
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

ResGEM: Multi-scale Graph Embedding
Network for Residual Mesh Denoising

Ziqi Zhou , Mengke Yuan† , Mingyang Zhao† , Jianwei Guo , Member, IEEE, and Dong-Ming Yan ,
Member, IEEE

Abstract—Mesh denoising is a crucial technology that aims to recover a high-fidelity 3D mesh from a noise-corrupted one. Deep
learning methods, particularly graph convolutional networks (GCNs) based mesh denoisers, have demonstrated their effectiveness
in removing various complex real-world noises while preserving authentic geometry. However, it is still a quite challenging work to
faithfully regress uncontaminated normals and vertices on meshes with irregular topology. In this paper, we propose a novel pipeline
that incorporates two parallel normal-aware and vertex-aware branches to achieve a balance between smoothness and geometric
details while maintaining the flexibility of surface topology. We introduce ResGEM, a new GCN, with multi-scale embedding modules
and residual decoding structures to facilitate normal regression and vertex modification for mesh denoising. To effectively extract multi-
scale surface features while avoiding the loss of topological information caused by graph pooling or coarsening operations, we encode
the noisy normal and vertex graphs using four edge-conditioned embedding modules (EEMs) at different scales. This allows us to
obtain favorable feature representations with multiple receptive field sizes. Formulating the denoising problem into a residual learning
problem, the decoder incorporates residual blocks to accurately predict true normals and vertex offsets from the embedded feature
space. Moreover, we propose novel regularization terms in the loss function that enhance the smoothing and generalization ability of
our network by imposing constraints on normal consistency. Comprehensive experiments have been conducted to demonstrate the
superiority of our method over the state-of-the-art on both synthetic and real-scanned datasets.

Index Terms—Mesh Denoising, Multi-scale Embedding, Graph Convolution, Residual Structures, Joint Loss

✦

1 INTRODUCTION

With the popularization of depth cameras and the rapid
development of scanning techniques, obtaining editable
3D meshes has become more convenient. However, these
scanned meshes are often contaminated with noise, mak-
ing subsequent geometry analysis and geometry processing
difficult. To reduce the noise interference and restore the
underlying surface information, mesh denoising becomes
highly demanding in computer graphics. Notably, it is hard
to distinguish fine-scale features from the noise, which
poses a high risk of losing accurate surface information
while denoising. Consideration should also be given to the
gap between the synthetic noise and the real-world noise
introduced by 3D scanners or surface reconstruction. More-
over, existing methods usually suffer from generalization to
different intensities and distributions of noise.

Numerous methods for denoising meshes have been
proposed and can be categorized into traditional and data-
driven approaches. Traditional methods [1], [2], [3] typically
involve a leading filtering process for the face normals,
followed by updating the vertex positions to obtain a fi-
nal denoised mesh. However, focusing solely on normal

• Z. Zhou, M. Yuan, J. Guo and D.-M. Yan are with the State Key Lab-
oratory of Multimodal Artificial Intelligence Systems (MAIS), Institute
of Automation, Chinese Academy of Sciences, and the School of Artificial
Intelligence, University of Chinese Academy of Sciences, Beijing, China;
M. Yuan is also with PIESAT Information Technology Co Ltd, Beijing,
China; M. Zhao is with CAIR, Hong Kong Institute of Science & Innova-
tion, Hong Kong, China. E-mails: zhouziqi2022@ia.ac.cn, {mannix.yuan,
migyangz, gjianwei.000, yandongming}@gmail.com

†Corresponding authors: Mengke Yuan and Mingyang Zhao

filtering is prone to over-smoothing. In recent years, data-
driven methods [4], [5], [6], [7], [8], [9] have become popular,
while they mostly follow the same two-step pipeline as the
traditional ones. On the other hand, vertex positions contain
more fine-level feature information, and recovering them di-
rectly is apparently a more efficient approach. However, this
is less practical because vertex positions are less reliable than
face normals in indicating the underlying surface geometry.
To circumvent the limitations of using face normals or vertex
positions alone, recent works [10], [11] have proposed dual-
domain approaches that learn surface representations from
both domains simultaneously, achieving promising results.
Nevertheless, this concurrent training scheme can lead to
excessively regular topology, limiting the ability to represent
intricate surface features (see Fig. 18).

To address the above mentioned problems, we propose
a novel two-branch pipeline for mesh denoising that takes
full advantages of both face normals and vertex positions
by operating on the normal-aware and vertex-aware branch
sequentially. Our pipeline comprises a preliminary normal
prediction process and a further refined normal prediction
process, with a vertex modification step parallel to the
latter. This approach is advantageous because modifying
vertex positions from a smoothed surface is more effective
in retaining surface structural patterns, and it allows for
independent training of the vertex modification process,
resulting in better flexibility maintenance of surface topol-
ogy. Additionally, for the network training in each branch,
regularization terms are integrated into loss functions by
constraining on local geometric information such as normal
consistency and fidelity, which facilitates the convergence

https://orcid.org/0000-0001-8209-5055
https://orcid.org/0000-0001-9277-2654
https://orcid.org/0000-0001-6953-9731
https://orcid.org/0000-0002-3376-1725
https://orcid.org/0000-0003-2209-2404

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

of the denoising network and improves its generalization
ability on various surface topology.

