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Abstract In this paper, we survey recent approaches to blue-noise sampling and discuss their beneficial

applications. We discuss the sampling algorithms that use points as sampling primitives and classify the

sampling algorithms based on various aspects, e.g., the sampling domain and the type of algorithm.

We demonstrate several well-known applications that can be improved by recent blue-noise sampling

techniques, as well as some new applications such as dynamic sampling and blue-noise remeshing.
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1 Introduction

Sampling is an essential technique in com-

puter science. Sampling translates a con-

tinuous signal into its discrete counterpart

or selects a subset from a discrete set of

signals, such that the signal can be rep-

resented and processed by computers effi-

ciently. For example, one-dimensional (1D)

sound waves, two-dimensional (2D) images,

and three-dimensional (3D) polygonal meshes

are captured by discrete sampling from contin-

ues signals.

In computer graphics, sampling plays an

important role in many applications, such as

rendering [1], stippling [2], texture synthesis [3],

object distribution [4], and simulation [5]. A-

mong all the sampling techniques, blue-noise

sampling is the most popular method in recen-

t papers. The term “blue-noise” refers to any
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noise with minimal low-frequency components

and no concentrated spikes in energy. Intuitive-

ly, blue-noise sampling generates randomized

uniform distributions. Fig. 1 shows a typical

point set with blue-noise properties generated

by Poisson-disk sampling.


    

















Fig. 1. An example of Poisson-disk sampling and

its spectral analysis. Left: a sampled point set;

middle: the power spectrum from this point set;

and right: radial means and normal anisotropy.

In this paper, we first discuss the color of

noise in Section 2, and then summarize recent

techniques for blue-noise sampling in Section 3.

We focus on recent approaches in our survey as

a complement to the comprehensive survey by

Lagae and Dutré [6]. Furthermore, we discuss

several existing and new applications that ben-

efit from the blue-noise sampling techniques in

Section 4.

2 The Color of Noise

We can classify point distributions by

looking at the Fourier spectrum. Different

spectra are associated with different colors .

For example, white noise refers to noise with a

flat spectrum, which contains an equal amoun-

t of energy in all frequency bands. It is usu-

ally used in random number generators [7].

Blue noise refers to point distributions with

weak low-frequency energy, but strong high-

frequency energy. Pink noise is the comple-

ment of blue-noise and its spectral energy is

concentrated in the low-frequency bands. Pink

noise occurs very frequently in nature and thus

is used for physical simulation and biological

distributions [8, 9]. Green noise is an uncom-

mon term that can refer to the mid-frequencies

of white noise. It characterizes the distribu-

tions of a variety of natural phenomena and

has been used for digital halftoning [10].

There are also many other colors used for

noise, with or without precise definitions. In

this paper, we focus only on techniques that

generate blue-noise sampling patterns.

3 Blue-Noise Sampling

There are various ways to characterize ex-

isting blue-noise sampling techniques. For ex-

ample, the sampling algorithms can be clas-

sified by the type of sampling domain (2D,

3D, or surfaces), the metric used in the do-

main (geodesic or Euclidean), the shape of the

sampling primitives (point, line, ball, etc.), the

http://en.wikipedia.org/wiki/Colors of noise#Blue noise
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properties of the sampling results (isotropic or

anisotropic), the style of the algorithm (dart

throwing, relaxation, or tiling) and so on.

3.1 Sampling Domain

Here, we briefly describe the common in-

put domains.

Euclidean domain. Most previous blue-noise

sampling algorithms were first developed to

handle the 2D or 3D Euclidean space. The

traditional domain is the unit torus (i.e., the

unit square and cube in 2D and 3D, respective-

ly, with periodic boundary conditions) [11], in

which the distance between two points is mea-

sured using the Euclidean metric. Some work

also addresses more complicated domains, such

as non-convex polygons with holes [12, 13].

High dimensions. Since high-dimensional

point distributions have special applications,

some approaches are able to generalize blue-

noise sampling to high dimensions [14, 15, 16,

13]. However, many high-dimensional sampling

methods do not scale well with high dimensions

because they typically suffer from the curse-of-

dimensionality, which means that the effective-

ness deteriorates very rapidly as the dimensions

increase. Ideas to overcome this problem have

been suggested by Ebeida et al. [17].

3D Surface. Blue-noise sampling has also

been extended to mesh surfaces. In this case,

the input is usually a two-manifold triangular

mesh surface, that consists of a set of triangles.

