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Efficient Triangulation of Poisson-disk Sampled Point Sets

Jianwei Guo · Dong-Ming Yan · Guanbo Bao · Weiming Dong ·
Xiaopeng Zhang · Peter Wonka

Abstract In this paper, we present a simple yet ef-

ficient algorithm for triangulating a 2D input domain

containing a Poisson-disk sampled point set. The pro-

posed algorithm combines a regular grid and a discrete

clustering approach to speedup the triangulation. More-

over, our triangulation algorithm is flexible and per-

forms well on more general point sets such as adap-

tive, non-maximal Poisson-disk sets. The experimental

results demonstrate that our algorithm is robust for

a wide range of input domains and achieves signifi-

cant performance improvement compared to the cur-

rent state-of-the-art approaches.

Keywords Triangulation · Poisson-disk sampling ·
Geometric algorithms

1 Introduction

Triangulation is the process of tessellating a given do-

main with triangles. Due to the different requirements

from various applications, many types of triangulation

techniques were studied during the last decades.
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Fig. 1 Our algorithm can triangulate a uniform (top) and
adaptive (bottom) Poisson-disk sampled point sets efficient-
ly. From top to bottom, and left to right: uniform maximal
Poisson-disk set, clustering result, and Delaunay triangula-
tion; adaptively sampled Poisson-disk set, clustering result,
and regular triangulation.

Among all of the triangulation techniques, Delau-

nay triangulation [5] has gained most attention since

the resulting mesh has many nice geometric properties.

There are a lot of mature algorithms or packages for

Delaunay (or regular) triangulation, such as CGAL [1],

qHull [2] and Triangle [23,24].

The Delaunay triangulation technique has been ex-

tensively studied and it is hard to improve. However, if

we assume a certain distribution of the input point set,
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there is still a room to design simpler or faster Delau-

nay triangulation algorithms. One type of well-spaced

point-sets that is often used is a Poisson-disk point set,

due to its application in rendering, geometry process-

ing, non-photorealistic rendering [26] and modeling [22].

In this paper, we study the triangulation of a Poisson-

disk sampled point set. We assume that the grid infor-

mation used for Poisson-disk sampling is also available.

We propose a simple algorithm which is based on a

discrete clustering of the grid cells. The input to our

algorithm can be a maximal or non-maximal, uniform

or adaptive Poisson-disk point set. A GPU implemen-

tation of the presented algorithm is also provided which

gains significant performance improvement. The main

contribution of our work is the speed and robustness

of the proposed algorithm. Our implementation work-

s well in practice as demonstrated by various exam-

ples and comparison to the state-of-the-art approaches.

Fig. 1 shows an example of our output.

1.1 Related work

In this section, we briefly review the most related work

in Poisson-disk sampling and Delaunay mesh genera-

tion. For more details, the readers are referred to [18]

for a comprehensive survey of Poisson-disk sampling

and the textbooks [5, 14] for (Delaunay) mesh genera-

tion.

Poisson-disk sampling: Cook [9] first proposes an al-

gorithm for Poisson-disk sampling, called dart-throwing.

However, it is known that the classic dart-throwing

based approaches are inefficient to achieve the maxi-

mal property. Therefore, one area of this research is

the acceleration of the generation of Poisson-disk point

sets, e.g., using Voronoi Diagrams [17] or scalloped sec-

tors [10].

White et al. [27] propose to use a regular grid to ac-

celerate the Poisson-disk sampling. The cell size of the

grid equals to r√
2
, such that each grid cell can at most

receive one disk with radius r, and the conflict checking

can be done efficiently in a 5 × 5 neighborhood. Dur-

ing the sampling process, the partially covered cells are

subdivided into smaller fragments in a quad-tree man-

ner. Gamito and Maddock [15] extend [27]’s algorithm

to higher dimensions. Wei [25] developed a parallel al-

gorithm for Poisson-disk sampling, which also uses the

above grid as the background data structure.