Our study primarily focuses on deep learning methods,
as traditional methods and simple networks struggle to
simulate the highly non-linear function of noise patterns.
Deep learning methods use either patch-to-one or patch-to-
patch strategies for training and inference. The input of both
strategies are a patch of features, but the output is one target
value or a patch of target values respectively. Specifically,
for an input mesh patch, the patch-to-one approach takes
in feature vectors of all patch elements and predicts the
target value solely for the central element, which might be
the central facet normal or the central vertex position. In
contrast, the patch-to-patch method simultaneously estimates
the target value for every element within the given input
patch. Existing patch-to-one methods [4], [5], [6], [7], [9]
require extracting a neighboring patch for each mesh ele-
ment, resulting in problems such as normal discontinuities,
inaccurate vertex restoration, and computationally intensive
inference. Although current patch-to-patch methods [8], [10]
effectively compute results for all patch elements at once,
they involve graph pooling and up-sampling operations to
achieve multi-scale receptive field for the network, which
sacrifices the topology consistency throughout the interme-
diary layers, resulting in the omission of crucial surface
information, such as fine-scale details represented by very
small triangles. Moreover, the computational effort required
for generating the coarsened graphs cannot be overlooked.

To realize efficient and topology-consistent (having con-
tinuous accessibility to the original surface topological struc-
ture across all network layers) patch-to-patch mesh denois-
ing, our method investigates a novel multi-scale graph em-
bedding network that enables node-wise feature extraction
from neighborhoods of multiple sizes without altering the
surface topology and obtains a more fluent denoised surface
than patch-to-one methods. Additionally, our network archi-
tecture strategically balances learning capacity and com-
putational efficiency by employing hybrid convolutional
structures in the encoder and decoder. Simplified convolu-
tional units in the encoder efficiently aggregate information
from extensive neighborhoods, while the decoder utilizes
more complex modules to reconstruct topology and geom-
etry information with enhanced representational abilities.
Furthermore, regarding noise removal as a residual learning
problem, we formalize the decoding part of our network
with residual structures to learn the noise patterns from
the embedded feature space more precisely and effectively.
Therefore, our network is termed ResGEM, which stands
for Residual, Graph Embedding, and Multi-scale. Incorporated
into the two-branch pipeline mentioned above, the network
shows its edge in both normal-aware and vertex-aware
manners with the well-designed joint loss functions.

To summarize, the main technical contributions of this
work are as follows:

• We present a novel mesh denoising network
named ResGEM, which effectively enables topology-
consistent and patch-to-patch denoising by combining
hybrid graph convolutions.

• We develop a two-branch pipeline to balance surface
smoothing and feature recovery while maintaining

the topological flexibility of underlying surfaces.
• We design joint loss functions comprising fidelity

terms and regularization terms to ensure optimal
network performance and superior generalization
ability.

Extensive visual and numerical comparisons with state-of-
the-art methods demonstrate that the proposed approach
achieves advanced denoising results and optimal general-
ization ability. Additionally, comprehensive ablation studies
are provided to validate the rationality and superiority of
all design choices.

2 RELATED WORK

2.1 Mesh Denoising

As mentioned in the introduction section, mesh denoising
methods can be mainly separated into two categories, tradi-
tional methods and learning-based methods.

2.1.1 Traditional Methods

The traditional filtering-based methods [1], [2], [3] try to
regress the original normal of each facet by making use
of the normal information in the local neighborhood and
have achieved reliable results under certain circumstances,
but with troublesome parameters tuning. Some methods
explore priors such as the non-local similarity [12], [13],
[14] or sparsity regularization [15], [16], [17]. In addition,
according to Zhu et al. [18], Wei et al. [19] and Yadav et
al. [20], with the notion of voting on the surface tensors,
a mesh denoising process can be guided to achieve better
feature preservation. Although traditional methods have a
good performance on various noisy meshes, the tedious
parameter adjustment for each model is not simple.

2.1.2 Learning-based Methods

Thanks to the great success learning-based methods have
achieved in image denoising, the exploration of them on
mesh denoising has been gaining increasing attention. How-
ever, different from images, the convolutional operation
cannot be directly applied to 3D meshes due to their ir-
regular data structures. Various solutions to this problem
have been proposed. At the beginning, hand-crafted feature
descriptors [4] or voxel representation [5] were proposed,
but they led to inferior performance in terms of accuracy or
speed. Later, Li et al [7] proposed a deep learning method
regressing directly on the face normals of noisy meshes
with the corresponding ground truth meshes, and proved
the effectiveness of convolutional neural networks in mesh
denoising, yet it ignored the connectivity in local topology.
More recently, considering the topological structure on the
surface of a mesh model can be naturally regarded as a
graph, several works [8], [9], [10], [11] designed diverse
types of graph convolutional networks (GCNs) for mesh de-
noising. Making full use of the local topology information,
these methods extraordinarily improved their performance
on mesh denoising.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Fig. 1: The two-branch mesh denoising framework based on the proposed network. Each input mesh is converted into
multiple graphs and fed into multiple ResGEMf s to compute the denoised normals (normal-aware branch). A vertex
updating scheme is performed on the predicted normals from each ResGEMf to update the mesh surface. Then the
updated mesh is fed into the next ResGEMf similarly. Note that 3 ResGEMf s are employed for normal regression in
our implementation and the last vertex updating process is performed on the vertex modification result from ResGEMv ,
which learns the vertex coordinate offsets of the roughly denoised meshM1 to recover the vertex distribution from pure
normal filtering (vertex-aware branch). The left bottom area demonstrates a detailed version of the two kinds of graph
representations. Note that the edges in the normal graph are denoted in two colors to distinguish between edges that
connect adjacent faces based on a shared vertex and edges that connect adjacent faces based on a shared edge.

