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Figure 1. SVDTree for single image tree reconstruction. Given a masked image, we use a diffusion model to automatically infer a semantic
voxel structure of the tree, which guides a hybrid geometry reconstruction algorithm to produce a 3D tree with high visual fidelity.

Abstract

Efficiently representing and reconstructing the 3D ge-
ometry of biological trees remains a challenging problem
in computer vision and graphics. We propose a novel ap-
proach for generating realistic tree models from single-
view photographs. We cast the 3D information inference
problem to a semantic voxel diffusion process, which con-
verts an input image of a tree to a novel Semantic Voxel
Structure (SVS) in 3D space. The SVS encodes the ge-
ometric appearance and semantic structural information
(e.g., classifying trunks, branches, and leaves), which re-
tains the intricate internal tree features. Tailored to the SVS,
we present SVDTree a new hybrid tree modeling approach
by combining structure-oriented branch reconstruction and
self-organization-based foliage reconstruction. We validate
SVDTree by using images from both synthetic and real trees.
The comparison results show that our approach can better
preserve tree details and achieve more realistic and accu-
rate reconstruction results than previous methods.

1. Introduction
Vegetation is an indispensable part of natural and urban
scenes. However, capturing the vegetation is a complex task
that is dominated by procedural models [46, 48, 52, 66]. Re-
cently, plant reconstruction methods have seen a significant
improvement and have found applications in areas such as
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plant geometry and topology for vision-assisted plant phe-
notyping [19, 37], forestry [24] or counting [44].

Research on 3D tree model acquisition has received con-
siderable attention for decades, but accurately reconstruct-
ing trees is still challenging because of the tree’s topologi-
cal and geometric complexity. Previous works often sepa-
rate the branch and foliage reconstruction, by first to recon-
structing high-level branching structures from sensor data
and then modeling the foliage by synthesizing twigs and
leaves using a procedural model. For example, reconstruc-
tion from LiDAR point clouds achieves faithful skeletal
branches using graph-based methods [32, 63], while the fo-
liage can be approximated as 3D envelopes for populating
geometry details with predefined rules [33]. The 2D skele-
tons can be efficiently estimated and fused into a 3D branch-
ing structure from multi-view photographs [22, 34, 57].
However, scans often generate incomplete point clouds due
to occlusion [3]. Furthermore, image matching and registra-
tion from multiple images do not perform robustly on trees
with complexity, translucency, and self-occlusions, leading
to an unsatisfying point cloud with large reconstruction er-
rors. Moreover, multiple views are not always available,
making the single-view reconstruction often a more flexi-
ble and cost-effective solution to generate 3D tree models,
especially on a large scale [2].

We introduce the SVDTree framework that reconstructs
high-fidelity trees from single-image photographs. Our ap-
proach is motivated by the record-breaking performance
of diffusion models in many digital content generation
tasks [64]. We formulate the estimation problem as a se-
mantic voxel diffusion process to recover 3D information



from a single image. Specifically, we utilize the diffusion
model to convert an input image of a tree to a Semantic
Voxel Structure (SVS), in which each voxel encodes the ge-
ometric and semantic information of the tree by detailing
the tree trunk, branches, and leaves. The SVS representa-
tion accurately captures the overall geometric tree appear-
ance, and it retains the intricate internal features by encod-
ing the semantic structural information. Moreover, it allows
us to infer hidden branches that are not visible in the input
images to faithfully reconstruct the complete shapes.

We develop a new hybrid tree geometry construction ap-
proach tailored to the SVS data structure. Guided by struc-
tural information within the SVS, we introduce a structure-
oriented branch reconstruction approach and then com-
bine it with the self-organization-based foliage reconstruc-
tion [46] to reconstruct the final geometric model. We vali-
date our approach on both synthetic images and in-the-wild
real images and also show that our diffusion model can be
trained efficiently on a library of synthetic 3D tree mod-
els. Compared with previous methods that predict depth
maps via cGAN [31] or learn fixed-size 3D bounding vol-
umes [26], our approach does not rely on prior knowledge
of the tree species and provides more detailed tree structure.
In summary, we make the following contributions:
1. We introduce a novel structured voxel representation of

trees in 3D space to encode the structural information of
trunks, branches, and leaves, thereby expressing detailed
features such as the trunk’s primary topology and the fo-
liage’s spatial morphology.

