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Figure 1: Our stippling results with different surface parameterization methods. From left to right: LSCM [LPRM02] with angle 15◦, LSCM
with angle 60◦, IsoChart [ZSGS04] with 9 charts, IsoChart with 30 charts, BFF [SC17] with 10 cones, and BFF with 18 cones. The UV
maps are shown on the bottom and the corresponding stippling results are shown on the top.

Abstract
In this paper, we present a novel real-time approach to generate high-quality stippling on 3D scenes. The proposed method is
built on a precomputed 2D sample sequence called incremental Voronoi set with blue-noise properties. A rejection sampling
scheme is then applied to achieve tone reproduction, by thresholding the sample indices proportional to the inverse target tonal
value to produce a suitable stipple density. Our approach is suitable for stippling large-scale or even dynamic scenes because
the thresholding of individual stipples is trivially parallelizable. In addition, the static nature of the underlying sequence benefits
the frame-to-frame coherence of the stippling. Finally, we propose an extension that supports stipples of varying sizes and tonal
values, leading to smoother spatial and temporal transitions. Experimental results reveal that the temporal coherence and
real-time performance of our approach are superior to those of previous approaches.

CCS Concepts
•Computing methodologies → Computer graphics; Non-photorealistic rendering; Image processing; Texturing; Appearance
and texture representations;

1. Introduction

Stippling is a well-known non-photorealistic rendering (NPR)
technique that uses only plain dots to represent the tone and shad-
ing of images or 3D scenes. Stippling style has been used in various
applications, ranging from scientific visualization to informative il-
lustration.

Stippling artworks often contain a large number of stipples to
capture the subtle transition of tones. This process is tedious even
for a skillful artist because he or she has to spend several hours

† corresponding author

or even days to paint the picture. Manual stippling for dynamic
3D scenes is even more challenging because keeping the tempo-
ral coherence for a massive number of stipples is almost impos-
sible. Various techniques have been developed to produce high-
quality 2D stippling effects for images and facilitate this pro-
cess [MARI17]. Some of them have been generalized to 3D sur-
faces [YNZC05], volumes [LMT∗03], or frame-coherent anima-
tion sequences [PFS03, VBTS07]. However, these 3D stippling
methods rely on either using stipple texture images or precomput-
ing vertices of different densities. Therefore, the qualities of result-
ing stipple distributions are either far from uniformness or lack of
randomness, compared to their 2D counterparts.

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Lei Ma et al. / Instant Stippling on 3D Scenes

In this paper, we propose a novel method to generate high-quality
stippling effect for 3D scenes in real-time. The key idea is to map a
certain number of stipples into the given 3D surface with the guid-
ance of texture coordinates. Dense stipple candidates are initially
placed on surfaces through parametric spaces. A 2D incremental
sequence called incremental Voronoi set (IVS) [MCQS18] is used
for producing the stipple candidates. A carefully designed thresh-
olding strategy is utilized to produce the stippling results. Shading
and parametrization distortions are also considered in this process.
As a result, the proposed technique exhibits both high-quality stip-
ple distribution and real-time efficiency and is intrinsically tempo-
ral coherent, which is essential in many 3D applications.

Most existing digital stippling methods are restricted to only use
uniform-sized and mono-black stipples. However, as a basic paint-
ing technique, stippling skills should not be limited on these as-
pects. The original stippling for engraving purpose has adopted
varying stipple sizes to create smooth shading transitions. Mod-
ern artists also use pens of multiple tones for this similar effect. To
mimic this effect, we further introduce new techniques to gener-
ate stipples of varying radius, and multi-tone levels for 3D scenes
(as carried out in 2D by [MCQS18]).Results of these techniques
show visual satisfaction and maintain the important temporal co-
herence. More importantly, these two extensions introduce very
limited computation cost without detriment to the performance.

In summary, our main contributions are as follows:

• a high-quality stippling technique for dynamic 3D scenes based
on a precomputed IVS with blue-noise properties;
• parallelization of the proposed technique to improve the perfor-

mance based on the thresholding of individual stipple;
• extension of the proposed method to generate varying radius and

multi-tone stippling to improve the rendering expressiveness.