2.2 Graph Convolutional Networks
Graph convolutional networks are one of the common tools
for processing irregular data structures such as point clouds
[21], [22] and triangular meshes, with a large number of
methods developed. Apart from some early works that
operated on static graph structures [23], [24], a series of
approaches with dynamic graph construction have emerged
recently. For instance, Valsesia et al. [25] and Wang et al.
[26] (DGCNN) used the k-nearest-neighbors algorithm to
dynamically build neighboring nodes at each layer. Zhang
et al. [27] combined static and dynamic filtering to mesh ge-
ometry for the first time, which was later introduced to the
field of mesh denoising by Shen et al. [9] (GCN-Denoiser).
Unfortunately, this method adopted a patch-to-one strategy
which suffers from a surface discontinuity issue and costs
much redundant computation during inference. There are
also convolutional operators specifically developed for 3D
meshes. Hanocka et al. [28] (MeshCNN) performed con-
volution and pooling on mesh edges while Schult et al.
[29] (DualConvMesh-Net) executed that on mesh vertices.
Verma et al. [30] (FeaStNet) proposed a novel convolution
on the spatial graph structure of mesh surfaces, which was
first introduced to mesh denoising by Armando et al. [8]
in the normal domain and later extended to simultaneous
training on bi-domain (normal and spatial domains) by

Zhang et al. [10] (GeoBi-GNN). However, to increase the
receptive field for the network trained in a patch-to-patch
manner, they both have a time-consuming graph pooling
operation that causes topology change and may lose impor-
tant surface information.

3 METHOD

Overview Fig. 1 shows the overall pipeline of our method.
We exploit the graph representations from both normal and
spatial (vertex) domains for our network. Given an input
noisy mesh model M0, we first convert it into graph rep-
resentation (Section 3.1) with each facet as a node and then
align its average length to the unit length and its centroid at
the origin. Next, we feed the normal graph into our ResGEM
network (Section 3.2) to compute the denoised normals of
each face. Finally, with predicted face normals, we obtain
the denoised mesh through vertex updating (Section 3.4)
on the noisy input mesh. Owing to the complexity of noise
distributions, we iteratively predict the noise-free surface
normals in a cascaded manner to achieve better results,
which we denote as the normal-aware branch on the top
of Fig. 1. Let ResGEM i

f denote the network applied in the
i-th iteration, Mi denote the denoised mesh after the i-th
iteration. To alleviate the vertex distortion and preserve fine-
scale features, we perform vertex modification as a feature

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

recovery process onM1 through another ResGEM network
represented by ResGEMv , which predicts a position offset
vector for each vertex to obtain a modified mesh M′

1,
see the parallelizing vertex-aware branch at the bottom.
A final combination of the results of the two branches is
achieved by vertex updating on meshM′

1 with the normal
prediction result of the last ResGEMf , which is ResGEM3

f

in our implementation. Then a noise-free mesh M with
fine-tuned surface topology and rich recovered features is
obtained. Note that we magnify the highlighted area (inside
the red circle) of the example mesh to exhibit the surface
graph representation and thus the change of its normal and
topology condition throughout each stage of the pipeline are
more distinguishable.

3.1 Data Preparation
3.1.1 Graph Representation
We adopt two kinds of graph representations on a mesh
surface for ResGEM to learn both normal regression and
vertex modification. A visualized demonstration can be
found in the left bottom area of Fig.1.
Vertex representation The original topology structure of the
mesh naturally forms a graph, defined as Gv = (Qv, Ev,Φv),
where a graph node qiv ∈ Qv is created for each vertex vi.
If vi and vj are adjacent, an edge e = (qiv, q

j
v) ∈ Ev between

the corresponding graph nodes qiv and qjv is built. Φv is
the set of node features. For each ϕi

v ∈ Φv corresponding
to vertex vi, ϕi

v = (pT
i ,n

T
i), where pi and ni denote

the vertex coordinate and the normal vector of vertex vi
respectively, thus ϕi

v is a 6D vector. We use this spatial
graph representation for the vertex-aware branch, which is
described as the spatial graph below.
Normal representation In the normal domain for normal
prediction, we build graph structures with faces as nodes,
and each facet is connected to its neighbors, which are the
faces that have shared vertices with this facet. Let Gf =
(Qf , Ef ,Φf) denote the normal graph representation, where
a graph node qif ∈ Qf is created for each facet and an edge
e = (qif , q

j
f) ∈ Ef between node qif and qjf would be built

if fi and fj are adjacent. Φf is the set of node features.
For each facet fi, the corresponding feature vector ϕi

f =

(nT
i , c

T
i , ai), where ni, ci and ai denote the normal vector,

centroid position, and area of facet fi respectively, so ϕi
f is a

7D vector. This kind of graph representation is described as
the normal graph below.

3.1.2 Graph Extraction and Alignment
We extract a series of patch graphs with a fixed number of
nodes from the surface of the training meshes to form the
training set, driving the network to learn normal prediction
or vertex modification. The graph extraction process is real-
ized through iterative neighborhood expansion from located
seed points. Given a meshM, we first locate a set of vertices
on it by key points extraction as seeds to generate graphs.
Let Qi

v and Qi
f denote the node set of the spatial graph and

the normal graph grown from vertex vi respectively. Each
pair of Qi

v and Qi
f will consist of a batch of neighboring

vertices and faces and are initially empty. For each seed
vertex vi, we first add itself into Qi

v and its adjacent faces
into Qi

f . Whenever there are new nodes in Qi
v or Qi

f , their

Fig. 2: The results of key points detection (depicted as red
points) is compared to the results of random farthest point
sampling (FPS) (depicted as blue points) on the Leg model
(left) and the Casting model (right). The Harris 3D algo-
rithm effectively covers areas with both sharp and smooth
features. In contrast, FPS samples the surface unevenly,
resulting in some missed sharp features such as the claw
tips.

adjacent nodes should also be inserted. New nodes are kept
on put intoQi

v andQi
f until the number of elements in them

reaches a certain number N . To avoid the influence of scale
differences, for all generated graphs from the same mesh,
we set their centroids to the origin, and scale each of them
so that the average edge length of the mesh is unit length.