The sampled points should be located exactly

on the surface.

3.2 Sampling Algorithm

Blue-noise sampling methods can be

roughly classified into three types according to

the techniques they use: (1) Poisson-disk sam-

pling and its variations; (2) relaxation-based

sampling; and (3) patch/tile-based sampling.

In this section, we give an overview of these

methods and discuss several classic algorithm-

s in detail. Each type of algorithm is further

classified by the sampling domain. We empha-

size methods that use points as primitives for

isotropic blue-noise sampling in lower dimen-

sions.

3.2.1 Poisson-disk Sampling

Poisson-disk sampling is a classic tech-

nique that generates uniformly random dis-

tributed point sets. An ideal Poisson-disk sam-

pled point set, X = {(xi, ri)}ni=1, in sampling

domain Ω should satisfy the following three

properties: 1) the minimal distance proper-

ty, which requires that the distance between

any two disk centers should be larger than the

sampling radius, i.e., ∀xi,xj ∈ P, ‖xi,xj‖ ≥

min(ri, rj) ; 2) the unbiased sampling property,
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which requires that each point in the domain

has a probability that is proportional to the

sizing at this point to receive a sampling point;

and 3) the maximal sampling property, which

requires that the union of the disks covers the

entire sampling domain, i.e.,
⋃

(xi, ri) ⊇ Ω.

The sampling is uniform if the sampling radius,

ri, is constant. Otherwise, it becomes adaptive

sampling.

Euclidean domain. The traditional method

for Poisson-disk sampling is called dart-

throwing and was first proposed by Cook [18].

Given a sampling domain and a sampling ra-

dius, the algorithm generates disks in the sam-

pling domain randomly. If the current gener-

ated disk conflicts with any previous sampled

disk, then it is rejected; otherwise, it is accept-

ed. This process is repeated until a continu-

ous number of rejections is observed. The algo-

rithm complexity of the original dart-throwing

algorithm is O(n2). However, this approach

is inefficient to achieve the maximal property.

Therefore, a lot of work has been expended on

generalizing and accelerating this algorithm.

Most recent work aiming for efficient

Poisson-disk sampling maintains a data struc-

ture to track and sample the empty region-

s (also called gap primitives). Dunbar and

Humphreys [19] described an efficient imple-

mentation of the dart-throwing algorithm for

maximal Poisson-disk sampling (Fig. 2(a)).

They applied a data structure called scalloped

sectors to record the active front of the sampled

disk set. Their algorithm runs in O(nlog(n))

time, but the sampling is biased.

(a) (b)

Fig. 2. Data structures used for accelerating

Poisson-disk sampling. (a) Scalloped sectors [19].

(b) Quad-tree [13].

The simplest data structure for uniform

Poisson-disk sampling is the quad-tree. White

et al. [20] first proposed to use such a data

structure for acceleration. The cell size of the

base grid equals r√
2
, such that each grid cell can

at most receive one disk with radius r. Dur-

ing the sampling process, the partially covered

cells are subdivided into smaller fragments in a

quad-tree manner. Gamito and Maddock [16]

extended White et al.’s algorithm to higher di-

mensions. Later, Jones and Karger [21] re-

ported that they reduced the time complexity

of Poisson-disk sampling to linear time. The

follow-up work of Ebeida et al. [13] further ac-

celerated the sampling process by sampling a
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flat fragment array instead of using the hierar-

chical quad-tree, as shown in Fig. 2(b). The

grid-based sampling algorithm has been imple-

mented on recent Graphics Processing Units

(GPUs) [15, 22, 23]. But the GPU extensions

cannot guarantee the unbiased sampling prop-

erty.

Jones [24] first proposed an algorithm for

unbiased maximal Poisson-disk sampling. He

used a Voronoi diagram to extract the uncov-

ered regions, called gaps in the sampling do-

main. These uncovered regions were further re-

sampled to achieve the maximal sampling prop-

erty in an unbiased manner. The core idea

is that maximal sampling can be obtained if

and only if the Voronoi cell of each vertex is

fully covered by the disk centered at the ver-

tex. In the sampling process, Jones repeatedly

generated disks and inserted them in a global

Voronoi diagram one by one, until the sampling

became maximal. Each vertex in the Voronoi

diagram recorded a value that indicated the

area of the empty region of the corresponding

Voronoi cell. A new sample was generated by

first selecting a Voronoi cell based on the emp-

ty area. Once a new sample was generated, the

Voronoi diagram and the value of each vertex

were updated.