2. Related Work

The stippling effect can be produced via blue-noise sampling,
which ensures both the randomness and uniformness of the point
distribution [LD08, YGW∗15]. The three main categories of 2D
stippling techniques are maximal Poisson-disk sampling and its
variations, optimization-based approach, and precomputed tiles.
The former two types of work can be generalized to 3D surfaces or
even high dimensions directly, but the performance is far from real-
time. The tile-based approach could achieve real-time performance
by scarifying the sampling quality, but the extension to 3D surface
is not straightforward. In this section, we briefly discuss the repre-
sentative stippling techniques, with a focus on surface stippling.

2.1. 2D stippling

Optimization-based approaches include centroidal Voronoi tes-
sellation (CVT) [DFG99] and its variation, namely, capacity-
constrained Voronoi tessellation (CCVT) [BSD09], and capacity-
constrained Delaunay triangulation (CCDT) [XLGG11]. Starting
from an initial randomized sampling, CVT-based approaches iter-
atively move each sample point to the centroid of its Voronoi cell,
and update the Voronoi diagram accordingly [DHvOS00, Sec02,
DSZ17]. Although CVT stippling could obtain the importance in-
formation of input images, it tends to introduce regular patterns that

may cause visual aliasing, because the global minimum of the CVT
energy is the regular hexagonal pattern. To improve the visual aes-
thetics, the CCVT-based methods enforce the capacity-constraint
in addition to CVT energy, which can be seen as assigning the
same amount of ink to each stipple [BSD09, dGBOD12, CYC∗12,
AHD15]. Other optimization-based approaches include kernel den-
sity model [Fat11], simple push-pull algorithm [AGY∗17]. How-
ever, due to their optimization nature, these methods cannot achieve
real-time performance.

Another way to generate stippling pattern is through Poisson-
disk sampling [DW85, Coo86, Jon06, WCE07, Wei08, GM09,
Wei10, EPM∗11, YW13] and its variations [Yuk15]. Poisson-disk
stippling can be generated in one pass without iterative optimiza-
tion. Although this sampling has better randomness than CVT-like
methods have, it still cannot achieve real-time performance even
with GPU acceleration for large-scale scenes.

Tile-based approaches are efficient for 2D stippling, which
use precomputed tiles for online generating points, e.g., recur-
sive Wang-tiles [KCODL06], pentagon patterns [ODJ04], poly-
ominoes [Ost07], and hexagon tiles [WPC∗14]. These tile-based
approaches achieve real-time performance by scarifying the blue-
noise property to some extent. In contrast to tile-based methods,
Ahmed et al. developed other efficient look-up methods by encod-
ing the point sequence using strings [AHD15, ANHD17] or low-
discrepancy sets [APC∗16]. More recently, Ma et al. [MCQS18]
proposed a novel method to generate 2D stippling in real time.
Their technique is based on a precomputed sample sequence called
IVS. The main advantage of IVS over other 2D sample sequences
is that it is incremental and highly parallelizable while maintaining
blue-noise properties.

Apart from the aforementioned popular techniques, other con-
ventional methods for 2D stippling such as screening-based meth-
ods exist. These methods operate on a discrete image pixel spatially
to determine whether a microdot should receive ink or not [Uli87].
They produce results on a discrete image and are highly paralleliz-
able. Mitsa et al. [MP92] and Ulichney [Uli93] proposed using
blue-noise dithering masks over the Bayer matrix [Bay73]. A com-
prehensive discussion of this topic is out of the scope of this paper.
For more details, recent surveys on 2D stippling and half-toning
techniques are found in [DI13, MARI17].

2.2. 3D stippling

The optimization-based and Poisson-disk sampling related stip-
pling approaches can be naturally generalized to 3D sur-
faces [CJW∗09, BWWM10, CCS12, YW13, GYJZ15, MIPS14,
Yuk15, QGY∗16] or even higher dimensions [Bri07, EMP∗12,
MEA∗18]. However, certain drawbacks in their 2D counterpart
such as low performance can be observed.

To improve the efficiency of stippling on surfaces, various ac-
celeration techniques have been developed. In the study of Van-
derhaeghe et al. [VBTS07], they first generated 2D stipples and
then projected these stipples onto animated 3D surface in the im-
age space, with an additional epenthesis on keeping the coherence
between animated frames. Baer et al. [BTBP07] introduced a real-
time texture-based stippling method that uses a special polycube
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representation to minimize the texture distortions. Their stippling
illustrations are produced by mixing the texture value between
different dot textures on different min-map levels, similar to that
of [PHWF01]. Krãijger and Westermann [KW07] introduced 3D
noise textures for generating stippling effect on surfaces. Although
both image-based and texture-based approaches could achieve real-
time performance, the visual aesthetics might be low because the
stippling dots are usually texturing mapping results from several
continuous min-maps.