More recently, Ebeida et al. [13] propose a two-step

unbiased maximal Poisson-disk sampling (MPS) frame-

work that first uses the regular gird for initial sampling

and then uses convex polygons to trace and sample

the uncovered regions. The follow up work of Ebeida

et al. [12] further extends [27]’s algorithm by using a

flat array to store the uncovered cells instead of subdi-

viding each cell individually, which is much faster and

memory efficient. Yan and Wonka [28] generalize the

uniform MPS to various radii, both in Euclidean space

and on surface. In summary, most modern Poisson-disk

sampling algorithms use a regular grid as acceleration

data structure.

Delaunay mesh generation: Delaunay mesh gener-

ation techniques aim to triangulate a given domain by

provably good Delaunay meshes. The research of De-

launay mesh generation became popular since 1980s.

A huge amount work have been proposed [5, 14]. Since

Delaunay triangulation literature is quite vast, here we

only review the most related work to ours.

Recent work of Ebeida et al. [11] reveals that the

triangulation of uniform MPS exhibits many nice prop-

erties. If a sampled point set satisfies the maximal sam-

pling and minimal distance properties, the correspond-

ing Delaunay triangulation of such a point set satisfies

many nice geometric properties, e.g., the edge length

bound is [r, 2r] and the angle bound is [30o, 120o] [6].

Ebeida et al. [11] present a new algorithm for comput-

ing the conforming Delaunay triangulation [23] for a

Poisson-disk sampling point set. However, it is not clear

how to use this approach to triangulate non-maximal

or non-uniform Poisson-disk point sets.

To accelerate Delaunay mesh generation, several par-

allel algorithms have been studied [3, 7, 16, 20, 21]. The

work in [16] computes discrete Voronoi diagrams us-

ing graphics hardware. However, it does not contain an

algorithm to triangulate the discrete Voronoi diagram

in parallel. Rong et al. [21] present a smart method to

compute a 2D Delaunay triangulation also using hard-

ware. Its major limitation is that their algorithm is not

fully parallel and the stage that uses the CPU for trans-

formation can be very time-consuming. Qi et al. [20]

extend the work of [21] to make all the phases in par-

allel. Based on this, they propose the first GPU solution

to compute the 2D constrained Delaunay triangulation

(CDT) by introducing edge constraints. While related

to this work [20], our algorithm is simpler and more

efficient in the case of Poisson-disk sampling. The uni-

form grid we used is adaptively defined by the minimal

sampling radius, so that it can handle all the samples

at once. As a result, we can avoid the shifting and in-

serting operations which are the major steps in [20].

Detailed comparison will be given in the experimental

section.
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Fig. 2 Left: detecting corners and inserting random samples
on the boundary. Right: MPS.

1.2 Overview

In this paper, we present a simple algorithm to trian-

gulate a given 2D domain containing a Poisson-disk

sampled point set. In the following, we first present

the triangulation algorithm on the CPU for uniform-

ly/adaptively sampled Poisson-disk sets in Section 2

and Section 3, respectively. Then we present an efficien-

t GPU implementation in Section 4. The experimental

results are shown in Section 5.

2 Triangulation Algorithm

The input of our algorithm is a 2D domain D and a

set of Poisson-disk sampled points (xi, r) (where r is

the sampling radius). The 2D domain is represented by

a simple polygon, with or without holes. We assume

that the distance between any two vertices of the in-

put polygon is larger than the sampling radius. The

output is a triangulation that is confined to the input

domain. In the following, we first describe the algorithm

for maximal Poisson-disk sampling based on a regular

grid. Then we introduce our triangulation algorithm.

2.1 Poisson-disk sampling

Any existing algorithm for Poisson-disk sampling can

be used to generate the input point set. Ebeida et al. [12]

present a simple algorithm for unbiased maximal Poisson-

disk sampling. An implicit quadtree data structure (based

on a uniform grid) is used for this purpose. In our frame-

work, we use this algorithm for the purpose of Poisson-

disk sampling. Note that in our algorithm, the Poisson-

disk point set is not required to be maximal.