Ebeida et al. [12] proposed a hybrid ap-

proach that first used squares and later con-

vex polygons bounding the intersections of a

square and multiple circles as gap primitives.

A two-step unbiased maximal sampling frame-

work was developed. They first performed clas-

sic dart-throwing on a uniform grid and then

switched to computing and filling empty re-

gions by clipping the grid cells against the

neighboring disks.

However, most algorithms mentioned

above can only handle uniform sampling. Yan

and Wonka [25] presented an algorithm for the

generation of maximal Poisson-disk sets with

varying radii. Built on the regular triangu-

lation and the power diagram, they conduct-

ed a theoretical analysis of gaps in such disk

sets. Then they designed efficient algorithms

and data structures for gap detection and gap

updates when the disks were changed. Their

method works well in both Euclidean space and

on manifolds. Fig. 3 compares the gap extrac-

tion algorithms of [24], [12], and [25].
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(a) [24] (b) [12] (c) [25]

Fig. 3. Comparison of three representative al-

gorithms for gap computation. (a) Voronoi dia-

gram [24]. (b) Uniform grid [12]. (c) Regular tri-

angulation and the power diagram [25].

Mitchell et al. [26] studied 2D Poisson-

disk sampling with various radii. They ana-

lyzed the conflicting condition under which a

maximal sampling can be achieved. [27] intro-

duces a sifted disk technique for locally resam-

pling a point cloud to reduce the number of

points. The essence of this algorithm is still

maximal Poisson-disk sampling. More recent-

ly, Yuksel [28] proposed a point set resampling

approach for fast Poisson-disk sampling; how-

ever, this approach is biased and not maximal.

Surface sampling. The classic dart-throwing

algorithm has been extended to mesh surfaces

[29, 30, 31, 32, 33, 25, 34, 35, 36, 28] as well as to

isosurfaces [37]. Euclidean distance is used in

these approaches. Besides the Euclidean met-

ric, the geodesic metric is also used for Poisson-

disk sampling [38, 39, 40, 41]. Surface sampling

techniques can be also used for surface remesh-

ing by computing the restricted Delaunay tri-

angulation [42]. We address this issue as an ap-

plication of blue-noise sampling in Section 4.4.

3.2.2 Relaxation-based Sampling

Iterative relaxation is another importan-

t technique for generating point distribution-

s. This type of method usually consists of two

steps: (1) generating an initial point set, and

(2) optimizing the point positions using Lloyd

iterations [43] until convergence . In this type

of approach, the points X = {xi}ni=1 to be op-

timized are called sites.

The methods are differentiated by differ-

ent objective functions. For example, the orig-

inal Lloyd algorithm minimizes the quantiza-

tion error in signal processing. It is known as

the Centroidal Voronoi Tessellation (CVT) in

computer graphics [44]. The energy function of

CVT can be formulated as

ECV T (X) =
n∑

i=1

∫
Vi

ρ(x)‖x− xi‖2dx, (1)

where {Vi}ni=1 is the Voronoi diagram of the

points in the sampling domain Ω and ρ(x) is a

density function defined over Ω.

The key ingredient of computing a CVT is

to construct the Voronoi diagram. The Voronoi

diagram in Euclidean spaces is well studied. It

has also been generalized on manifold surfaces.

There are multiple ways to compute CVT on

mesh surfaces, e.g., parameterization-based ap-
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proaches [45, 46], discrete clustering [47], and

the exact computation of the Voronoi diagram

on surfaces [42, 34]. We compare these different

approaches in Section 4.4.

However, CVT tends to generate a point

distribution with regular patterns (i.e., hexag-

onal arrangements) that lacks some blue-noise

properties. Several methods have been pro-

posed to modify CVT to obtain better blue-

noise properties.

Balzer et al. [48] introduced a capacity con-

strained Voronoi tessellation (CCVT) to gener-

ate point sets with excellent blue-noise prop-

erties. In this method, Voronoi cells should

satisfy the constraints ‖Vi‖ =
∫
Vi
ρ(x)dx = ci,

where ci are capacity constraints with ci > 0.

Intuitively, the capacity of a site can be under-

stood as the area of its corresponding Voronoi

region weighted by the density function. The

energy function of CCVT is given as follows:

ECCV T (X) =
n∑

i=1

‖
∫
Vi

ρ(x)dx− ci‖2. (2)

However, since this method relies on a dis-

cretization of the capacities, it suffers from

quadratic complexity and converges slowly.