2. We propose a semantic voxel diffusion model to faith-
fully generate 3D tree structures from single pho-
tographs. We show its benefits in recovering more com-
plete and detailed reconstructions.

3. We develop a novel tree geometry construction algo-
rithm based on a hybrid modeling approach (combin-
ing structure-oriented branch reconstruction and self-
organization-based foliage reconstruction), which is spe-
cially designed for our customized data representation.

2. Related work
3D tree geometry reconstruction. Tree reconstruction
generates models from real-world sensor data. Previous
methods aimed at the reconstruction of 3D tree skeletons
can be classified into three categories: (1) procedural re-
construction, where input data is used to guide the tree
modeling (e.g., rule-based [18, 60] or particle-flow mod-
eling [42]) based on a significant set of geometric pa-
rameters, (2) geometry-based extraction, which estimates
the branching structure from point clouds by extracting
its skeleton through minimal spanning graphs [13, 32] or
deep learning [25, 30, 70], and (3) image-based model-
ing, which extracts 2D branching structures from a set of
images [4, 22, 37, 53, 57], which are then converted into

a 3D skeleton. Most closely related to our work is sin-
gle image tree reconstruction [1, 26, 31, 58]. These meth-
ods have several limitations. For example, Tan et al. [58]
and Liu et al. [31] require user interactions to identify
the main branches or the crown shape. Li et al. [26] au-
tomatically learns tree species and radial bounding vol-
umes (RBV) as a lightweight representation of tree mod-
els, which is then used to guide tree growth carefully.
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Our method does not require any
user input, and our novel struc-
tural voxel representation cap-
tures more fine-grained details,
including small interior branches
and spatial morphology of the fo-
liage. Recent Nerf method [39]
can produce realistic rendered
views, seeming it can also work
for 3D tree reconstruction. However, their nice-looking re-
sults are powered by the volumetric rendering, but the ge-
ometries are still rough and full of noises (see the wrapped
figure). Thus, it cannot create high-quality structured 3D
trees for practical applications.

Single-view 3D reconstruction. Reconstructing a 3D
shape from only a single image is a difficult problem that re-
quires strong prior knowledge of the real world. In the past
several years, single-view 3D shape reconstruction using
deep learning has seen rapid growth [14]. Existing methods
are based on the 3D representation used as an output, such
as voxel grids [10, 51, 62], octree [59], point cloud [8, 15],
mesh [28, 47, 61, 65], and implicit fileds [9, 36]. Among
them, pixel-to-voxel methods are straightforward and popu-
lar, which usually follow the encoder-decoder pattern where
an image is encoded into a learned feature vector and then
decoded into a voxel representation of the target shape.
However, these methods are usually limited to simple or
regular (man-made) objects. We show that an efficient vol-
umetric representation encoding rich geometric and seman-
tic information can be learned directly from a diffusion
model [20], enabling us to reconstruct complex tree shapes.

3D generative models. Recent advancements in deep gen-
erative architectures enable the creation of high-fidelity 3D
content [56]. Many 3D generative models have been pro-
posed to synthesize 3D shapes and appearances, such as
Variational Autoencoders (VAEs) [40, 67], Generative Ad-
versarial Networks (GANs) [6, 7, 11, 17, 45], and Diffu-
sion Models (DMs) [21, 35, 43, 69]. In particular, diffusion
models with various input conditions (e.g., text [29, 38, 50],
image [41]) are effective at providing user control over the
generation process while retaining the diversity of the gen-
erated shapes. In this work, we use a semantic diffusion
model to predict the 3D SVS representation of trees.
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Figure 2. SVDTree framework pipeline. Starting from a single photograph, we use an instance segmentation module to detect the tree
mask (a). Then, the embedding feature encoded from the masked image is fed to a denoising diffusion model to infer a semantic voxel
structure (SVS) (b). Based on the predicted SVS, we propose to use a skeletonization approach and a space colonization approach to
reconstruct the tree skeleton (c) and branch (d), respectively. (e) shows the final 3D tree model rendered with leaves and textures.