A uniform grid G is first built to accelerate the sam-

pling. The size of each cell is equal to r√
2
, which ensures

that each grid cell can contain at most one sampling

point. Each grid cell is equipped with a flag ’occupied’

to indicate whether the cell contains a sample point.

Fig. 3 Left: Clustering of the boundary cells. Right: Clus-
tering of the interior grid cells.

The flag is initialized as ’false’. The grid cells are clas-

sified into three types: interior cells, boundary cells, and

exterior cells. Only boundary and interior cells will be

used for sampling.

Preprocessing: To preserve the domain boundaries,

we first perform a preprocessing step to sample the do-

main boundary, and then sample the interior of D.

We first detect sharp corners of the input boundary

and insert them into the sampling set directly. If the

angle between two edges is smaller than a threshold

(we set it to 160o), we mark the corresponding vertex

as a sharp corner and the vertex is inserted in the disk

set. Then we perform a 1D MPS on the boundary. Fur-

thermore, to prevent generating samples that are too

close to the boundary, which would result in triangles

with unbounded small or large angles, we apply edge

length optimization to ensure that the boundary disks
are deeply intersected [4]. To do that, we iteratively de-

tect and remove the sample vertices of the long edges,

and re-sample the boundary until all edges are shorter

than a value (e.g.,
√
3
2 (r1+r2), where r1, r2 are the sam-

pling radius of the vertices of the edge). This method

can handle most of the input boundaries except in a

very few cases. Think two sharp feature vertices on the

boundary which have a distance 2r−ε, the edge between

them is long but we cannot insert any other sample be-

tween these two vertices so that it may lead to inner

samples very close to the boundary or inner samples

in boundary cells. In such case, we use the technique

of protecting with interior-disks introduced by [11] to

overcome this problem.

All the boundary samples remain fixed during the

later sampling process. The result of boundary sam-

pling is shown in the left of Fig. 2. Finally, we perform

the (maximal) Poisson-disk sampling in the interior of

the input domain (Fig. 2 right).
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2.2 Grid cells clustering

Once the sampling is finished, the flags of the grid cells

that contain a sample point are marked as ’true’. For

all the unoccupied cells, we perform a simple clustering

to build a discrete Voronoi diagram.

Boundary clustering: After the stage of boundary

sampling, the input boundary has been subdivided into

many short edges. We cluster the boundary cells using

a clustering algorithm, as shown in the left of Fig. 3,

so that for any two consecutive points, there will be an

edge between them. We mark these boundary cells as

locked in order to avoid clustering them again in the

later steps.

Interior clustering: Next we cluster the grid cells into

groups which are associated with the sample points in-

side the domain, as shown in Fig. 3(right). In this paper,

we apply the variational approximation method [8] ac-

companied with a priority queue to cluster the 2D grid

cells by using the Euclidean distance between sample

points and cell centers as key for the priority queue.

The least distance has the highest priority. One grid cell

indexed by (u, v) is represented as Cu,v in our paper,

and we define its four adjacent cells as those that are

indexed by (u−1, v), (u, v+1), (u+1, v) and (u, v−1).

First, we collect the grid cells containing sample points

as the initial seeds. There is a one-to-one correspon-

dence relationship between each seed cell and the sam-

ple point in it. Then for each seed cell Cu,v, we insert its

four adjacent cells Cu′ ,v′ (if they are valid) in the global

priority queue, with a priority equal to the Euclidean

distance between the sample point in Cu,v and the cen-

ter point of Cu′ ,v′ . When inserting, we also assign the

candidate label (u, v) to Cu′ ,v′ as they are being tested

against. The region growing process is then performed

by repeatedly popping cells with the least distance un-

til the priority queue becomes empty. For each popped

cell, there are two cases we should consider: If the cell

has been assigned to a sample point, we do nothing and

pop another cell from the queue; otherwise, we assign

the cell to the sample point indicated by the current

candidate label, and push its adjacent and unlabeled

cells into the queue with the same label. Finally, we get

the clustering result when the queue becomes empty.