Even when implemented on a GPU [49], it

is still inefficient for large-scale optimization

problems. Three variants were further pro-

posed to improve the algorithm performance.

Xu et al. [50] proposed capacity-

constrained Delaunay triangulation (CCDT)

for blue-noise sampling and generalized the

concept of CCDT to mesh surfaces [51].

Chen et al. [52] combined CCVT [48]

with the CVT framework in [42] for sur-

face blue-noise sampling, which they called

capacity-constrained centroidal Voronoi tessel-

lation (CapCVT). Their energy function is de-

fined as:

ECapCV T (X) = ECV T (X) + λECapV T (X), (3)

where ECV T is the same as Eqn.(1) and

ECapV T (X) =
∑n

i=1 ‖
∫
Vi
ρ(x)dx‖2. Then, us-

ing an efficient optimization framework based

on the L-BFGS method [53], they achieved sig-

nificant performance improvement.

de Goes et al. [54] reformulated CCVT as

a continuous constrained minimization prob-

lem based on optimal transport, instead of

the discretized approximation suggested in [48].

In addition, they used a power diagram, as

opposed to a Voronoi diagram, to perform

density-adapted sampling. They formulated

their constrained minimization as:

EBNOT (X,W) = ε(X,W) +
∑
i=1

λi(ci − c),

(4)

where ε(X,W) =
∑n

i=1

∫
Vi
ρ(x)‖x− xi‖2dx,

W = {wi}ni=1 is the weight defined at each site.

Another kind of relaxation technique,

called farthest point optimization (FPO), max-

imizes the minimal distance of a given point
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Fig. 4. An example of relaxation-based optimization [55]. From left to right: the results of increasing

number of iterations. The top row are the sampling results and the bottom row are the results of spectral

analysis.

set. The energy function of FPO is discrete and

can be optimized only by discrete optimization

method. The original FPO algorithm was pro-

posed by Schlömer et al. [11]. An equivalen-

t algorithm was proposed by Kanamori et al.

[56] which is based on Delaunay triangulation-

s.. They successively moved each point to the

farthest point (i.e., the Voronoi vertex farthest

from its immediate neighbors), by removing it

and reinserting it at the farthest point. Chen

and Gotsman [57] parallelized the FPO frame-

work of [11] via local Delaunay triangulation.

However, these two FPO approaches could han-

dle only 2D uniform sampling. By introducing

the regular triangulation and the power dia-

gram, Yan et al. [55] proposed two important

generalizations of the original FPO framework:

adaptive sampling and sampling on surfaces.

Fig. 4 shows an example of applying FPO to a

mesh surface.

Apart from the above two categories, there

are many other approaches that aim at high-

quality sampling based on relaxation tech-

niques. Öztireli et al. [58] solved the problem

of finding optimal sampling conditions based on

the spectral analysis of manifolds. Fattal [2] p-

resented an adaptive sampling algorithm based

on kernel density estimation. Chen et al. [59]

introduced bilateral blue-noise sampling that is

suitable for dense point set sub-sampling. Ebei-

da et al. [60] proposed an iterative optimization

method to improve blue-noise properties start-

ing from a Poisson-disk sampled point set.

3.2.3 Patch/Tile-based Sampling

Possion-disk sampling and relaxation-

based methods can generate high-quality point

sets, but the computational overhead can

become an issue for real-time applications.

Patch/Tile-based Sampling is able to generate
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large point sets in real-time while sacrificing the

sampling quality.

The core of a tile-based sampling method

is that one or more tiles are pre-computed and

then placed next to each other to form point

sets of arbitrary sizes. Hiller et al. [61] first

utilized Wang tiles to generate non-periodic

point sets with blue-noise properties. Lagae

and Dutré [62] extended Wang tiles to Poisson-

disk tiles aiming at the rapid generation of

Poisson-disk distributed point sets. A recursive

tile subdivision proposed by Kopf et al. [63] al-

so used Wang tiles to produce a higher level of

noise. However, Wang-tile approaches usual-

ly generate sampling artifacts becasue the low

count of prototiles and their placement on a

square lattice induce a grid of peaks in Fourier

spectra.

Ostromoukhov et al. [64] proposed to uti-

lize non-periodic Penrose tiling for generating

blue-noise patterns on 2D domains. They hier-

archically subdivided a Penrose tiling and used

the Fibonacci number system to label the sam-

pled point. This technique is well suited for

generation of non-uniform sampling patterns.