3. Overview

Given a single image of a biological tree, we aim to gener-
ate a corresponding 3D geometric model. This task is chal-
lenging due to the inherently ill-posed nature of 2D-to-3D
translation and the intricate tree branch geometry. The key
to our framework is a specialized data structure named Se-
mantic Voxel Structure (SVS), which represents a tree with
a set of 3D semantic voxels in a lightweight manner. The
SVS abstracts the overall shape of the intricate tree struc-
ture but still maintains sufficient semantic and topological
features to aid the neural network inference effectively.

As shown in Fig. 2, our solution to the single-image tree
reconstruction is three-fold. Given a single tree image, our
method begins with extracting the tree instance mask (Fig. 2
(a)) by utilizing an advanced image segmentation founda-
tion model, called Segment Anything Model (SAM) [23],
which effectively separates the tree pixels from the back-
ground. Next, we integrate the image features encoded from
the masked tree instance and feed them into a semantic dif-
fusion model to predict the SVS of the tree (Fig. 2 (b)).

Finally, given the structured voxel representation, we de-
velop a hybrid tree geometry reconstruction algorithm. In
this step, the tree skeleton, representing branching struc-
tures, is extracted based on the construction of a spanning
tree from the trunk and branch voxels (Fig. 2 (c)). The
crown is synthesized by a space colonization approach [46]
based on the leaf voxels (Fig. 2 (d)). Our framework faith-
fully captures the key visual features observed in real trees
while accentuating the intricate details of tree structures.

4. Method

4.1. Semantic Voxel Structure

We propose the semantic voxel structure (SVS). A volumet-
ric representation for capturing the nuanced structure of tree
models in a manner that retains crucial internal tree features.
SVS is a 3D voxel grid of uniform size, where each voxel,
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Figure 3. The ground truth and predicted SVS from the side and
the top viewpoints. In each SVS, tree trunk, branches, and leaves
are encoded by red, orange, and green colors.

represented as V = (x, y, z, C), records the semantic la-
bel C of the tree shape at the spatial position (x, y, z). We
classify the 3D space containing a tree into four types of se-
mantic labels: tree trunk, tree branch, leaf, and empty (rep-
resenting the background). We assign different values to the
semantic labels: 1:trunk, 0.5:branch, 0:leaf, and -1:empty to
facilitate regression and classification.

Fig. 3 shows two examples of SVS representation. SVS
not only captures the overall geometric appearance of a tree
but also retains the intricate internal features by encoding
the structural information. Compared to binary voxels (i.e.,
1:tree and 0:background) or neural bounding volumes [26],
SVS prioritizes encoding the internal composition within
the tree shape, enabling us to infer hidden branches that are
occluded by the foliage. Consequently, the absence of SVS
in the current neural networks that predict binary voxels
limits their ability to learn the details of internal structure,
restricting them to merely reconstructing the outer contour
shape. To balance the reconstruction accuracy and network
training speed, we set the resolution of SVS to 643.
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Figure 4. Network architecture of our semantic voxel diffusion model. Forward and reverse processes are specifically trained to gradually
predict the SVS from a sampled noisy prior. The input image is encoded into the mix blocks to guide the denoising process.

4.2. Instance Segmentation

We use the Segment Anything Model (SAM) [23], a state-
of-the-art network designed for promptable segmentation
tasks, to accurately identify masks of tree instances. Un-
like the previous method [26] that uses a specific synthetic
dataset for training a semantic segmentation network, SAM
has been trained on a vast dataset comprising over one
billion annotations, primarily focused on natural images.
It adopts a Vision Transformer model [5] with thought-
fully considered trade-offs to ensure real-time performance.
Additionally, SAM facilitates zero-shot transfer to various
tasks through prompt engineering.