2.3 Triangulation

Based on the observation that the clustered cells can

be seen as a kind of coarse approximate Voronoi di-

agram (VD) [16, 20], we propose an efficient method

to triangulate the sample points. We classify each cell

according to the number of different clusters being in-

cident to its lower left hand corner. As shown in Fig. 4,

a
p

(a) 1-case

a

b

p

(b) 2-case

p

a

b

c

(c) 3-case

p
a

b

c

d
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Fig. 4 Illustration of the four different corner cases and the
extracted triangulation for the 3-case and 4-case.

there are 4 cases: 1-case, 2-case, 3-case and 4-case. In

the shown 2-case for example, for the corner p presented

by a small red square in the figure, has two neighboring

clusters which are associated with sample point a and b

respectively. For the 3-case and 4-case, we can generate

triangles in a very natural manner.

3-case: The cell corner p has three neighboring re-

gions due to sample points a, b, and c. In this case, we

generate a triangle 4abc directly. See Fig. 4(c) for an

example.

4-case: In this case, we can generate two triangles.

For example, see Fig. 4(d), we can generate triangles

4bcd and 4dab, or triangles 4abc and 4cda. We per-

form a Delaunay check to verify which of the triangles

are valid. Assume that we first try the triangles 4bcd
and 4dab, and if point a is located outside the circum-

circle of 4bcd, then 4bcd and 4dab are valid. Other-

wise, 4abc and 4cda are valid triangles.

Although we perform a Delaunay check in the 4-

case triangulation, there are still some non-Delaunay

triangles which are caused by the 3-case triangulation

or the concatenation between these two kinds of tri-

angulation (see Fig. 5(left)). Fortunately, according to

our statistics, the Delaunay triangles dominate 90% to

95% in the initial triangulation. In the last step, we use

the empty circle property of each edge to detect the

non-Delaunay edges. For an edge ab of a triangle 4abc,
if the point d of the adjacent triangle 4adb is located

inside the circumcircle of 4abc, we call edge ab as a



Efficient Triangulation of Poisson-disk Sampled Point Sets 5

Fig. 5 Left: A dual mesh is extracted from the clustering
result. A large number (93.5%) of triangles are already De-
launay. The non-Delanuay triangles are marked as red. Right:
Edge flips are applied to make the triangulation Delaunay.

non-Delaunay edge. Then an edge flipping operation is

performed on each non-Delaunay edge. The final result

is shown in Fig. 5(right). We provide a formal proof of

the correctness of our triangulation algorithm in Ap-

pendix A.

(a) (b)

(c) (d)

Fig. 6 Triangulation algorithm pipeline for an adaptively
sampled Poisson-disk set. (a) Poisson-disk sampling. (b) Clus-
tering. (c) Initial triangulation. (d) Delaunay triangulation
after edge flips.

3 Triangulation of Adaptive Sampling

Our algorithm can be easily extended to adaptively

sampled Poisson-disk sets. The triangulation then be-

comes a regular (or weighted Delaunay) triangulation

ACD

B

A

B

Fig. 7 Local result of a GPU based triangulation without
the post-processing operation. Left: Cells B and A are in
one cluster but they are not connected. Right: This would
generate intersecting triangles in the triangulation step.

instead of a Delaunay triangulation. Fig. 6 shows that

the steps of computing a regular triangulation are the

same as those in computing uniform triangulation, ex-

cept for some differences in the details.