However, this method yields rather strong ar-

tifacts in the spectral domain. Ostromoukhov

then improved their work [64] for general fast

hierarchical importance sampling [65]. This ap-

proach is built on self-similar tiling of the plane

or the surface of a sphere with rectifiable poly-

ominoes, as opposed to Penrose tiling. Each

polyomino contains just one sample and it is re-

cursively subdivided until the desired local den-

sity of samples is reached. The exact position of

the sampling point within the polyomino is de-

termined by a pre-computed structural index.

However, these two approaches result in poor

Fourier spectra, as the single-sample tiles they

use exacerbate the presence of tiling structures

that are very simple or regular. Considering

the drawbacks of Wang tiles and single-sample

tiles, Wachtel et al. [66] proposed a new fast

tile-based method for adaptive 2D sampling.

At its heart is an adaptive non-periodic tiling

with a deterministic, hierarchical construction

of self-similar, equal-areal, tri-hex tiles. Then

an offline computation of a lookup table of opti-

mized (spectrally controlled) point sets is used

to populate the tiles.

Kalantari et al. [67, 68] proposed other ef-

ficient methods for fast generation of a large

number of blue-noise samples. Their main idea

was to generate an initial set of Poisson-disk

samples first using any existing approach, and

then replicate this set at various locations in

the final space using the convolution theorem.

This method is very fast, but its blue-noise

properties are not as good as the previously

mentioned Poisson-disk sampling methods s-
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ince it is approximate.

3.2.4 Other approaches

There are several other approaches that

cannot be classified by the categories discussed

above. For example, Zhou et al. [69] and Heck

et al. [70] studied the relationships between s-

patial statistics and spectral properties of point

distributions, and they proposed efficient meth-

ods to generate point sets that match the giv-

en spectra. Mitchell et al. [71] generated a

blue-noise quad-mesh using two-color Poisson-

disk sampling. Beyond the point dart, high-

dimensional darts were also investigated for

blue-noise sampling [72, 73, 74, 17]. Other sam-

pling methods focused on anisotropic sampling

instead of isotropic sampling [75, 76, 77]. We

do not discuss the details of these approaches

here because they are out of the scope of this

paper.

3.3 Evaluation

Different sampling algorithms result in

point distributions that have different char-

acteristics. Hence, how to choose the right

method for a given application is very impor-

tant. So far, there are mainly two methodolo-

gies for evaluating the quality of samples: spec-

tral properties and geometric analysis.

Spectral evaluation. Spectral analysis is a

common method for evaluating the quality of

point distributions and has been demonstrat-

ed to be effective in detecting sampling arti-

facts. The first technique was introduced by

Ulichney [78] to study dither patterns. They

estimated the power spectrum by averaging

the periodogram of distributions, determined

by Fourier transforms. Then, two useful one-

dimensional statistics from the power spec-

trum were derived from the power spectrum.

The first is the radially averaged power spec-

trum, in which the typical blue-noise charac-

teristic should start in a sharp transition re-

gion, with a low-frequency cutoff and a flat-

ter, high-frequency region. The second one is

Anisotropy, that measures the radial symme-

try of the power spectrum. This tool was used

by [6] to compare different methods for gener-

ating Poisson-disk distributions. Schlömer et

al. [79] extended the work of [78] and [6] to in-

vestigate accuracy issues regarding the spectral

analysis of 2D point sets. In addition, [80] and

[81] proposed approaches to analyze the qual-

ity of samples. The former was based on the

statistical measure Pair Correlation Function

(PCF), while the later utilized the amplitude

and variance of the sampling spectrum.

The evaluation of blue-noise sampling on

surfaces is difficult since a typical Fourier anal-

ysis cannot be directly used. Bowers et al. [30]
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Fig. 5. Comparison of recent 2D blue-noise sampling algorithms, including CVT [44, 53], CCVT [48],

CapCVT [52], BNOT [54], MPS [25], and FPO [11]. From top to bottom: distributions of 1024 points

in a periodic square, Voronoi cells (each cell is color-coded by its degree: green is valence 6, orange is

valence 7, light blue is valence 5, dark blue is valence 4 and brown is valence larger than 7), Delaunay tri-

angulation (triangles with the minimal angle less than 30◦ is shown in dark gray and the obtuse triangles

are shown in red), the power spectrum, radial means and anisotropy.