We aim to identify valid tree masks to reconstruct trees
from photographs faithfully. However, similar texture infor-
mation is abundant in tree photographs, which complicates
the segmentation of trees. We enhance the segmentation ac-
curacy by feeding simple prompts to SAM, i.e., just point-
ing out the trunk and foliage areas. SAM can also distin-
guish tree instances with minimal human intervention if the
input image contains multiple trees. After segmenting the
tree out precisely, we replace the background in the original
image with a white color.

4.3. Learning to Reconstruct SVS

We use a diffusion model for the pixel-to-voxel conversion
to estimate the SVS representation from the masked image.

4.3.1 Synthetic Training Dataset

Considering the difficulty of collecting and reconstruct-
ing real trees, generating synthetic tree datasets for train-
ing neural networks of different tasks (e.g., reconstruc-
tion [22, 26, 30], segmentation [16], evaluation [49]) is

widely adopted. We follow this idea and employ the space
colonization algorithm [46] to create 4,000 tree models of
diverse tree species automatically. We then generate cor-
responding single-view images (2562) and their associated
SVS (643) to train our network.
Image rendering. There may be a domain gap because the
data distributions of real tree photographs and the rendering
images may not align. To address this potential issue, we
randomly position the camera around the tree, add leaf and
branch textures, and adjust the rendering lighting intensity
as shown in an example in Fig. 3. We then apply a Gaus-
sian filter with a kernel size of three to smooth the rendered
images.
SVS generation. We simplify the multi-layer tree structure
representation introduced in [68] to annotate different se-
mantic parts and decompose a tree into the trunk, the main
branches, and the upper canopy. We then densely sample
points on the surface meshes of 3D tree models and vox-
elize this semantic point cloud to obtain the ground truth
SVS representation (Fig. 3).

4.3.2 Semantic Voxel Diffusion Model

We aim to predict the mapping from a masked tree image to
its corresponding SVS. A network designed to address this
task can be defined as follows:

fSV S(I) : I → S,

where I ∈ I is the masked image, and S denotes the SVS.
Our objective is to assign a correct semantic label to each

voxel in SVS using a neural network, which is a typical clas-
sification problem. However, the distribution of semantic
labels in the training dataset is not uniform, i.e., the num-
ber of tree voxels is too small compared to the number of



empty voxels, overwhelming training an efficient classifi-
cation network. To overcome this issue, we cast it as a re-
gression problem, meaning that we predict the classification
values, which are then quantized and truncated to determine
the semantic label.
Semantic voxel diffusion model f . The neural network
trained to estimate SVS is based on a denoising diffusion
model [20]. We call it a semantic voxel diffusion model be-
cause it outputs the 3D shape in the form of voxels and pre-
dicts the classification value for each voxel. Our diffusion
model comprises forward and reverse processes (Fig. 4).
Given an initial SVS s0, the forward process yields a se-
quence of noised data {st|t ∈ (0, T )} by adding increasing
Gaussian noise to s0:

st =
√
α(t)s0 +

√
1− α(t)ϵ, (1)

where ϵ ∼ N (0, I), t ∼ U(0, 1), and α(t) is a monotoni-
cally decreasing function from one to zero. N and U denote
Gaussian distribution and uniform distribution, respectively.
We setα(t) = cos−2(π2

t+s
s+1 )− 1, s = 0.008.

The reverse chain iteratively denoises the corrupted SVS,
i.e., recovering st−1 from st by predicting the added ran-
dom noise ϵ. In this process, a denoising model f(st, t)
models the prediction from st to s0. The training of this
network relies on the denoising loss, formulated as follows:

Ls0 = Eϵ∼N (0,I),t∼U(0,1)∥f(st, t)− s0∥22, (2)

where st is sampled using Eq. 1.
Our semantic voxel diffusion model is based on the U-