The realism of stippling on surface could be improved by per-
forming direct computation in object space. Pastor et al. [PFS03]
used mesh preprocessing to generate stipples for 3D surfaces. They
first assigned a stipple to each vertex of the mesh, then randomly
perturbed the stipple positions to avoid artifacts and to adjust the
density of stipples using mesh subdivision and the preprocessed
progressive mesh. Similarly, Sousa et al. [SFWS03] marked to each
edge and relied on dense meshes and adjusted each mark accord-
ingly. Pastor et al. [PS04] further extended Sousa et al.’s idea by
organizing the points hierarchically using a graph. Our proposed
technique does not require any mesh preprocessing compared with
these methods.

One close work to ours is that of Yuan et al. [YNZC05], who
proposed a texture space NPR method to achieve several differ-
ent rendering styles. They first computed a geometric image of
the input mesh using conformal parametrization. Then they gen-
erated the stipples on image space using the important sampling
technique [ODJ04]. However, using a single geometry image to
represent the mesh surface might cause large distortions. A key dif-
ference between our approach and their approach [YNZC05] is that
we parameterize the mesh surface with multiple patches instead of
only one, and our algorithm is robust to the parametrization meth-
ods. Another improvement we made in this paper is that we use
an incremental sequence for thresholding rather than 2D tile-based
approach. The main advantage is that, based on the proposed incre-
mental sequence, thresholding to adaptive control is trivially paral-
lelizable, which is very friendly for GPU rendering. Our method
also preserves blue-noise property and has no limitation on tar-
get sampling data. More importantly, its incremental nature allows
users to change the number of stipples as they desire. This is suit-
able for our instant stippling on 3D surfaces.

Other NPR techniques for 3D surfaces include real-time hatch-
ing [PHWF01, SBB16], surface decoration [WLY∗16] and stream-
line visualization [PZ07]. More details can be found in [LVPI18].

3. Stippling for 3D dynamic Scenes

The main difficulty of image stippling is obtaining a random uni-
form distribution of stipples and capturing the local tone care-
fully. Stippling for 3D scenes is more challenging because keep-
ing temporal coherent for numerous stipples becomes another un-
avoidable issue. Therefore, although real-time NPR techniques
for dynamic scenes have been explored for more than a decade
[PHWF01, PFS03, YNZC05, SBB16], stippling being one of the
most conventional sketching techniques is still considered one of
the good solutions for dynamic 3D scenes.

We assume the following criteria for 3D surfaces stippling:

1. As a stylized rendering technique, every individual frame must
appear to be a stippling artwork.

2. For dynamic scenes, the stipples should anchor and move with
objects instead of the screen space.

3. Stipples are discrete primitives; therefore, flicker is unavoidable,
but it should be reduced to an acceptable level.

By these, we have the following factors to maintain the temporal
consistency of the algorithm design:

• Orientation: stipples must all be facing to the camera.
• Position: all stipples must anchor onto the surface of 3D objects.
• Incrementality: the number, shapes, or tones of local stipples

must change incrementally for consequent frames to eliminate
the flickers.

To this end, a sample sequence called IVS is proposed to create
stipples on 3D surfaces.

3.1. The IVS Sequence

The IVS is a sequence of Voronoi points starts from a given number
of random locations on a toroidal domain and incrementally adds
consequent points until infinity [MCQS18]. The IVS sequence has
an interesting property; that is, the sequence index of an individual
sample during the generation is approximately inversely propor-
tional to its Voronoi area during generation. Whenever the sequence
is terminated, the generated samples are almost evenly distributed
on the sampled domain and show good blue-noise properties. The
surrounding area ai of the ith sample is ai ≈ A0/i, where A0 is the
total area of the stippling domain specified by user.

3.2. Surface Stippling using IVS Sequences

Our basic idea is to provide an IVS sequence of overwhelming
length, find the unique location on the target surfaces for each sam-
ple, and then reject many of the samples by several thresholding
processes to obtain the final distributions. These thresholding pro-
cesses cover the compensate of the area distortion of parameteri-
zations, the change of the appearance areas after perspective pro-
jection onto the screen, and the elimination of excessive samples
(black stipples) at the lit region to match the shading appearance
after lighting computation. The complete algorithm is illustrated in
Fig. 2.