first proposed a spectral analysis method for

surface sampling, but it could only be used

for analyzing uniform sampling. Wei and

Wang [82] introduced the Differential Domain
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Method δX Qmin Qavg θmin θ̄min θmax θ<30o% θ>90o% V567%

CVT 0.793 0.643 0.932 38.97 54.37 98.28 0 0.19 100

CCVT 0.778 0.518 0.832 28.82 47.13 113.26 0.05 8.74 98.54

CapCVT 0.741 0.512 0.847 28.67 48.44 116.83 0.17 6.81 99.91

BNOT 0.766 0.570 0.848 31.67 48.23 107.08 0 6.34 99.02

MPS 0.781 0.487 0.806 30.19 45.30 117.11 0 15.07 96.53

FPO 0.925 0.567 0.856 35.12 50.90 107.51 0 6.50 99.61

Table 1. Statistics of 2D sampling and meshing qualities.

Model Method |X| Qmin Qavg θmin θ̄min θmax θ<30o% θ>90o% V567% dRMS(× 10−3) dH(×10−2)

Venus

MPS 3.0K 0.67 0.85 32.7 48.6 90.0 0 0 100 0.67 0.68

FPO 3.0K 0.57 0.85 34.2 50.8 107.1 0 6.29 99.7 0.64 0.71

CapCVT 3.0K 0.39 0.78 20.5 43.3 128.9 4.41 17.7 98.8 0.68 0.61

CVT 3.0K 0.65 0.93 39.5 54.5 97.3 0 0.25 100 0.76 0.59

Bunny

MPS 8.3K 0.40 0.83 33.9 53.9 103.0 0 0.29 100 0.47 0.34

FPO 8.0K 0.39 0.84 22.6 48.7 128.5 0.56 0.29 98.0 0.45 0.34

CapCVT 8.0K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.43 0.24

CVT 8.0K 0.64 0.93 34.8 54.2 98.8 0 0.06 99.9 0.53 0.37

Table 2. Statistics of remeshing qualities.

Analysis (DDA) technique for analyzing the

spectral properties of non-uniformly sampled

point sets, as well as for surface sampling. With

this tool, it is possible to analyze the blue-noise

properties of various methods on surfaces.

Fig. 5 compares selected blue-noise sam-

pling algorithms by using the spectral analy-

sis tool PSA provided by Schlömer et al. [79].

Fig. 6 does the comparison on mesh surfaces

by applying the differential domain analysis of

Wei and Wang [82].

Geometric evaluation. Various spatial

quantities have been proposed to measure the

spatial distribution properties of samples. One

common choice is the relative radius, δX =

dmin/dmax, defined in [6, 79], where dmin is the

global minimum distance for any pair of points

in point set X and dmax is the theoretical-
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Fig. 6. Comparison of surface sampling and remeshing using CVT [42], CapCVT [52], MPS [25], F-

PO [55]. From left to right: sampling points, the power spectrum, radial means and anisotropy. For each

method, first image shows uniform sampling on the Venus mode with 1800 samples, and fourth image

from left shows adaptive sampling on the Bunny model with about 6300 samples.

ly largest minimum distance between any two

points (i.e., dmax =
√

(2/
√

3n)). Other spatial

measures used in recent meshing/remeshing pa-

pers are listed in Tables 1 and 2. The quality

of a triangle is measured by Qt = 6√
3

st
ptht

, where

st is the area of t, pt is the half-perimeter of t

and ht is the longest edge length of t [83]. Here,

Qmin andQavg are respectively the minimal and

average triangle quality; θmin and θmax are re-

spectively the minimal and maximal angle, and

θ̄min is the average of the minimal angles of all

triangles; θ<30o and θ>90o are the ratios of the

triangles with θmin smaller than 30o and with

θmax larger than 90o; V567 is the percentage of
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vertices with valences 5, 6 and 7; dH and dRMS

are the Hausdorff distance and the root mean

squared distance between the input mesh and

the remeshing result (divided by the diagonal

length of the input mesh bounding box), mea-

sured with the Metro tool [84].

4 Applications

In this section, we discuss several applica-

tions that can benefit from blue-noise sampling.

4.1 Rendering

Rendering algorithms typically face the

challenge of numerically computing high di-

mensional integrals. Most of the time, sam-

pling algorithms are used and therefore sam-

ple generation is a core problem in rendering.