3.1.3 Key Points Based Training Set Generation
To make the training data cover as many surface patterns
as possible so that the network can better learn surface
features, for each mesh model in the training set, we first
identify a series of key points on the noise-free surface,
and then use each of them as a seed point for two kinds
of graph extractions on both the noisy model and ground-
truth model. Plenty of graph pairs are generated to form the
training set and the corresponding ground-truth set.
Harris 3D key points extraction The key point locations
are determined by leveraging a 3D interest points detector
called Harris 3D [31], which is a 3D generalization of the
Harris interest points detector for images [32]. The calcula-
tion steps are as follows:

1) Pick the k-ring neighborhood of each vertex vi in
mesh M, and let Vk(vi) denote the point set com-
posed of vertices within k rings around vi;

2) For each vertex vi, set the centroid of Vk(vi) to
the origin, and align the normal of its best fitting
plane (the eigenvector with the lowest associated
eigenvalue after Principal Component Analysis) to z-
axis;

3) Fit a quadratic surface to the set of transformed
vertices V k(vi) through a paraboloid function with
six terms:

z = f(x, y) =
p1
2
x2+p2xy+

p3
2
y2+p4x+p5y+p6,

(1)
4) Calculate the Harris operator value of vertex vi by:

h(vi) = det(E)− k(tr(E))2, (2)

where E =

(
A C
C B

)
, A = p24 + 2p21 + 2p22, B =

p25 + 2p22 + 2p23 and C = p4p5 + 2p1p2 + 2p2p3;

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

Algorithm 1 Interest Points Clustering

Input: Set P of pre-selected interest points in decreasing
order of Harris operator value

Output: Final set of interest points
1: Let Q be a set of points
2: function KEYPOINTSCLUSTER(Q)
3: Q← ∅
4: for i = 1→ |P | do
5: if minj∈[1,|Q|] ∥Pi −Qj∥2 > ρ then
6: Q← Q ∪ {Pi}
7: end if
8: end for
9: return Q

10: end function

5) Select the interest points by the Harris operator
values:
(a) Preserving the vertices with local maximum Har-
ris response. Select the vertices which hold the con-
dition that h(v) > h(w),∀w ∈ Vk(v) as candidate
key points;
(b) Obtaining good distribution of interest points on
the mesh surface through Interest Points Clustering.
Sort the pre-selected points by their Harris operator
values in a descending order, then cluster the sorted
points by Alg. 1 to get the final set of key points,
where ρ can be considered as the scale of clustering
which is usually a fraction of the diagonal of the
object bounding box and can impact the number of
interest points returned.

According to the above steps, the interest points de-
tection result of the Leg model and the Casting model is
shown via red points in Fig. 2 (ρ = 0.08ld, k = 2, where
ld is the length of the diagonal of the model’s bounding
box). Comparing with the random farthest point sampling
(FPS) algorithm [33], it can be seen that the interest points
calculated through the Harris 3D algorithm cover not only
the areas with sharp features, but also smoother ones,
guaranteeing the diversity of the generated graph set for
training, therefore making our network more faithful to
all kinds of surface features. In contrast, the random FPS
approach can result in uneven sampling, inadequately cov-
ering all surface types. It may also generate neighboring
sample points, leading to overlap in the extracted surface
patches, which renders the training set redundant and less
effective for feature learning.

3.2 Network Architecture
We use the same network architecture ResGEM to learn
both normal regression and vertex modification. As shown
in Fig. 3, the ResGEM network consists of two parts: An
encoder and a decoder. Taking into account the trade-off be-
tween the learning capacity and computational complexity
associated with different convolutional structures, we use
distinct convolution blocks in these two parts. The encoding
part combines a static edge-conditioned embedding module
(EEM) with multi-scale dynamic EEMs to extract geometric
features from different spatial scales without graph pooling
or coarsening operations that might drop important surface

Fig. 3: Our ResGEM architecture. The encoder consists of
four parallel edge-conditioned embedding modules (EEMs)
to capture multi-scale local information while the decoder
employs residual graph convolutional blocks to learn noise
patterns.

information. Meanwhile, for the decoding part, we con-
sider noise pattern learning as an iterative residual learn-
ing process and design stacked residual structures over a
graph convolution operator [30] to exploit the representa-
tion power of our network. Detailed explanations can be
found in the Supplementary Material about the design of the
network.

3.2.1 Encoder
Our encoder consists of multiple edge-conditioned embed-
ding modules (Fig. 4), which adopt the Edge-Conditioned
Convolution (ECC) strategy [24], [34] to encode graph
features. A detailed introduction about the corresponding
convolution unit can be found in the Supplementary Material.

In analyzing mesh surfaces, one must be cognizant of
the complex relationship between geometric topology and
surface connectivity. Due to the lack of a one-to-one corre-
spondence between these two concepts, relying solely on the
original graph structure of the mesh may result in some loss
of information during convolution, hindering comprehen-
sive feature learning on graph nodes. To address this issue,
one solution often employed is using graph pooling layers
to generate coarsened graphs [8], [10], thereby establishing
links between graph nodes that were not previously directly
connected. This method can facilitate a more nuanced un-
derstanding of the graph’s interconnectedness, but it may
still compromise fine-scale information from the original
graph topology. To efficiently denoise surfaces while pre-
serving their structure, we propose a novel approach that
encourages the network to learn multi-scale information for
each node in the input patch graph simultaneously. This en-
ables the use of a patch-to-patch strategy without altering the
inherent surface topology. Two types of feature embedding
modules are designed with their structures demonstrated
in Fig. 4. The static edge-conditioned embedding module
(static EEM) implements convolutions on the original static

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

Fig. 4: The structures of (top) static and (bottom) dynamic
edge-conditioned embedding modules (EEMs).