3.2.1. Generate Stipple Candidates

Finding the surface locations for IVS points can be completed
through a texture-mapping-like approach. This process consists of
two steps. First, the target surface S is parameterized into a UV at-
las whose pixel values contain their 3D locations on the surface.
Then, IVS samples lookup this atlas to find where they should be
on the surface by their 2D coordinates (ui,vi), as is shown in Fig. 3.
Those samples whose coordinates are located at vacant regions on
the atlas will lose their candidacies. Fig. 2 (b) shows the distribution
of the IVS points on the surface after this operation.
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Figure 2: Stipples generated using IVS sequences. (a) is the UV atlas with which the IVS points are anchored onto bunny’s head to obtain
(b). After eliminating UV distortion we obtained (c). (d) is the result when the change of areas after perspective projection are considered.
Final thresholding using the shading information produces (e) which uses larger δ.

Figure 3: Anchoring stipples. Image in the middle is an XYZ atlas
which is a texture storing the object position information. Candi-
date stipple i with the UV coordinates (ui,vi) has a valid position
(xi,yi,zi) on the bunny. Stipple j is located at a vacant region, thus
it is discarded.

3.2.2. Eliminate Parameterizations Distortions

The unavoidable distortions to create the UV atlas caused the un-
even distributions of candidates onto S. This can be easily compen-
sated by an area distortion factor:

kuv = At
j/Auv

j (1)

where At
j is the area of a surface element, triangle j for example,

and Auv
j is the area of the same element on the atlas.

am
i ≈ kuv ·A0/i

{
≥ a0 keep sample si
< a0 reject sample si

(2)

where am
i is the surrounding area of sample i, and a0 is the specified

smallest surrounding area which is adopted to control the global
sample density on S. After this thresholding operation, the distri-
bution of the IVS samples on S will appear evenly, as is shown in
Fig. 2 (c).

3.2.3. Consider Area Change of Perspective Projection

The operation of Eq. 2 results in the even distribution of IVS on
S. This is for surface re-sampling instead of stippling. To satisfy
criteria (1) assumed at the beginning of this section, the change of
local area after perspective projection need to take into account.
Suppose element j covers an area As

j on the projection screen thus

the projection factor is kpro j = As
j/At

j, Eq. 2 becomes:

as
i ≈ kpro j · kuv ·A0/i =

As
j

Auv
j
· A0

i

{
≥ a0 keep stipple si
< a0 reject stipple si

(3)

where as
i is the surrounding area of sample i on screen. It is com-

puted from the resolutions of the framebuffer and the size of the
stipples specified by the user. By this, we obtained Fig. 2 (d) on
which the stipples are evenly distributed on screen.

3.2.4. Present Shading Effect

We did not consider the shading information in the stipples in Fig. 2
(d); therefore, they are evenly distributed. Since the local tone gi
presented by stipple i on screen is gi = δi/as

i , where δi is the size
of stipple i and as

i is the surrounding area of this stipple on screen,
to let the stippling result never-darker and then the local shading
result of the surface fragment gs

i , we set:

gi = δi/as
i

{
≤ gs

i keep stipple si
> gs

i reject stipple si
(4)

The thresholding process for shading synthesis thus is as follows:

as
i ≈

As
j

Auv
j
· A0

i

{
≥ δi/gs

i keep stipple si
< δi/gs

i reject stipple si
(5)

The final surface stippling result using this rejection strategy is
shown in Fig. 2 (e). Eq. 5 covers all the aforementioned thresh-
olding processes. In summary, the thresholding maintains the local
grayness, and the goal to evenly distribute the stipples is achieved
because of the intrinsic properties of IVS.

3.3. Implementation

The proposed surface stippling technique is implemented to design
an efficient way to handle Eq. 5. Apparently, some of the runtime
cost can be preprocessed.

3.3.1. Workflow

The proposed workflow, which is shown in Fig. 4 divides the task
into two major aspects. The four modules in the gray box can be
precomputed, and the four modules on the right in the green box
need to be handled at runtime.

c© 2018 The Author(s)
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Figure 4: Workflow of 3D surface stippling using an IVS sequence.
The light blue blocks and white blocks represent data and opera-
tions, respectively.

In the preprocessing aspect, the first module parameterizes S into
a UV atlas Muv. This module is well studied and there are various
solutions. Fortunately, our proposed surface stippling technique is
not sensitive to the quality of the parameterizations.