Due to its low discrepancy and randomness,

blue-noise sampling has been exploited to im-

prove rendering quality and efficiency. Spencer

and Jones [85] applied blue-noise sampling to

caustics rendering powered by photon map-

ping. They presented a method that progres-

sively removes noise from photon maps, which

are view-independent. The resulting photon

distribution holds blue-noise properties, which

improve the rendering quality while avoiding

a huge amount of photons. Chen et al. [59]

further improved the blue-noise distribution of

the photons. The so-called /bilateral blue-

noise sampling0 method [59] considered not

only the photon positions, but also the photon

properties during relaxation, resulting in a bet-

ter quality both in smooth regions and sharp

features. A comparison of the rendering result-

s is shown in Fig. 7.

4.2 Image/Video Stippling

(a) Image stippling [54] (b) Video stippling [86]

Fig. 8. Blue-noise sampling for image and video

stippling.

Stippling is a kind of art form that uses

points to represent a drawing/painting. The

contrast of the image is controlled by using d-

ifferent densities of the point distribution in d-

ifferent regions. The distribution of the points

cannot be regular or there would be visual ar-

tifacts. Blue-noise sampling is well suited for

this application. Secord [87] first used a weight-

ed Voronoi diagram for image stippling. Then,

various techniques were proposed to improve

the quality of the stippling [88, 48, 2, 54, 52].

More recently, Ge et al. [86] used bilateral blue-

noise sampling [59] for video stippling. Fig. 8
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Fig. 7. A comparison of photon mapping results of different methods. (a) Unrelaxed result, (b)result of

[85], (c) result of [59], (d) reference 40x photons.

shows two recent examples of image and video

stippling.

4.3 Dynamic Sampling

We propose two new applications for dy-

namic sampling based on maximal Poisson-disk

sampling [25].

Plant growth simulation. We adapt a plan-

t growth simulation [4] to formulate it as an

adaptive Poisson-disk sampling problem [25].

Starting with a set of seeds (disks with mini-

mal radii), the radius of each plant (disk) in-

creases over time. Different species have vary-

ing growth speeds. The plants whose centers

are covered by others are removed due to in-

sufficient light. New gaps are created and filled

by new seeds repeatedly. Fig. 9 shows the sim-

ulation in different stages.

time = 0 time = 300 time = 600

time = 1200 time = 1800 time = 3000

Fig. 9. Plant simulation with Poisson-disk sam-

pling.
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frame=0

frame=10 frame=20

frame=40 frame=60 frame=148

last frame
�rst frame

Fig. 10. Dynamic point set with Poisson-disk sam-

pling.

Dynamic point set. We consider time vary-

ing blue-noise triangulations as another appli-

cation of dynamic sampling. We choose to rep-

resent the changes over time as a dynamical

system where the vertex positions are integrat-

ed according to a vector field. Fig. 10 (top)

shows an example. This application uses ef-

ficient operations for inserting, deleting, and

moving points as proposed in [25]. The spectral

analysis of the first and last frame, shows that

the blue-noise properties of the triangulation

are maintained over time (Fig. 10 (bottom)).

4.4 (Re)meshing

As another new application, we show here

that blue-noise sampling can be used directly

for high-quality surface remeshing and 2D/3D

mesh generation.

Surface remeshing. Recent work of Ebei-

da et al. [89, 90] showed that the triangulation

of a maximal Poisson-disk set has many ele-

gant geometric properties, such as the edge-

length bound, the angle bound, etc., which

coincide with the theoretical analysis of [91].

Yan and Wonka proposed to use MPS for blue-

noise surface remeshing [25]. Yan et al. [55]

further improved the blue-noise properties by

generalizing farthest point optimization for sur-

face remeshing. In this section, we com-

pare the remeshing quality of different blue-

noise sampling approaches, including CVT [42],

CapCVT [52], MPS [25], FPO [55]. Fig. 11 il-

lustrates the remeshing results of the different

approaches. The recent papers [25, 55] present

more details on the quality comparison between

the different methods.

2D/3D meshing. We slightly modified the

sampling framework for mesh generation. The

boundary of the input 2D polygon or the 3D

mesh is first sampled, and then the interior of

the domain is further sampled. Finally, the

samples are triangulated with respect to the

boundaries. The triangulation can be further

optimized using the randomized optimization

operators proposed by [25]. Fig. 12 and Fig. 13

show two examples of 2D and 3D blue-noise

mesh generation, respectively.
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[Input] [CVT] [CapCVT] [FPO] [MPS]

Fig. 11. Blue-noise surface remeshing. Top row: uniform remeshing. Bottom row: adaptive remeshing.