In the sampling step, we follow the definition of [28]

for adaptive Poisson-disk sampling. As a result, we gen-

erate a set of weighted points PW = {pi, wi}ni=1, where

wi = r2i is the weight of a point, and ri is the radius of it-

s disk. Each grid cell records the indices of samples that

fully cover it. In the clustering step, we just replace the

Euclidean distance by the power of two weighted points

(Eqn. 1). Furthermore, we improve the performance of

this step greatly by reducing the number of cells that

will be pushed into the global priority queue. For each

grid cell Cu,v, if it is fully covered by only one sample

pi, then we directly assign the cluster of pi to Cu,v and

don’t insert this cell in the priority queue any more; if

Cu,v is fully covered by two samples, then we mark it

according to the sample with the least power distance;

otherwise, this cell can be inserted into the queue.

Π(pi, pj , wi, wj) = ‖pi − pj‖2 − wi − wj (1)

Finally, we use the regular property (which just re-

duces to the Delaunay property when all the weights are

null) to check whether a pair of neighboring faces pipjpk
and pipjpl is locally regular. See the reference manu-

al of [1] for the power test of points (pi, wi), (pj , wj),

(pk, wk) and (pl, wl). If they are not locally regular, then

we perform an edge flip, see Fig. 6.

4 GPU Implementation

We designed a GPU version of our algorithm. The ran-

dom points are generated using the parallel algorithm

presented in [12]. For the triangulation and edge flip-

ping operations, the parallel versions can be implement-

ed directly by launching one kernel to deal with one

corner or one edge, and the time cost for each kernel is

constant. For the clustering step, the method using the
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Fig. 8 A gallery of meshing results of uniformly (top row) and adaptively (bottom row) sampled Poisson-disk point sets.

priority queue is difficult to be fully parallel. In order

to cluster the cells in parallel, we modify the clustering

method slightly.

We maintain a global minimal distance value (ini-

tially set to be infinite) for each grid cell and launch one

kernel for each sample point. Then we apply a flood fill

algorithm, which is similar to the clustering algorithm

in Section 2. From each grid cell Cu,v which has a sam-

ple p in it, we detect the distance between this sample

p and each center of its adjacent cell Cu′ ,v′ . If this dis-

tance is smaller than the minimal distance of Cu′ ,v′ , we

insert Cu′ ,v′ in a queue and assign label (u, v) to it. The

minimal distance of Cu′ ,v′ is also updated. The flood fill

process is then performed by repeatedly popping cells

until the queue becomes empty. For each popped cell,

we compute the distance between its adjacent cells and

the sample p to detect whether we should insert its ad-

jacent cells in the queue. However, using this method

may produce some wrong clusters, even though the pos-

sibility is very small (lower than 0.1% according to our

statistics). As shown in Fig. 7, it may happen that cell

C is first assigned to the sample point in A, because

A’s thread might be executed before D’s. Then cell B

may be also added to A’s cluster. Later, D’s thread is

executed and it decides that C is actually closer to D,

and removes it from A’s cluster. Note that B’s label is

not changed here because it is closer to A than to D. As

a result, cell B is isolated from A and this will generate

intersecting triangles. To solve this problem, we perfor-

m a post-processing operation. For each isolated cell,

we recompute the distances between this cell and the

sample points indicated by its four adjacent cells. Then

we mark the cluster of this cell according to the clos-

est sample point. If there are two or more such points,

we choose the one with the smallest index. The post-

processing operation leads to each Voronoi region being

connected. As discussed in Appendix A, it guarantees

a complete triangular mesh. Additionally, the cluster-

ing and post-processing operations are all performed in

parallel.

Another issue we should consider

is that there may be two edges in

one triangle that are all non-Delaunay,

although they are quite rare. Our

Poisson-disk distribution properties

prevent more than 5 samples to be

concyclic (or nearly so), but 5 nearly concyclic samples

can happen. Imprecisions due to the approximations

could lead the center triangle of the pentagon to have

two non-Delaunay edges (see the blue edges in the em-

bedded figure). In this case, a naive parallel program

which uses a single pass of edge flipping could generate

intersecting triangles, and it is also insufficient to ensure

that all the edges in the final triangulation are Delau-

nay. In our parallel implementation, we use the atomic

operations in CUDA to ensure that we only flip one

edge and keep track of the other edge that potential-

ly might require further flipping. Then we use a second

pass (or even more passes) to check these potential non-

Delaunay edges and flip them if necessary. Since this

case happens rarely, it has little impact on the speed.
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5 Experimental Results