After the surface parameterizations, the geometric primitives of
S are then rendered using the UV coordinates to generate an XYZ
atlas map Mxyz. This map stores the object space location informa-
tion of S, such that any IVS sample si can obtain its location on S
by a simple lookup using its UV coordinate (ui,vi). The area factor
1/Auv

j of each fragment is also calculated and stored in Mxyz. The
pixel value of a Mxyz would therefore be (xi,yi,zi,1/Auv

j ).

For the runtime operations, projecting objects onto the screen
and performing shading computation are common. All results in
this present paper employ a simple GPU-based rendering method
with the Phong shading model, naive shadow map, and 2D tex-
ture mapping. The Thresholding process is for Eq. 5, and the Post
Processing here draws the final accepted stipples using tiny disks
facing the camera.

3.3.2. Parallelization

Each candidate stipple needs to go through the thresholding evalu-
ation to determine its visibility on the final screen. Eq. 5 shows that
the evaluation is independent. Therefore, by dividing the IVS se-
quence into several subsequences, the thresholding processes will
be easily parallelized for multicore CPU/GPU implementations to
generate high-quality stippling results for large images in real-time.

3.3.3. Algorithm

The complete algorithm to generate Fig. 2 (e) on is given in Alg. 1.
It consists of three parts: the preprocessing, the stipple generation
routine, and the postprocessing which presents the shape of the stip-
ples.

4. Improving the Stylization

The efficiency of Alg. 1 allows users to adjust the length of the
given IVS sequence and the size of a stipple δ on-the-fly for desir-
able results. However, using mono-black stipples of uniform size is

Algorithm 1 3D Surfaces Stippling
1: // Part I. Pre-processing
2: Get the pre-generated 2D IVS sequence S;
3: Divide S into m subset S j , j = 1, ...,m;
4: for Each object O in the scene do
5: Muv←Parameterize the mesh;
6: Mxyz←Render to UV space;
7: end for
8: // Part II. Generating stipples for each frame
9: Specify the size of a stipple δ;

10: for Each object O in the scene do
11: Render O using common tech.;
12: Calc. As

i for each fragment in Muv;
13: for Each subset S j do
14: for Each sample s j,i in subset S j do
15: Lookup location pi of s j,i(ui,vi) on Mxyz;
16: if pi is valid (not in vacant region) then
17: (xi,yi,zi,1/Auv

i )←Mxyz;
18: Project to screen: (xs,ys,ds)← (xi,yi,zi);
19: if ds passes depth test and is front facing then
20: gi← pixel value at (xs,ys);
21: ai← (As

i/Auv
i ) · (A0/i);

22: if ai ≥ δ/gi then
23: Store a stipple at (xs,ys) to Sstipple;
24: end if
25: end if
26: end if
27: end for
28: end for
29: end for
30: //Part III. Post processing for each frame
31: Clear screen buffer
32: for Each stipple s in Sstipple do
33: Draw a stipple of size δ at (xs,ys)
34: end for

not very expressive. Two extensions, the varying radius style and
multi-tone approach are proposed to enrich the stylization without
losing the real-time efficiency.

4.1. Varying Radius

The original stippling method does not restrict the stipples to main-
tain uniform size. Varying the stipple size can apparently capture
subtle tone change better. Hence, the basic idea of varying-radius
stippling is to adjust the stipple radius r such that the stipple size
δ = π · r2 matches the local tone. In this case, all accepted stipples
after the evaluation of Eq. 3 would be kept and have the same sur-
rounding area a0 on screen. However, their sizes will be adjusted
according to the local shading gs

i on the screen. Therefore, for vary-
ing radius stippling, we use the following:

as
i ≈

As
j

Auv
j
· A0

i

{
≥ a0 keep stipple si with size δi = gs

i a0
< a0 reject stipple si

(6)

where a0, as previously given, is the specified smallest surround-
ing area. The varying-radius method apparently adds very limited
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Figure 5: Visual effect improved by the varying radius method. Im-
age on the left (a) is the shading reference. Images in the middle
(b and c) use uniform stipple size. Image on the right (d) uses the
varying radius method.

cost to the basic method; however, it generates more expressive ef-
fects, as shown in Fig. 5. Furthermore, the varying-radius method
maintains better temporal coherency for dynamic scenes because
stipples would change their radius before they appear or disappear
in consequence frames. We employ δmin in the algorithm to truncate
the tiny stipples such that results would appear closer to artworks.

