00 0.91/0.00 88.99/74.42 – /0.33 – /0.12
MPS/OUR 3k/3k 6k/6k 0.49/0.71 0.82/0.90 29.23/35.20 46.28/50.92 115.85/85.99 3.21/0.00 19.66/0.00 54.65/81.18 0.42/0.36 0.22/0.14
RAR/OUR 3k/3k 6k/6k 0.56/0.70 0.92/0.92 27.73/35.06 53.05/53.09 102.54/85.93 0.12/0.00 0.43/0.00 85.95/86.13 0.27/0.27 0.09/0.09
Mai/OUR 3k/3k 6k/6k 0.50/0.70 0.83/0.90 30.00/35.00 47.17/51.41 115.24/86.00 6.89/0.00 20.44/0.00 56.20/74.07 0.39/0.34 0.10/0.13
CVT/OUR 3k/3k 6k/6k 0.56/0.72 0.86/0.90 31.63/35.47 48.98/51.17 108.40/85.93 0.63/0.00 11.19/0.00 67.68/82.21 0.70/0.35 0.24/0.20
NOB/OUR 3k/3k 6k/6k 0.57/0.71 0.87/0.89 29.48/35.02 49.52/50.56 103.49/85.99 0.13/0.00 10.09/0.00 67.78/72.21 0.90/0.43 0.31/0.18
FPO/OUR 3k/3k 6k/6k 0.51/0.71 0.85/0.89 30.00/35.00 49.76/50.40 114.49/85.99 0.55/0.00 15.89/0.00 57.38/73.48 0.34/0.34 0.16/0.13
IFM/OUR 3k/3k 6k/6k 0.32/0.71 0.87/0.89 16.64/35.07 48.87/50.21 137.34/85.96 6.96/0.00 10.80/0.00 70.56/76.72 0.49/0.44 0.80/0.24

TABLE 1: Comparison of remeshing quality with previous techniques. The best result of each measurement is marked in
bold font. |X| is the number of vertices; |t| represents the number of triangles. Sec 5 explains the other measurements.

groups of values are separated by ”/”. The former
means the quality before applying our method, and
the latter indicates the quality after applying our
method. In the last example in the table, the val-
ues correspond to the example of multi-resolution
remeshing shown in Fig. 10. We use the standard
evaluation criteria utilized in previous works [11],
[8], [9]. In addition, θmin and θmax are the minimal
and maximal angles in a mesh, respectively, and θ̄min

denotes the average minimal angle of all triangles. In
isotropic remeshing, the optimal angle of θmin and
θ̄min is 60◦ for a planar surface. However, achieving
this value for curved surfaces is impossible, which

is also affected by the existence of singular vertices.
Qmin and Q̄ave measure the regularity of triangles.
An equilateral triangle has Q(t) = 1 and a degen-
erate triangle has Q(t) = 0 [56]. A larger value
of Q(t) indicates a better shape of triangle t. The
global regularity of the remesh is dominated by the
percentage of valence 6 vertices. We see that CVT-
based approaches have improved regularity. We also
state the percentages of the triangles with the minimal
angle smaller than βmin and the maximal angle larger
than βmax. Our method is shown to be the only one
that can achieve both no small and large angles in
practice.
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The most related work with ours is RAR [1], which
improves the mesh quality by further equaling the
edge lengths. RAR has the fastest speed because only
the splitting of long edges and collapsing of short
edges are involved in the computation. However,
RAR lacks explicit control of the angle quality, as
listed in Table 1, as a certain amount of small and
obtuse angles exist in their results. Another closely
related work is MAI [8], which aims to improve
the minimal angle quality; however, it introduces
numerous obtuse triangles at the same time. The
efficiency of MAI can be low when the target number
of vertices is high, because it processes one triangle
at one iteration. The blue-noise sampling based ap-
proaches have low mesh quality due to their random
nature. Although the most recent work SPP is able to
produce non-obtuse meshes, it has no explicit control
of the minimal and maximal angle bounds as our
method. The same problem exists for CVT and NOB.
The performances of blue-noise remeshing and CVT-
related approaches are relatively slow because the
global optimization is involved. Although IFM has
high performance and regularity, it cannot produce
acute meshes as our method. We exclude the results of
MAI for uniform remesh because it is designed solely
for automatically sizing control with bounded error.
Discussion and Limitation. Our method runs ro-
bustly on a large variety of input meshes. However,
we have some issues when the required angle bounds
are too tight, or when remeshing surfaces with very
thin and long features uses a small target number of
vertices.