Net architecture [54]. The U-Net comprises six levels with
voxel resolutions of 643, 323, 163, 83, 43, and 23, and cor-
responding feature dimensions are 16, 16, 32, 64, 128, and
256, respectively. Each level comprises a residual block
that incorporates the noise level information. An additional
residual block is added in the bottleneck of the U-Net. Fur-
thermore, we add five mix blocks to integrate the image fea-
tures obtained from the ViT encoder [12] into the training
process. Finally, five deconvolution layers with kernel size
four for each upsampling layer are attached at the end of the
network to map the image features at the finest level to the
SVS of size 643.
SVS inference. We initialize st with Gaussian noise, which
is fed into the above denoising model to regress the classi-
fication values of SVS by using the DDPM sampling strat-
egy [20]. The semantic label CVi

for each voxel Vi is then
determined by the regressed classification value SVi

: CVi

is trunk if SVi
∈ [0.8, 1], CVi

is branch if SVi
∈ [0.4, 0.8],

CVi is leaf if SVi ∈ [0, 0.4].

4.4. Hybrid Tree Geometry Reconstruction

Once the SVS is predicted, we synthesize the fine-grained
3D tree geometry, and Fig. 5 illustrates how the 3D branch-
ing structure is progressively constructed from SVS. Our
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Figure 5. 2D illustration of hybrid tree geometry reconstruc-
tion. (a) Construct subgraphs for trunk voxels. (b) Sequentially
connect each subgraph to the lowest one. (c) Extend to the branch
voxels to form the complete connected graph. (d) Cluster the vox-
els into a set of groups based on the graph adjacency. (e) Form the
main skeleton by computing centroids for each voxel group. (f)
Synthesize the crown inside the area of leaf voxels.

algorithm consists of two sub-steps: (a-e) constructing the
initial main skeleton from non-leaf voxels and (f) propagat-
ing tiny twigs and leaves to detail the tree crown.
Main Skeleton Construction. Our strategy to construct the
main skeleton from non-leaf voxels is inspired by a heuris-
tic modeling algorithm [63]. As shown in Fig. 5 (a), we
take the lowest trunk voxel in SVS as the tree root. In this
step, each trunk voxel is connected to all other voxels within
its direct local neighborhood (threshold=1.0) to construct a
set of subgraphs. Then, starting from the lowest subgraph,
we traverse all the graphs and connect them sequentially to
the main graph (Fig. 5 (b)). The same operation is applied
to the branch voxels (Fig. 5 (c)). We construct the con-
nected graph separately for trunk and branch voxels because
these two types typically exhibit different prediction noises.
Thus, if the trunk voxels, which are often predicted more ac-
curately, are considered first, the resulting main graph can
have a more structurally correct connection accordingly.

We then use a minimum spanning tree algorithm to the
constructed graph and cluster all non-leaf voxels into a se-
ries of groups (marked in different colors in Fig. 5 (d)) based
on the graph adjacency. Finally, the centroid of each group
of voxels is calculated (Fig. 5 (e)). The centroids serve as
the tree nodes. Finally, the main skeleton is constructed by
connecting the centroid points of the adjacent voxel groups.
Crown Synthesis. After constructing the main skeleton,
we apply a developmental growth model to complete the
tree crown (Fig. 5 (f)). This step is inspired by a space col-
onization algorithm [55], which simulates the competition
of branches for space to grow branches inside a given 3D
space. We use all the leaf voxels as an intersection vol-
ume. Each newly generated branch outside the volume of



leaf voxels is removed directly. The branch growth process
stops until all the leaf voxels are touched by branches with
a threshold of 0.5. As a result, the entire 3D tree skeleton
is strictly inside the SVS. Finally, the leaves are randomly
distributed along the branches within the area of leaf voxels.

5. Results and Evaluation
Implementation. The algorithm for generating the syn-
thetic dataset and our hybrid tree reconstruction has been
implemented in C++ with OpenGL. By employing vari-
ous random parameters in procedural modeling, we gen-
erate 4,000 data pairs containing single images and corre-
sponding SVS to train our diffusion model. Tree species
that are difficult to synthesize by [46], such as palms, are
excluded from the dataset. For SAM instance segmenta-
tion in Sect. 4.2, we utilized the publicly available PyTorch
implementation1. Our semantic voxel diffusion model was
developed in PyTorch and run on an Intel Xeon Gold 6226R
at 2.90GHz with 8× Nvidia GeForce RTX 2080 GPUs.
Diffusion model training. The network is trained using a
Mean Absolute Error (MAE) loss for regression, employing
the Adam optimizer with a learning rate 10−4 and a batch
size 2. We dynamically adjusted the learning rate using a
cosine annealing schedule. The training process takes ap-
proximately three days.

