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Figure 1: Modeling of a small scene from street-level scanned data. The images show a photo of the scene (top left), point cloud
(top right) and generated plant models with textured leaves (bottom).
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1 INTRODUCTION
Plants are ubiquitous in the nature, and realistic plant modeling
plays an important role in a variety of applications. Over the last
decades, an immense amount of e�orts have been dedicated to plant
modeling. These approaches can be classi�ed into two major cate-
gories: procedural modeling [Palubicki et al. 2009; Stava et al. 2014]
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and data-driven reconstruction approaches (e.g., photographs [Li
et al. 2011; Tan et al. 2007] or scanned points [Livny et al. 2010; Xu
et al. 2007]). Each approach has its own pros and cons. For example,
procedural modeling approaches work well for synthesizing local
branch structure details to produce botanically correct trees, but
they lack the ability to control the growth of trees under certain
shape constraints. While the data-driven approaches might pre-
cisely reconstruct skeletal structures, the botanical �delity of trees
are di�cult to maintain.

To fully possess advantages of both approaches, in this paper, we
present a new modeling framework for generating realistic plants
by integrating point cloud analysis with rule-based growth for pro-
cedural plant modeling. Using the real point cloud data as soft con-
straints, we �t a parametric tree model to simulate the plant growing
progress. Our method makes several important contributions to the
research on plant modeling: (1) enriching the tree generation liter-
ature by building connections between virtual tree modeling and
data-driven tree reconstruction; (2) generating ground-covering
non-tree plants, e.g., bushes and shrubs (see Figure 1), which have
gained little attention and cannot be reconstructed by previous
approaches.

2 TECHNICAL APPROACH
Our algorithm is based on the observation that obtained point cloud
represents plant growing result controlled by external environmen-
tal and internal factors. Inspired by the space colonization [Palubicki
et al. 2009], we regard the points as a kind of resources, which could
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guide the growing of the buds. Starting from seeds located at the
root, we improve a parametric procedural model [Palubicki et al.
2009] to simulate plant growing.

2.1 Parametric plant representation
We �rst create a parametric skeletal structure that is powerful
enough to generate a variety of plant species. Various procedural
modeling methods exist for extracting branch structures, and theo-
retically, any parameter-driven approaches can be integrated into
our framework. However, to avoid tuning too many parameters [Stava
et al. 2014], a plant model with 5 parameters (see Table 1) is used for
representing the skeletal structure in our work. These parameters
are pre-generated and stored in a species library. Please note that
the growth rate ρ can be computed automatically in our method
by using a logistic growth equation.

Table 1: Botanical parameters used for representing plant
skeletal structure.

Paras. Name Description
l internode length the base length of a single internode

ϕ roll angle rotation angle of lateral branches associated
with two successive nodes

ψ branching angle angle between a lateral branch
and its parent shoot

ρ growth rate number of internodes generated on a
single shoot during one growth cycle

γ diameter coe�cient branch thickness transmission coe�cient

2.2 Rule-based modeling guided by point cloud
We now integrate above parametric representation into a rule-based
growing mechanism by using L-systems. When implementing this
L-systems, [Palubicki et al. 2009] iteratively simulates the space
competition between growing branches. They assume that points
around each bud are uniformly distributed, and the growing speed
is equal at every stage. However, it is not true in real growing
process. To adapt this model to the real point cloud, we make two
signi�cant improvements.

First, we present an automatic method to adaptively compute
the growing distance at each stage. Previous studies by botanists
have shown that a plant grows in such a way that the growth
increases exponentially when the plant is young and decreases as
the plant approaches its asymptotic maximum growth capacity.
To simulate this kind of nonlinear growing, we apply the well-
known Logistic model which describes the population growth when
the environment is constrained by limited resources. Given the
internode length l , let Hmax be the total length from the leaf to
the plant root: Hmax = K · l . In a sense, Hmax approximates the
height of the plant. Then in each growth iteration time t , we use
the Logistic model to compute the expected tree height Ht at time t .
Thus we can derive growth rate ρ from Ht . Finally, the integer part
of ρ determines the in�uence distance di = bρc · l at each stage.

Next, in the work of [Palubicki et al. 2009], they treat every point
in perception volume equally. That is to say, each point has the same
weight for skeleton computation. However, we �nd that the points

on branches usually have larger in�uence on the skeleton growth
than leaf points. Therefore, in our method, each point is equipped
with two attributes: location and importance weight. To compute
the weight for each point pi , we �rst perform Principal Component
Analysis (PCA), and store the eigen vector, #»n pi , with the maximum
eigen value for pi . Then we search in the neighbor of pi , and count
the number of points pj that has similar location and eigen vector
with pi . The number of similar neighbors is denoted as weight
wi . The actual growth direction of each bud A is computed as the
follows: #»

V A =
#»
V h +α

#»
V opt + β

#»
V t , where #»

V h is the heading direc-
tion, #»

V t = (0,−1, 0) is the tropism vector, and the optimal direction
is calculated as the average of normalized vectors #»

V i formed by
the bud and neighboring points: #»

V opt =
1∑n

j=1w j

∑n
i=1wi

#»
V i .

Figure 2: We show the color-coded weight image (warmer
color indicates higher weight), as well as modeling results
without/with the weight.

So far we have created a 3D skeletal graph that represents the
main branching structure of the plant. Finally, this structure is
converted into plant geometry by meshing branch models based on
allometric rules and by attaching leaves to tertiary branches and
twigs according to speci�ed plant species.

3 CONCLUSION AND FUTUREWORK
We present a rule-based framework for generating naturally-looking
plant models from real point cloud. In the future, we would like
to address automatic classi�cation and modeling of larger scale
scenes, such as a real ecosystem.
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