The result of CVT always has the best meshing quality but lacks blue-noise features, while the other

blue-noise remeshing methods are able to generate competitive results. The red triangles have angles

larger than 90◦, and the gray triangles hae angles smaller than 30◦.

Fig. 12. 2D meshing with blue-noise sampling [25].

The angle bounds of the triangles are [30◦, 120◦].
Fig. 13. 3D tetrahedral meshing with blue-noise

sampling. The dihedral angle bounds of the tetra-

hedra are [15.5◦, 156.8◦].



18 J. Comput. Sci. & Technol., Mon.. Year, ,

5 Conclusion and Future Work

This paper reviews recent works on blue-

noise sampling and related applications. In this

section, we briefly summarize these methods

and discuss several future research topics.

Poisson-disk sampling is the traditional al-

gorithm for blue-noise sampling and has been

studied extensively. Most previous approach-

es cannot guarantee all three sampling criteria,

especially the maximal sampling property, ex-

cept for the recent works of [24, 12, 25]. It has

been shown that the lack of maximal sampling

has a drastic influence on the meshing quality

[12, 25], an important aspect for applications

like physical simulations.

Relaxation-based methods are able to gen-

erate high-quality point distributions. These

methods are most suitable for applications like

stippling and remeshing. However, relaxation-

based methods are time consuming and not

suitable for real-time applications.

Tile-based approaches can generate large-

scale point sets in real time, but they sacri-

fice blue-noise properties, and it is not clear

whether this type of method can be used for

mesh generation. This is an interesting topic

for further study.

As shown in Section 4.4, CVT-based

remeshing generates meshes with the best

meshing quality, whereas other approaches re-

sult in meshes with better blue-noise character-

istics. The question of which applications need

the meshes with such blue-noise properties is

worth exploring in the future.
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[70] D. Heck, T. Schlömer, and O. Deussen,

“Blue noise sampling with controlled alias-



D.-M. Yan et al.: A Survey of Blue-Noise Sampling and Its Applications 25

ing,” ACM Trans. on Graphics, vol. 32,

no. 3, pp. 25:1–25:12, 2013.

[71] S. A. Mitchell, M. A. Mohammed, A. H.

Mahmoud, and M. S. Ebeida, “Delau-

nay quadrangulations by two-coloring ver-

tices,” in 23rd International Meshing

Roundtable, pp. 364–376, 2014.

[72] S. Tzeng, A. Patney, A. Davidson, M. S.

Ebeida, S. A. Mitchell, and J. D. Owen-

s, “High-quality parallel depth-of-field us-

ing line samples,” in the Fourth ACM

SIGGRAPH / Eurographics conference on

High-Performance Graphics, pp. 23–31,

2012.

[73] X. Sun, K. Zhou, J. Guo, G. Xie, J. Pan,

W. Wang, and B. Guo, “Line segmen-

t sampling with blue-noise properties,”

ACM Trans. on Graphics (Proc. SIG-

GRAPH), vol. 32, no. 4, pp. 127:1–127:14,

2013.

[74] M. S. Ebeida, A. Patney, S. A. Mitchel-

l, K. Dalbey, A. Davidson, and J. Owen-

s, “k-d darts: Sampling by k-dimensional

flat searches,” ACM Trans. on Graphics,

vol. 33, pp. 3:1–3:16, 2014.

[75] L. Feng, I. Hotz, B. Hamann, and K. I.

Joy, “Anisotropic noise samples,” IEEE

Trans. on Vis. and Comp. Graphics,

vol. 14, no. 2, pp. 342–354, 2008.

[76] H. Li, L.-Y. Wei, P. V. Sander, and C.-

W. Fu, “Anisotropic blue noise sampling,”

ACM Trans. on Graphics (Proc. SIG-

GRAPH Asia), vol. 29, no. 6, pp. 167:1–

167:12, 2010.

[77] J. Quinn, F. Langbein, Y.-K. Lai, and

R. Martin, “Generalized anisotropic strat-

ified surface sampling,” IEEE Trans. on

Vis. and Comp. Graphics, vol. 19, no. 7,

pp. 1143–1157, 2013.

[78] R. Ulichney, Digital Halftoning. MIT

Press, 1987.
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