In this section, we first show that our algorithm can ef-

ficiently triangulate the input domain with a uniform-

ly/adaptively sampled maximal/non-maximal Poisson-

disk set. Then the performance of our method is com-

pared with the current state-of-the-art approaches. We

do not consider the time for the Poisson-disk sampling

in the results and we assume that the point set including

the grid information and occupancy lists are provided

as input to the triangulation stage. All the experimen-

tal results in this paper are conducted on a PC with

an Intel i7-3770, 3.40 GHz CPU, 16GB memory and an

Nvidia GeForce GTX 770 graphics card.

5.1 Triangulation results

We have tested our algorithm on various data sets as

shown in the additional materials. Most of the models

are from the Repository of Yanyan Lu [19]. We veri-

fied the correctness of our output by comparing with

the results of CGAL [1]. Selected meshing results are

shown in Fig. 8. We also show the triangulation results

of two image stippling point sets, see Fig. 9. Another

application is the generation of adaptively triangulated

terrains. Given a height map, we can generate a cor-

responding 3D mesh (Fig. 10), by using the smoothed

gradient magnitude as density function.

5.2 Performance

In this section, we evaluate the performance of our pre-
sented algorithm. Using the serial code, we triangulated

1.17M points/s on the uniform Poisson-disk sets and

0.72M points/s on the adaptive Poisson-disk sets. Fur-

thermore, to show that the differences (such as convex

or non-convex, with or without holes, etc.) of input do-

mains have little effect on the running time, we tested

our algorithm on the domains of a unit square, Dol-

phin (Fig. 6) and Snake (Fig. 8) containing adaptively

sampled point sets. It took 0.17s, 0.20s and 0.19s re-

spectively to triangulate 130K points.

GPU performance: We ran our GPU code using a

64-bit Windows 7 operating system. Visual Studio 2010

and CUDA 5.0 Toolkit are used to compile the program.

Our algorithm can proceed in a highly parallel manner:

in the clustering stage, each thread deals with one sam-

ple point; in the triangulation stage, each thread deals

with one bottom left corner of grid cell; and in the edge

flipping stage, each thread deals with one edge of the

triangulation. Using an Nvidia GeForce GTX 770, our

fully parallel algorithm triangulated 5.8M points using

Fig. 9 Triangulation of two image stippling results.

Fig. 10 Illustration of a 3D terrain mesh generation. From
left to right and top to bottom: input height map, 2D trian-
gulation result, 3D mesh and the rendered result.

0.49s (about 11.8M points/s) on the uniform Poisson-

disk sets, which is a little over 10× speedup over our

serial code. In the regular triangulation, since the un-

derlying grid is much finer and has more cells for the

same number of points, our parallel method took 0.41s

to triangulate 2.5M points (about 6M points/s). Due

to the GPU memory constraints and code overhead for

testing and debugging, our parallel algorithm can tri-
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angulate about 6 million uniformly sampled points and

2.5 million adaptively sampled points. It is possible to

optimize our implementation to reduce the memory us-

age.

5.3 Comparison

The proposed algorithm can be applied to either a max-

imal or a near maximal Poisson-disk set, while Ebeida

et al. [11] can only handle maximal point sets. We first

compare our approach with previous work [1,11,20,24]

with uniform sampling radii. Then, we compare the per-

formance of computing regular triangulation to that of

CGAL version 4.1.

Comparison on uniform triangulation: To the best

of our knowledge, Ebeida et al. [11] were the first to

present a conforming Delaunay triangulation algorithm

based on uniform Poisson-disk sampling. Triangle [23,

24] and CGAL are the most popular and fastest al-

gorithms for Delaunay triangulation. In order to com-

pare with these algorithms, we generate samples in the

unit square with periodic boundaries. We implement-

ed our method, CGAL and Ebeida et al.’s method in

C++ and compiled them under 64-bit Linux. The C

code for Triangle is also complied under Linux. Fig-

ure 11(a) shows the runtime comparison of the different

algorithms. As illustrated in this figure, Ebeida et al.’s

method is better than Triangle, but they are very close.