5.1. Results

Evaluation on synthetic data. We additionally generate
100 testing images using procedural modeling to evalu-
ate the accuracy of our SVS predictions, where the tree
model parameters differ from those employed in the training
dataset. These testing examples serve as the SVS ground
truth, facilitating qualitative and quantitative evaluations.
On average, the instance segmentation using SAM takes
12.6 seconds to process one image, SVS prediction using
the diffusion model takes 4.4 seconds, and procedural ge-
ometry reconstruction requires about 13.7 seconds. Tab. 1
shows the statistics and the distribution of different classes
in the predicted SVS, from which we can observe the class
imbalance between empty voxels and tree voxels.

Fig. 3 shows two examples of the ground truth SVS
and predicted SVS. The predicted SVS faithfully main-
tains its original relative structure, aligning closely with the
ground truth. This indicates that the semantic voxel diffu-
sion model effectively extracts tree information, even the
missing branch details, from single images, providing an
approximate predicted geometric appearance and structural
information using SVS representation.

Fig. 6 shows branching geometry reconstruction using
our hybrid reconstruction algorithm described in Sect. 4.4.
The first column shows SVS containing semantic informa-

1https://github.com/facebookresearch/segment-anything
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Figure 6. Our proposed tree geometry reconstruction algorithm
can generate high-fidelity branching structures from SVS.

Table 1. Voxel distribution of different classes in the predicted
SVSs of all synthetic testing images.

Methods #Trunk #Branch #Leaf #Empty Total

Voxel Num. 715 2,357 9,946 24,9126 26,2144 (i.e., 643)
Ratio 0.27% 0.94% 3.79% 95% 100%

tion about the tree structure, encompassing the tree trunk
and main branches. The second and third columns repre-
sent the ground truth tree model and the tree model recon-
structed with our algorithm based on the SVS. The figure
not only demonstrates the capability of SVS to represent
intricate tree structures required for tree models but also
validates the effectiveness of our hybrid tree modeling al-
gorithm in extracting semantic structural information from
SVS for accurate tree reconstruction.
Evaluation on real-world data. We conduct experiments
on a collection of real-world images from public sources or
captured using a smartphone to demonstrate the robustness
and generalization ability of our approach.

Fig. 7 presents several leafy trees by showing the step-
by-step results of our reconstruction process. The SVSs are
obtained by employing the same diffusion model trained on
the synthetic dataset, and the final tree models are gener-
ated by our hybrid reconstruction algorithm. Each predicted
SVS (second column) captures the overall geometric shape
of the input tree, while branching structures (third column)
reveal that tree skeletons can be faithfully extracted bene-
fiting from the semantic structure information provided by
SVS. Finally, the rendering images from the front, side and
top views demonstrate that all resulting trees closely resem-
ble the target images. Our approach reproduces realistic 3D
tree models in preserving intricate tree details, yielding ac-
curate reconstructions.

Next, we conduct an experiment focusing on multi-tree
reconstruction (Fig. 8). Leveraging the image segmentation
model of SAM, we can extract accurate segmented mask
information to generate three cropped images (b). These
cropped images are then individually fed into our seman-
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Figure 7. Reconstruction of real trees. For each example, we show input photograph (a), predicted SVS (b), reconstructed branch structures
(c), and the final full models rendered from front, side, and top views (d-f).

tic voxel diffusion model to predict SVSs, whose positions
correspond to the locations of multiple trees in the origi-
nal image (c). Final tree models are obtained by applying
our hybrid reconstruction algorithm to the SVSs (d). Note
that we do not aim to learn the relative positioning of trees,
therefore the 3D trees are arranged manually.