graph structure, while the dynamic EEM uses a dynamic
graph construction scheme to allow different numbers of
not adjacent but nearby graph nodes to be connected. The
neighborhood of each node varies at each layer according to
the proximity in feature space, which is calculated through
the k-nearest-neighbors (KNN) algorithm. Three dynamic
EEMs are adopted and the values of ks are set to (8, 16, 32)
to enrich the receptive fields of graph nodes and better
extract local geometric information under multiple scales.
Inside each EEM, the outputs from all hidden layers are
concatenated and fed into a fully connected layer to fur-
ther increase the embedding scale diversity. As different
numbers of neighbors are connected, both fine-scale and
coarse-scale local information are taken into account, with
no need of discarding any graph node or topology structure.
As shown in Fig. 1, the outputs of the four EEMs are
concatenated before flowing to the downstream network.
The final output is a feature matrix X ∈ RN×F , where N
denotes the number of nodes and F denotes the dimension
of features which equals to 1024 in our implementation.

3.2.2 Decoder
After embedding the noisy surface into a multi-level feature
space, we transform the denoising problem into an iterative
residual learning task for our decoder, which is piled up
with a series of identical residual blocks followed by MLPs,
see Fig. 3. The k-th block is in the form of the following equa-
tion, performed by a shortcut connection and an element-
wise addition:

Xk
output = σ(Fk

Θ(X
k
input) +Xk

input), (3)

where Fk
Θ is the residual function, σ includes the operation

of batch normalization and activation function, and Xk
input

and Xk
output represent the input and output of the k-th resid-

ual block respectively, which are of the same dimensions as
the output feature map X ∈ RN×F from the encoder. The
components of the residual function F are flexible, and it
has already been proven to be highly efficient with regular
convolutional layers [35] in image-related tasks. We believe
that it is also applicable to graph convolution operations for
mesh denoising, as it is easier for the solver to find the noise
pattern with an identity mapping than barely learning one.
The effectiveness of our residual graph convolution struc-
tures is verified by extensive experiments demonstrated in
the following experiments. The detailed formulation of each
residual function Fk

Θ is also exhibited in Fig. 3, including

two linear layers for dimension transformations and a graph
convolutional layer in between. Note that the graph convo-
lution layers (FeaSt Conv) we adopt as the core units of our
residual blocks is an extension of the regular convolution
on 2D images, which is introduced to mesh surfaces by
[30]. A more concrete introduction to this kind of graph
convolution is presented in the Supplementary Material. In
our implementation, there are four residual blocks in the
decoder.

3.3 Loss Function
To optimize the performance of the network, we integrate
regularization terms into the loss functions for both normal
and vertex predictions. These regularization terms act as
constraints on local geometric information, ensuring that
the predicted normals and vertices remain consistent with
the underlying surface geometry.

3.3.1 Loss Function for Normal Regression
We design a normal joint loss function with a regularization
term in the normal-aware branch. 1) normal recovery loss and
2) smooth regularization loss.
Normal recovery loss For an input normal graph, we use
the L2 loss on the normal vectors to encourage the pre-
dicted facet normals to be consistent with the ground-truth
normals:

Ln =
1

Nf

Nf∑
i=1

∥n̄i − ngt
i ∥

2, (4)

where Nf is the number of face nodes in the input normal
graph, ni and ngt

i are the predicted normal vector and the
ground-truth normal vector of facet fi respectively.
Smooth regularization loss Inspired from the total variation
loss (TV Loss) [36] in image denoising, we design a smooth
regularization term Lsmooth to minimize the average square
distance between normal vectors of all adjacent face nodes
in the input graph, so that the smoothing ability of our
network can be further enhanced:

Lsmooth =
1

Ne

∑
(qi,qj)∈E

∥n̄i − n̄j∥2, (5)

where Ne is the edge number of the input normal graph (the
number of adjacent facet pairs). qi, qj are the corresponding
graph nodes of facet fi and fj , then (qi, qj) ∈ E means facet
fi and fj are adjacent.
Normal joint loss Overall, we formulate the joint loss
function for normal regression as a combination of the above
two functions:

L = Ln + λLsmooth, (6)

where the parameter is empirically set as: λ = 0.01.

3.3.2 Loss Function for Vertex Modification
As we formulate the vertex-aware branch a vertex posi-
tion modification process for feature recovery and topology
reconstruction, we propose to learn the coordinate offsets
for the vertices rather than directly regressing the denoised
positions, with experiments proving that the network con-
verges faster and performs better on the former (Section 4.4).
For training we adopt a vertex joint loss with two terms as

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

well, including a vertex fidelity term and a normal fidelity
term as regularization, namely 1) vertex recovery loss and 2)
normal regularization loss.
Vertex recovery loss We apply the L2 norm of the distance
from the modified vertex coordinate to the ground-truth
coordinates to encourage the predicted vertex offsets to be
as precise as possible:

Lv =
1

Nv

Nv∑
i=1

∥(pi +∆pi)− pgt
i ∥

2, (7)

where Nv is the number of vertices in the input spatial graph,
∆pi is the offset of vertex vi predicted by the network, and
pi and pgt

i are the original and ground-truth coordinates of
vertex vi respectively.
Normal regularization loss Taking the advantage of the
graph structure we build with the surface topology, for each
input spatial graph patch, in addition to necessary vertex
information, the ground truth normal of each facet and the
indices of its three correlated vertices are also recorded.
Thus we can calculate the normal fidelity of each facet in
the patch accordingly as a normal regularization term to
strengthen the surface geometric constraint for the network:

Lnormal =
1

Nf

Nf∑
i=1

∥normalize(ñi)− ngt
i ∥

2, (8)

where Nf is the number of faces in the input spatial graph,
ngt
i is the recorded ground truth normal of the i-th facet and