Our method achieves 2 to 3 times speedup over Ebeida

et al.’s method. On average, we triangulate 2.8M (r =

0.0005) points in 2.4s (about 1.17M points/s), while

Ebeida’s takes 6.1s (about 0.46M points/s). Compared

with CGAL (in which we provided all the samples at

once, and exact predicates were not used), our serial

implementation is also nearly 2 times faster than it.

Next, we compared with the current state-of-the-

art GPU Delaunay triangultions [11, 20], as shown in

Fig. 11(b). To get a fair comparison, the running time

of ours and Ebeida et al.’s method contains the time

for building the uniform grid. We re-implemented the

GPU version of Ebeida et al. [11], and downloaded the

software GPUDT [20] for comparison. From this figure,

we can see that Ebeida et al.’s GPU algorithm is about

7 times slower than our method. That’s because their

GPU algorithm is not fully parallel. In their algorithm,

each thread deals with a 4 × 4 grid of center cells se-

quentially, and this degrades the performance. For the

GPUDT, the generated Poisson-disk points are used as

their input and the number of constraints is set to 0.

We also chose double precision and enabled computa-

tional capability 3.0 by using the switch -sm 30. Com-

pared with GPUDT, we combine the usage of a uniform

grid and the good distribution of Poisson-disk sampling

points to speedup the triangulation. For different num-

ber of points, we achieve about 3.5 to 4 times speedup

over GPUDT. In addition to this, given an adaptive-

ly sampled point set with varying radii, the GPUDT

is only applicable to compute Delaunay triangulation,

while our approach can generate regular triangulation.

Furthermore, in Ebeida et al.’s algorithm, they con-

struct the CDT-star based on the locality (a 7×7 tem-

plate of cells with corners removed) determined by the

background grid and the bounded edge lengths. As a re-

sult, their algorithm is only applicable to uniform maxi-

mal Poisson-disk sampling. Instead, our proposed algo-

rithm clusters the grid cells independent of localization

and extracts the triangulation directly from the clus-

tered cells. Therefore, it also works when the Poisson-

disk sampling is not maximal.

Fig. 12 Triangulation of a non-maximal Poisson-disk set.

Comparison to regular triangulation: Finally, we

compared our regular triangulation algorithm to CGAL.

While there are some similarities between regular tri-

angulation and Delaunay triangulation, it is not easily

possible to extend Triangle to handle regular triangu-

lations.

To compare the performance of our algorithm with

that of CGAL, we tested them on the Poisson-disk sets

with varying radii. Note that there are two implemen-

tations in CGAL: providing all the samples at once (we

call it as CGAL RT1) and inserting samples one by one

(CGAL RT2). The former can be speeded up by using

spatial sorting and hierarchy data structure. We tested

and compared with both of these cases, where we chose

the “Exact predicates inexact constructions kernel” and

double precision. As shown in Fig. 11(c), we have in-

deed the fastest algorithm. The performances of our

serial algorithm are 2 times and 4.5 times better than

those of CGAL RT1 and CGAL RT2, respectively. Fi-

nally it is also worth pointing out that, our GPU im-

plementation remains much faster, which can achieve

significant speedup over CGAL RT1, of up to an order

of magnitude.
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Fig. 11 (a) Comparison of our serial triangulation algorithm with CGAL [1], Triangle [23] and Ebeida et al. [11]’s method.
We generate the uniform sampling sets in a unit square. Here Our GPU algorithm is used for ground truth. (b) Comparison of
our GPU algorithm with previous GPU approaches [11,20], where the time for building the uniform grid is considered in ours
and Ebeida et al. [11]’s method. We also test these algorithms using a unit square as input. (c) Comparison of our algorithm
with CGAL for triangulating Poisson-disk point sets with varying radii. The point sets are sampled in the Dolphin domain
shown in Fig. 6.