5.2. Comparisons

Reconstructing trees from point clouds [30, 32] or multi-
ple images [18, 22, 57] is popular and usually generates

more accurate results than our approach. However, collect-
ing such input data is costly and time-consuming, and mul-
tiple views are not often available. For single-image tree re-
construction, the semi-automatic methods proposed by Tan
et al. [58] and Liu et al. [31] rely on user annotations to
identify the main branches or the crown shape. Li et al. [26]
propose the first automatic tree reconstruction from single
images, which is most closely related to ours.

Fig. 9 compares the reconstruction results between [26]
and our method. Given single photographs, [26] auto-



Figure 8. Reconstruction of multiple trees from a single image.

Table 2. Ablation study of the diffusion model and mix block with
attention. We report precision for the class of trunk (APT ), branch
APB , leaf APL, empty APE , and the mean average precision
mAP over all classes. AEmean and AEsd represent the average
and the standard deviation of absolute errors, respectively.

Methods
Precision Absolute Error

APT APB APL APE mAP AEmean AEsd

cGAN 0.130 0.033 0.137 0.886 0.297 0.0468 0.244
Ours (W/o Att.) 0.515 0.061 0.313 0.952 0.460 0.0169 0.208

Ours (Full) 0.538 0.176 0.461 0.991 0.546 0.0134 0.198

matically learns radial bounding volumes (RBV) that are
then utilized to guide tree growth, and a species identifica-
tion network provides parameter values for a developmen-
tal tree model. Our approach leverages SVS representation,
which captures finer details, including the intricate interior
branches and spatial morphology of foliage. Moreover, our
reconstruction approach does not rely on manually provided
parameters for tree model development, surpassing the re-
construction efficacy of the RBV method.

Input RBV Ours

Figure 9. Comparison to RBV [27]: input, RBVs, reconstruction
using [27], and our reconstructed SVSs and tree models.

5.3. Ablations

We report the standard metrics, including the precision of
predicting each semantic label, and the absolute error be-
tween ground truth SVSs and the predicted SVSs, for quan-

titative evaluations of different network configurations.
Effect of the diffusion model. We first examine the effect
of our diffusion model on recovering 3D shape and semantic
information. We replace the diffusion model with a condi-
tional Generative Adversarial Network (cGAN) architecture
adopted in [31], with the encoder also utilizing ResNet-50
and the decoder employing deconvolution layers to upsam-
ple the output voxels to a resolution of 643. Tab. 2 sum-
marizes the evaluation results. It reveals that the proposed
method achieves the best performance across all metrics.
Our precision values of classifying trunks and leaves are
40% and 33% higher than those of using cGAN. In terms
of mean average precision and mean absolute error, we still
attain significantly higher scores.
Effect of mix block with attention. We propose the mix
block with multi-head attention to better integrate image
features for SVS prediction. We conducted an experiment
using a mix-block without the attention mechanism to as-
sess its efficiency. In this setup, we directly concatenate the
image feature obtained by the encoder to the SVS feature
for denoising. As shown in Tab. 2, by using the multi-head
attention mechanism, the diffusion model improves the re-
gression and classification performance.

6. Conclusion and Future Work

We introduce a novel structured voxel representation of
trees in 3D space to encode trunks, branches, and leaves,
thereby expressing detailed features such as the trunk’s
primary topology and the foliage’s spatial morphology.
We propose a semantic voxel diffusion model to gener-
ate such 3D tree structures from single photographs faith-
fully. Moreover, we develop a new tree geometry construc-
tion algorithm based on a hybrid modeling approach (com-
bining structure-oriented branch reconstruction and self-
organization-based foliage reconstruction) specially de-
signed for our customized data representation.

In future work, we aim to explore richer information
from images, such as learning tree branch growth directions
and crown color information. We will also explore the addi-
tional reconstruction gained by incorporating 3D prior (e.g.,
depth). Moreover, we plan to simulate a more diverse range
of tree species, expand our training dataset, and consider the
reconstruction of multiple trees simultaneously.
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[24] Štefan Kohek, Borut Žalik, Damjan Strnad, Simon Kol-
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