ñi is obtained by solving the following function:

(ei1, ei2)
Tñi = 0, (9)

where ei1 = p̃i0 − p̃i1 and ei2 = p̃i0 − p̃i2 are the two edge
vectors of the i-th triangular facet with ik(k = 0, 1, 2) being
the vertex index of the k-th vertex of it, p̃ik = pik + ∆pik

is the corresponding predicted vertex position. Specifically,
ñi can be calculated by ñi = (yi1zi2 − yi2zi1, zi1xi2 −
zi2xi1, xi1yi2 − xi2yi1) with ei1 = (xi1, yi1, zi1) and ei2 =
(xi2, yi2, zi2).
Vertex joint loss Overall, we formulate the joint loss func-
tion for vertex modification as a combination of the above
two functions:

L = Lv + λLnormal, (10)

where the parameter is empirically set as: λ = 0.01.

3.4 Inference
This section presents the implementation details of the
proposed method. The patch-to-patch strategy is adopted to
enable inference on each facet of the input mesh or patch si-
multaneously. Given a test noisy mesh, the trained network
ResGEM1

f is used to predict the noise-free normals of its
faces. A roughly denoised mesh M1 is then obtained after
vertex updating, as explained in the following paragraph,
on the original noisy surface. Next, the vertex-aware branch
of the proposed method applies a ResGEMv to perform
vertex modification, while the normal-aware branch em-
ploys two ResGEMf s to predict more accurate normal
vectors. Finally, the final denoised meshM is generated by
updating the vertices on the vertex-modified meshM′

1 from
the vertex-aware branch with the facet normals predicted

by ResGEM3
f . To address the limited computing power of

a single GPU, meshes with more than 20k faces or vertices
are segmented into several parts, each containing 20k faces
or vertices. Normal prediction or vertex modification is per-
formed separately for each part, and the predicted results
are merged back into the original mesh. The results on the
overlapped areas are averaged to improve performance on
the edge of each split patch. The impact of the input patch
size on the network’s performance is found to be negligible,
as verified in the ablation study (Section 4.4).
Vertex updating To obtain a denoised mesh surface with
consistent face normals and vertex positions, an iterative
process is applied to the noisy mesh and its inferred noise-
free normals for each face. The process involves updating
the positions of the face vertices iteratively until the final
denoised mesh surface is obtained. This vertex updating
scheme is based on a method described in [37], and is
described as follows:

x̃i = xi +
1

|Fv(i)|
∑

k∈Fv(i)

n̄k(n̄k · (ck − xi)), (11)

where xi and x̃i are the positions of vertex vi before and
after updating respectively, Fv(i) is the set of indices of
faces in the 1-ring neighborhood of vertex vi, n̄k is the
predicted normal vector of the k-th neighbor facet and ck
is the centroid of it. In our experiment, the iteration number
for each test mesh is set to 30.

4 EXPERIMENTAL RESULTS

In this section, we introduce the datasets used for training
and testing and the evaluation details of our method. Then
the proposed network is validated and evaluated from
both quantitative and qualitative analysis, as well as the
comparison with state-of-the-art mesh denoising methods
and ablation studies.

4.1 Datasets

To obtain more reliable and practical denoise results, our ex-
perimental datasets contain both synthetic and real-scanned
data. We build our training datasets based on the models
provided by [4], including 1) Synthetic dataset; 2) Kinect
v1 dataset; 3) Kinect v2 dataset and 4) Kinect Fusion dataset.
Detailed descriptions of these four datasets are as follows.

4.1.1 Synthetic Dataset

There are 21 synthetic models for training in total, consisting
of CAD models (CAD), smooth models (smooth) and mod-
els with rich fine-scale features (feature). For each model, we
synthesize three levels of Gaussian noise (the deviations are
set to 0.1, 0.2 and 0.3 of the average edge length l̄e of each
mesh) for training. After interest points detection (Section
3.1, ρ = 0.01, k = 2, the same below), 800 to 2000 points are
detected for each model, and then about 100k graphs in both
spatial and normal domain are generated as the training set,
with N = 1000 nodes in each graph.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

4.1.2 Real-scanned Dataset
Real-scanned models are all obtained from meshes scanned
by Microsoft Kinect. Three types of scanning results are
included:

• Kinect v1 dataset. There are 71 frames from four
models scanned by Kinect v1, generating about 80k
graphs after interest points detection and graph ex-
traction, with N = 1000 faces or vertices in each
graph.

• Kinect v2 dataset. There are 72 frames from four
models scanned by Kinect v2, generating about 60k
graphs after interest points detection and graph ex-
traction, with N = 1000 faces or vertices in each
graph.

• Kinect Fusion dataset. There are 3 meshes scanned by
Microsoft Kinect V1 via Kinect-Fusion technique [38],
generating 6k patches after interest points detection
and patch extraction, with N = 1000 faces in each
patch.

4.1.3 Test Data
Corresponding to the above four datasets, we also adopt
the test models provided in [4] to form our testing sets,
which are all invisible for the network. For the Synthetic
dataset, three levels of Gaussian noise are added to 29 test
meshes, including 14 CAD models, 7 smooth models and 8
models with rich features. For real-scanned data, there are
four meshes in the Kinect Fusion dataset: Boy01, Boy02, David
and Pyramid; and there are 73 and 72 frames of scanned
meshes in the Kinect v1 and the Kinect v2 dataset respectively,
which come from four statues: Boy (24 frames), Cone (12
frames), Girl (25 frames in the Kinect v1 dataset and 24 frames
in the Kinect v2 dataset) and Pyramid (12 frames). Several real-
scanned models without corresponding ground-truths and
models with extremely intensive or impulsive noise are also
taken into account to test the generalization ablility of our
method (Section 4.3.3).