4.2. Multi-tone

The multi-tone stippling uses pens of various tones to draw the stip-
ples. Similar to the varying-radius stippling technique, all accepted
candidates after the checking of Eq. 3 would be kept except that
the local brightness is lighter compared with that produced by the
lightest pen. By introducing a term τ for tone, Eq. 4 becomes:

gi = τ ·δ0/a0

where δ0 is the given stipple size. And the multi-tone stippling can
be carried out as follows:

as
i ≈

As
j

Auv
j
· A0

i

{
≥ a0 keep stipple si with tone τ = gs

i a0/δ0
< a0 reject stipple si

(7)
Stippling artists cannot have pens of any tone. Generally, stipple
tones are restricted to several selected ones. A straightforward way
to tackle this is to use the closest given tone. This produces naive
results with evident quantization effect, as is shown in Fig.6 (b).

A better solution to eliminate the quantized effect is to mix the
stipples of adjacent tones near the edges. Suppose τ = gs

i a0/δ0 is
the tone calculated by Eq. 7. τ

l and τ
l+1 are two adjacent given

tones that τ
l ≤ τ ≤ τ

l+1. The selected tone can be determined as
follows:

τ
∗ = gs

i a
s
i/δ0

{
≥ τ select τ

l+1 for stipple si

< τ select τ
l for stipple si

(8)

by which we obtain Fig.6(c), on which the quantization effect van-
ishes. In our implementation the lightest tone τ

0 is always specified
as white(τ0 = 0.0).

5. Analysis

The proposed technique is simple, practical, and efficient. The jus-
tification for this technique, because it is for stylized rendering, is
objective and not always a prerequisite. Two consensus criteria, one

Figure 6: Multi-tone stippling using different strategies.
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Figure 7: Frequency analysis of different stipples distributions
on surfaces. Left: stippling results; middle: power spectrum, and
right: radial average (top) and anisotropy (bottom) of the power
spectrum.

on the quality of the stipple distributions and the other on the faith-
fulness of capturing the local tones, are adopted to evaluate our
technique. Finally, for the appraisal of the proposed technique, the
performance is also evaluated.

5.1. Stipples Distribution Analysis

The generally accepted standard for point distributions is the well-
known blue noise properties. We expect the stipple distributions
generated by our technique exhibit this property. To demonstrate,
the characteristics of the generated stipples are compared with
those of other blue noise sampling patterns. Note that, only the
representative Poisson-disk sampling methods on surfaces, which
are much faster than optimization-based approaches, are compared.
The selected methods include constrained Poisson-disk sampling
(CPS) [CCS12], maximal Poisson-disk sampling (MPS) [YW13],
and hierarchical Poisson-disk sampling (HPS) [MIPS14]. Differ-
ential domain analysis (DDA) [WW11] is employed here to ana-
lyze the spectral properties of the point sets sampled on surfaces,
including power spectrum, radially average and anisotropy. Fig. 7
shows the power spectra of point sets obtained with different meth-
ods. Although the blue noise properties of the proposed algorithm
are not the best ones, they achieve relatively good spectral profiles
with low anisotropy and lack of low frequencies around the origin.
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Figure 8: Differential domain analysis of stippling results with different UV patches and incremental stippling candidates. Stipples from
the incremental sets of 2048, 4096, 8192, and 16384 candidates are distinguished using red, pink, green and blue, respectively. The default
settings of the DDA tool [WW11] are used to generate the spectrum profiles.

This indicates the generated stipples are distributed randomly and
uniformly manner exhibiting evident blue noise property.

We then performed the blue noise spectral analysis with differ-
ent UV maps and incremental stippling candidates. Our approach
is not sensitive to the number of UV patches, as is claimed be-
fore. To demonstrate this observation, the Fourier spectrum pro-
files generated using different numbers of UV patches are shown in
Fig. 8. The blue-noise properties of stipple distributions with dif-
ferent numbers of stipples are also shown in Fig. 8. The smaller
stipple sets are subsets of the larger ones. This example clearly il-
lustrates that the proposed technique works well with different UV
patches and incremental stippling candidates.

5.2. Expression Faithfulness

Although expressing local tone faithfully to the original realistic
rendering result is not indispensable for stippling, we still want
to keep this restriction, such that users would not need to re-tune
the shading and other rendering parameters for the special styliza-
tion of stippling. Studying the derivation of the proposed stippling
method, specifically Eqs. 5, 6, 7, and 8, we can expect that the
stipples that are generated should be able to represent the tones and
their variance properly.