6 Conclusions and Future Work

In this paper we have presented a simple algorithm for

triangulating a 2D input domain containing a Poisson-

disk sampled point set. The proposed algorithm uti-

lizes the grid information used for Poisson-disk sam-

pling which greatly improves the efficiency of the trian-

gulation compared with previous approaches. One cur-

rent limitation of our algorithm is that we cannot deal

with the very thin features of the boundary if two in-

put edges are too close. In such a case, the disks of

samples on one input edge may intersect another input

edge, and this will generate triangles across the bound-

ary. We would like to address this issue in our future

work. In addition, we plan to generalize our approach

to surface and volumetric mesh generation.
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A Proof of Correctness

In this appendix, we prove that our triangulation algorithm
correctly computes a complete triangular mesh. Here the col-
lection of the cells that belong to one sample p is called the
Voronoi region of p.

Property 1. Each Voronoi region generated by grid cell
clustering is connected and any two regions are non-overlapping.

Proof. In the clustering step, we adopt a propagation al-
gorithm equipped with a priority queue on the grid to ap-
proximate the Voronoi regions. Each time we choose a grid
cell that has the highest priority and assign the label of its
nearest sample to it. Note that each grid cell is connected to
a neighbor cell having the same label, which is in turn in-
ductively connected to its nearest sample. In addition, each
grid cell will be assigned only once and never changes its la-
bel. As a result, the propagation algorithm ensures that each
Voronoi region is singly connected and any two regions are
not overlapping.

a b

c

d

e

f

a b

c
e

f

a
b

c
f

(a) (b) (c)

Fig. 1: (a) and (b) are the two configurations of the

intersection of triangles. (c) The local Voronoi regions

corresponding to the intersecting case in (b).

Property 2. No two triangles in the triangulation inter-
sect each other.

Proof. Suppose that a triangle 4abc crosses another tri-
angle 4def . There are two configurations of the intersection:
the two triangles do not share common vertices (Fig. 1(a))
and share common vertices (Fig. 1(b), we take the 1 common
vertex as example, the proof for the other cases is straight-
forward). The former configuration is impossible; otherwise,
the Voronoi region of d must connect to the Voronoi region-
s of a, b and c, and this will generate triangles 4abd and
4adc instead of 4abc. The latter configuration happens only
if some Voronoi regions are not connected, such as the green
cells shown in Fig. 1(c). This contradicts the fact that all
the Voronoi regions are connected (Property 1). Thus no two
triangles in the triangulation intersect each other.

Property 3. The union of all triangles fully covers the
input domain. In other words, there are no holes in the tri-
angulation.

Proof. Firstly, our boundary sampling and clustering step-
s guarantee that for any two consecutive points on the bound-
ary there will be an edge between them. This ensures the
output triangulation is tightly confined to the input domain.

Next, we demonstrate any holes in the interior of the do-
main will be filled by triangles. Before that, we note all the
grid cells have been assigned a label (Property 1). Now sup-
pose there exists a hole, which is a polygon consisting of three
or more vertices. We consider the Voronoi regions of any three
consecutive vertices a, b, c in counterclockwise order. There
are only two cases. First, if the three Voronoi regions connec-
t to each other, then our algorithm will generate a triangle

4abc and the hole shrinks to a smaller one. Second, if the
Voronoi regions of a and c are not adjacent, but they both
connect to that of b, then there must be another vertex d
whose Voronoi region connects to all of the three Voronoi re-
gions. In such a case, it will generate two triangles 4abd and
4bcd and the hole also shrinks to a smaller one. As such, the
hole becomes smaller and smaller by repeatedly processing
like this, and finally it will disappear.

B Input Domains

Fig. 2: Input domains we used to test our algorithm.
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