4.2 Evaluation Strategy
4.2.1 Comparison Methods
We compare our method both qualitatively and quantita-
tively with other mesh denoising methods, including tradi-
tional methods and state-of-the-art learning-based methods.
Traditional methods contain guided normal filtering (GNF)
[3] and non-local low-rank normal filtering (NLLR) [12],
and the learning-based methods consist of cascaded nor-
mal regression (CNR) [4], facet graph convolutions (FGC)
[8], NormalF-Net (NFN) [6], GCN-Denoiser (GCN) [9] and
GeoBi-GNN (BGNN) [10].

The source code or pre-trained models of most of the
above methods are provided by their authors or imple-
mented by a third party. For NFN [6] and BGNN [10] that
have no publicly available or runnable source code, their
results are kindly provided by the authors.

4.2.2 Experimental Settings
With respect to the high distinction between noise patterns,
the training for different datasets are conducted separately.
For real-scanned models, the corresponding ground-truth

models are also provided by [4]. In addition, we apply some
random rotations to each graph before training to realize
data augmentation and encourage our network to learn the
permutation invariance. Notably, with the extracted graph
representations, a node number of 1000 is sufficient for our
network to learn the local noise pattern and inference a
mesh or patch of any size with equal performance (Fig. 13
(a)).

We implement our method with the deep learning
framework Pytorch and Pytorch Geometric [39], and adopt
the Adam optimizer with a learning rate scheduler starting
from 0.001. All experiments are conducted on a server with
eight GeForce RTX 3080Ti GPUs. It takes about 20 hours
for training the synthetic models and around 10 hours for
the real scanned models on both normal regression and
vertex modification. The geometric repository Easy3D [40]
is employed for topology search and input data generation.

4.2.3 Error Metrics
We adopt two common metrics, namely 1) mean angular
error (MAE) and 2) mean vertex error (MVE), to assess our
method and quantitatively compare it with state-of-the-art
approaches. Detailed definitions can be found as follows.

• Mean angular error (MAE).

Ea =
1

Nf

∑
fi∈M

arccos(n̄i · ngt
i), (12)

where Ea is the mean angular error (in degree)
between corresponding face normals of a denoised
mesh and the ground-truth mesh (the smaller, the
better), n̄i and ngt

i are the denoised normal and
original noise-free normal of facet fi respectively.

• Mean vertex error (MVE).

Ev =
1

NvLd

∑
vi∈M

|p̄i − pgt
i |, (13)

where Ev is the mean vertex position error between
corresponding vertices of a denoised mesh and the
ground-truth mesh (the smaller, the better), Ld is
the length of the diagonal of the bounding box of
the mesh, p̄i and pgt

i are the denoised coordinate
and original noise-free coordinate of vertex vi respec-
tively.

4.3 Comparison with State-of-the-art Approaches

4.3.1 Results on Synthetic Models
The objective comparison of the average angular error on
the Synthetic dataset is demonstrated in Fig. 5 (a), where Ours
denotes the denoised results with our proposed pipeline. As
illustrated, our method achieves the best performance in all
three categories. Fig. 6 visualizes the qualitative comparison
of different methods on several representative synthetic
models with their MAE and MVE values listed underneath.
The results of NLLR [12] and NFN [6] are similar because
they are both based on non-local similarity. CNR [4] has
disadvantages in feature preserving owing to its relatively
simple network architecture. As for GCN-based methods
including FGC [8], GCN [9], BGNN [10] and our method,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(a) Synthetic (b) Kinect v1 (c) Kinect v2 (d) Kinect Fusion

Fig. 5: The comparison result of mean angular error on synthetic and real-scanned datasets. Note that the source code
provided by the authors of NLLR [12] can only handle watertight meshes, so it is not included in Kinect v1 and Kinect v2
comparison. The authors of NFN [6] did not provide the results on the Kinect Fusion dataset.

θ = 33.17◦

ϵ = 31.51

θ = 31.78◦

ϵ = 8.01

(a) Noisy

θ = 8.00◦

ϵ = 16.95

θ = 11.96◦

ϵ = 6.39

(b) GNF

θ = 10.89◦

ϵ = 20.52

θ = 7.27◦

ϵ = 4.33

(c) NLLR

θ = 8.03◦

ϵ = 12.52

θ = 8.72◦

ϵ = 3.96

(d) CNR

θ = 8.84◦

ϵ = 17.21

θ = 7.38◦

ϵ = 6.53

(e) NFN

θ = 6.22◦

ϵ = 13.59

θ = 6.71◦

ϵ = 4.01

(f) FGC

θ = 5.04◦

ϵ = 11.38

θ = 6.05◦

ϵ = 3.15

(g) BGNN

θ = 4.14◦

ϵ = 10.04

θ = 4.87◦

ϵ = 2.74

(h) Ours (i) GT

Fig. 6: Visual comparison of different methods [3], [4], [6], [8], [10], [12] on the Synthetic dataset, including model (top)
SharpSphere and (bottom) Gargoyle with the Gaussian noise level 0.3le. Note that the θ and ϵ values underneath represent
the MAE and 104 times of MVE values of the models respectively. Due to limited space, FGC [8] and BGNN [10] are
selected as representatives for GCN-based methods.

the methods that adopt graph convolutional learning on
the spatial graph representation of mesh surfaces (BGNN
[10] and our method) perform better on fine-scale feature
recovering than the others. With residual structures in the
decoder, our network learns the noise pattern easier and
more efficiently with the support of an identity mapping.
Moreover, the well-designed encoder architecture allows
our network to extract multi-scale geometric features dy-
namically from the mesh surfaces to better distinguish the
underlying details and the noise, which proves to be an ef-
fective alternative for the graph pooling operations applied
in FGC [8] and BGNN [10].