We conducted two limit tests to explore the limita-
tions of our remeshing framework. In the first exam-
ple, we select a smooth model without tiny features
(i.e., the Venus body) to test the extreme angle bounds
that our algorithm can achieve, as shown in Fig. 13.
We set the number of vertices to 2k, and keep increas-
ing the lower bound and decreasing the upper bound
until the algorithm no longer converges. Starting from
the range [35◦, 86◦], the algorithm stops working when
it reaches the bounds [46◦, 80◦] and [40◦, 76◦]. This
example demonstrates that our approach can produce
meshes with very high triangle quality. The result also
confirms the common observation that the better the
valence, the higher the triangle quality, and the larger
the approximation error (Hausdorff distance).

In the second example, we select a model with very
thin features (the ear of the elk model) to test the
robustness of the algorithm. Starting from 2 k vertices,
we gradually decrease the number of vertices, as
shown in Fig 14. The input angle bounds of this
example are [30◦, 90◦]. The algorithm stops working
when the vertex number reaches 800. This test also
shows that the approximation error increases when
the vertex budget decreases. The statistics of these
tests are provided in the supplemental materials.

These limitations can also be observed in the lion-

Fig. 13: Limit test on the Venus body model by increasing
the lower angle bound and decreasing the upper bound
using a fixed number of vertices. From left to right are:
the input, our results with bounds [40◦, 77◦], [40◦, 76◦],
[45◦, 80◦], [46◦, 80◦]. The red and blue colors indicate the
triangles with angles large than 77◦ and smaller than 45◦,
respectively. The quality statistics is given in Table 1 in the
supplemental material.

Fig. 14: Limit test on the Elk model by decreasing the vertex
budget. From left to right: input, result of 2k, 1.6k, 1.2k, and
0.8k vertices. The algorithm does not converge when using
0.8k vertices. The input angle bounds in this example are
[30◦, 90◦]. The quality statistics are given in Table 1 in the
supplemental material.

vase examples as shown in Figs. 1 and 10. This input
mesh contains numerous tiny sharp features around
the hair region. Although our algorithm could im-
prove the angle quality over existing methods, it can-
not further reduce the Hausdorff distance near feature
regions using the default angle bounds [35◦, 86◦]. If we
slightly loosen the angle bounds a little bit to [30◦, 90◦]
and apply our error-aware local operators, then we
can further reduce the approximation errors (except
when comparing with MAI) as well as improve the
angle quality.

6 CONCLUSION AND FUTURE WORKS

We have presented a novel isotropic remeshing frame-
work that simultaneously removes large angles and
improves small angles. The key components are two
carefully designed criteria for point insertion and
deletion. Our approach can either be used directly on
input raw meshes, or be used as a post-processing
step for any previous remeshing algorithm. The pro-
posed method is shown to run robustly for a large
variety of input meshes, even for those models with
complicated geometry details that cannot be handled
faithfully with state-of-the-art approaches.

Although our approach can achieve the best an-
gle quality compared with existing approaches, chal-
lenges are present that deserve further investigation.
For example, how to select the smallest number of
points for a given approximation tolerance? What
is the relationship between the angle and valence
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energies? In the future, we also plan to improve
the performance of our framework to achieve real-
time remeshing (e.g., by GPU acceleration [57]) with
massive models, extend our method for anisotropic
remeshing [58], [59], and apply our approach to ap-
plications in animation and simulation.
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