To visually demonstrate this feature, four video sequences, each
consisting of 628 frames (100 slots for one rotation round), are gen-
erated. Of these four video sequences, one is the reference realistic
result. The other three are the stippling results generated by the
proposed approaches under the same viewing and lighting settings.

The peak signal-to-noise ratio (PSNR) is a numerical mea-
surement for tone similarity used in image quality assessment
[WBSS04]. We compare the tone similarity frame by frame by
computing the PSNR between each realistic and 3d stippling result
pair.

The PSNR values of the three result sequences are shown in
Fig. 9. Some of the selected frames of the four sequences are
also presented in Fig. 10. We resized the original image (with
1024× 1024 resolution) with a factor 0.4. Results of the varying-
radius method (green line) matched the tones of the realistic images
better compared with the results of the stippling method using uni-
form size (blue line). The multi-tone results (red line) even matched
the realistic tones better. In addition, through numerical and visual
comparisons, the proposed stippling approaches express local tone
faithfully over continuous frames.

Furthermore, similar to the many image stippling methods
[LM11, LM10], the mean structural similarity measure (SSIM) is

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.



Lei Ma et al. / Instant Stippling on 3D Scenes

Figure 9: Tone similarity over frames measured by PSNR. 628 continuous frames are calculated. The Y-axis starts from 16.

Figure 10: Selected frames (red boxed in Fig. 9) of realistic rendering and our stipple drawings.

used to measure the structural similarity between images. Although
keeping structural information is not the objective of the proposed
technique, the continuity of SSIM values over a sequence of frames
can be regarded as a numerical evidence of temporal coherence for
reference. The structural similarities between the three video se-
quences and the realistic one are shown in Fig. 11.

Figure 11: Structural similarity over frames measured by SSIM.
430 continuous frames are selected. The Y-axis starts from 0.2.

Table 1: Performance analysis.

Test case Triangles Shading(fps) Mono(fps) Varying Radius(fps) Multi Tones(fps)

Bunny 41498 212 115 115 115

Kitty 21222 686 362 361 362

Eight 6144 3200 956 958 954

Hand 23186 2502 347 342 343

Max 27272 2200 290 283 282

Elephant 49918 2700 203 203 203

Scenes1 133841 2400 96 93 91

Scenes2 292640 1600 62 61 62

5.3. Performance

The proposed methods are implemented on GPU for most paral-
lelizable phases such as shading, post rendering, stylization im-
provement and thresholding. We use a lazy mode that the rele-

c© 2018 The Author(s)
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Figure 12: Stippling a zoom-in sequence.

vant information for calculating a stipple is only to be updated
when necessary. For example, the projection area of a mesh on the
screen is only updated when the camera is changed or any anima-
tions are applied. Therefore, the performance is fluctuating at run-
time. The lowest GPU-based performance data for each input scene
are captured and shown in Table 1. All test cases and algorithms
are conducted on a PC with a 4.0GHz Intelr CoreTM i7-6700k
CPU, 32GB RAM, and a Nvidiar Geforcer GTX 1080 Graphics
Card. Based on Table 1, we can infer that the proposed approaches
achieved real-time frame rate.

6. Experimental results

The proposed technique is applied on various 3D objects and scenes
to verify the feasibility, robustness, and visual quality of the gener-
ated stippling results.

6.1. Temporal Coherence

Our method enforced temporal consistency. Each stipple candidate
has its unique location on the mesh surface and will move with the
surface in dynamic scenes. The thresholding stipples generated by
IVS ensured that only a very small number of stipples will appear
or vanish frame by frame.

Three test cases are selected to test the temporal coherence of
the stippling results. The first one, as shown in Fig. 12, is a zoom-
in sequence, which is generated by pushing the camera closer to
the model. Our technique generates stipples incrementally while
maintaining a constant apparent tone. The second test is to stipple a
static surface with dynamic lighting directions and a moving cam-
era. Some frames of this test are shown in Fig. 10. The video of this
test shows that the stipples are incrementally changed, and only a
few stipples appear/disappear between sequential frames. The fi-
nal coherence test is to stipple an animation sequence, as shown in
Fig. 14.

We refer readers to the accompanying video for the complete
animations of the three tests. From the figures and video, we can see
that each individual frame appears close to a stippling artwork. In
addition, the flicker between successive frames is negligible in the
cases of moving cameras, changing lightings, or deforming meshes.

6.2. Extended Stippling Styles

In contrast to many other surface stippling methods, our technique
can produce locally varying stipple radii or present multiple tone
level stipples. Fig. 15 illustrates stippling results with varying stip-
ple sizes and multi-tones. These stippling results greatly improved

the visual quality compared with the stippling of uniform size with
mono-black color. These extensions provide users with more op-
tions for expressions..

6.3. Stippling Complex Scenes

A good robustness test is to stipple complex scenes, as shown in
Fig.13. This scene contains 21 objects (surfaces) which are com-
posed of 292,640 triangular facets. We show the stippling results
with varying point sizes. The frame rate is around 150 fps on the
GTX 1080 graphics card for a 2048× 1600 output under dynamic
viewing and lighting conditions. This example demonstrates that
the proposed technique is able to synthesize high-quality stippling
results in real-time for large scenes.

6.4. Parameterizations Independence

The generated stipple distributions with different numbers of UV
patches that exhibit the blue noise property are statistically pre-
sented in Sec. 5.1. To further verify the robustness and the validity
we employed different surface parameterization methods, includ-
ing least squares conformal maps (LSCM) [LPRM02], Iso-chart
texture atlasing (UVAtlas) [ZSGS04], and boundary first flattening
(BFF) [SC17], to generate the UV maps for our stippling, as shown
in Fig. 1. They are visually similar. This test illustrates again that
our algorithm is not restricted to the choice of parameterizations
method.

6.5. Comparison with Other Incremental Sequences

For 2D stippling, many decent algorithms provide good qualities of
progressive blue noise in real-time, such as [Uli93], and tile-based
methods [KCODL06, ANHD17]. These methods were compared
with IVS in terms of quality, speed and usability in [MCQS18].
In our study, we compare the IVS with two types of other point
sequences, a random sequence and two of the low-discrepancy se-
quences (e.g., Halton [Hal60], Sobol [Sob67] and its variant Scram-
bled Sobol). These sequences are chosen because they can be easily
integrated into the proposed 3D stippling framework and maintain
parallelizable attributes. The visual quality of stipples on surfaces
using the IVS sequence, a random sequence, and Sobol and Halton
sequences are compared in Fig. 16. As observed, surface stippling
using the IVS sequence shows evident visual superiorities.

7. Conclusion and Future Works

We presented novel techniques to generate stipples for dynamic 3D
objects/scenes in real-time. The key idea is to map a 2D incremental
and parallel IVS sequence to the surfaces by carefully eliminating
the distortions caused by parameterizations and the change of geo-
metric primitives’ areas after perspective projections. The shading
effect of the scenes is also considered for the stipple generation. To
further enrich the visual effect, we propose two extensions to gen-
erate stippling with varying-radius and multi-tone styles, the tone
similarity among continuous frames are preserved. Our approach
achieves real-time frame rate and the distribution of the generated
stipples exhibits good blue-noise properties. The incremental prop-
erty of the IVS sequence results in good temporal coherence be-
tween frames.
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Figure 13: Instant stippling for a complex 3D scene. From left to right: the UV coordinates, the realistic rendering result, two stippling
results with varying point sizes from different views, and the zoom-in details.

Figure 14: Instant stippling for an animation sequence from [SP04]. The frame numbers from left to right are 1, 2, 3, 42, 46, and 48. The
lighting is continuously changing during the whole animation process.

Figure 15: Comparison of different stippling styles. From left to
right are stippling results using uniform size with mono-black color
stipples, varying radius stipples, and multi-tones stipples.

The proposed method has the following limitations. First, the fi-
nal results could be affected by the parameterizations approaches.
Serious distortions on UV space may introduce decline on the fi-
nal stipple distributions, as is shown on the last two results in
Fig. 1. Second, the proposed technique is not good at capturing
high-frequent shading effects like thin sharp hard shadows. Third,
the proposed technique cannot handle fuzzy or transparent surfaces,
nor can it deal with volumetric objects.

In the future, we would like to further reduce UV distortions
by considering deformation tensor. Furthermore, adding points

Figure 16: Comparison with other incremental sample sequences.
The 2D point sequences are shown on the top and the related stip-
pling results on the bottom.

dynamically rather than removing is a potential option for im-
proving the performance. The technique proposed by Ahmed et
al. [ANHD17] is another alternative for the proposed stippling
framework because it supports parallelization. Moreover, using IVS
sequence to synthesize other NPR styles, such as hatching and
painting, is also interesting.
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