4.3.2 Results on Real-scanned Models
Fig. 5 (b-d) illustrates the quantitative comparison of various
methods on the real-scanned datasets. Since the source code
provided by the authors of NLLR [12] can only handle
watertight meshes, it is not included in the Kinect v1 and
Kinect v2 comparison. The results of NFN [6] on the Kinect
Fusion dataset are also not provided by the authors. As
demonstrated, our method outperforms all other methods

in all categories on the Kinect Fusion and Kinect v1 dataset and
achieves optimal average result on the Kinect v2 dataset. The
rendering results of four meshes are visualized in Fig. 7 and
Fig. 8. The real-scanned meshes have much more complex
noise distribution than the synthetic models, especially for
the models in the Kinect Fusion and Kinect v1 dataset, which
have stair-shaped noisy surfaces. However, quantitative
results tell that our residual structured network performs
extraordinarily well on them. The filtering-based traditional
method GNF [3] is likely to over smooth the regions with
fine-scale features while mistakenly treating the noise on
the original plane surfaces as pseudo-features, having diffi-
culty distinguishing the noise and underlying features. Most
learning-based methods perform better than the traditional
ones, but some surface details are still over-smoothed in-
evitably. As can be observed, our method denoises the large
plane regions while preserving sharp features, such as edges
in the Pyramid02 model, the most faithfully to the ground
truth. It also recovers the mouth and nose area on the Boy02
model to the most, which is largely attributed to the vertex-
aware branch in the denoising pipeline. More visualized

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

θ = 32.52◦

ϵ = 4.78

θ = 24.01◦

ϵ = 4.18

(a) Noisy

θ = 11.67◦

ϵ = 4.55

θ = 10.38◦

ϵ = 4.06

(b) GNF

θ = 8.71◦

ϵ = 4.42

θ = 9.09◦

ϵ = 3.97

(c) CNR

θ = 9.36◦

ϵ = 4.43

θ = 9.47◦

ϵ = 4.00

(d) NFN

θ = 9.09◦

ϵ = 4.45

θ = 8.87◦

ϵ = 4.08

(e) FGC

θ = 9.28◦

ϵ = 4.46

θ = 8.48◦

ϵ = 3.86

(f) GCN

θ = 7.59◦

ϵ = 2.67

θ = 8.01◦

ϵ = 2.30

(g) BGNN

θ = 6.70◦

ϵ = 2.62

θ = 7.32◦

ϵ = 2.31

(h) Ours (i) GT

Fig. 7: Visual comparison of different methods [3], [4], [6], [8], [9], [10] on the real-scanned dataset, including the (top)
Pyramid02 model in the Kinect v1 dataset and the (bottom) Boy02 model in the Kinect v2 dataset, where θ represents the value
of the mean angular error and ϵ denotes the value of the mean vertex error magnified by 103.

TABLE 1: Running time comparisons (in seconds) on syn-
thetic models with implementable methods.

Model
Faces

GNF [3] NLLR [12] CNR [4] FGC [8] GCN [9] OursVertices

Gargoyle
171112

581 36 6 160 146 9385558

Sharp sphere
20882

66 4 1 24 12 610443

Eros100K
100000

329 20 3 91 60 3750002

Fertility
27954

85 7 1 33 13 813971

comparsion can be found in the Supplementary Material.

4.3.3 Results on Unseen Noise Patterns
To verify the advanced generalization ability of our method,
we further conduct experiments on models with unseen
noise patterns such as extremely high-level of Gaussian or
impulsive noise (level 0.6) and real-scanned noise for the
network trained on the Synthetic dataset with only relatively
low levels of Gaussian noise (level 0.1, 0.2 and 0.3). For
the intense Gaussian and impulsive noise, the normal an-
gular error heatmaps comparison of the denoised results
of two models (only methods with runnable source code
are included) are visualized in Fig. 16. As is demonstrated,
our method outperforms the others both quantitatively and
qualitatively. As for the Fandisk model corrupted by a high
level of Gaussian noise, the sharp edges and the cylindrical

surfaces are hardly recovered precisely by previous meth-
ods, however, our method achieves unprecedentedly high
fidelity with elaborated network structure and pipeline.
The fine-scale features of the Nicolo model under intense
impulsive noise are preserved the best by our method as
well. CNR [4] fails to identify some of the original surface
features from the impulsive noise and FGC [8] suffers from
the issue of large vertex displacements. Besides, it can be
observed that the problem of surface discontinuity hinders
the feature recovery effect of the method with patch-to-one
strategy (GCN [9]). Several real-scanned models are also
tested with the network model pre-trained on the Synthetic
dataset, including toy models (Fig. 9) and scene-level out-
door meshes (Fig. 10). Note that these real-scanned models
have no corresponding ground truths. It can be seen that our
method finds the best balance between surface smoothing
and feature recovery, and produces denoised results with
the highest quality, presenting outstanding generalization
capability over its competitors. Due to space limitation,
more qualitative comparisons on unseen noise levels or
distributions can be found in the Supplementary Material.

4.3.4 Running Time
Our method outperforms previous state-of-the-art GCN-
based methods in terms of running efficiency, thanks to the
adopted patch-to-patch strategy and the delicate network ar-
chitecture. Tab. 1 demonstrates the denoising time compar-

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

θ = 17.89◦

θ = 13.61◦

(a) Noisy

θ = 12.13◦

θ = 8.53◦

(b) GNF

θ = 13.00◦

θ = 9.44◦

(c) NLLR

θ = 11.94◦

θ = 7.49◦

(d) CNR

θ = 13.16◦

θ = 9.78◦

(e) FGC

θ = 12.65◦

θ = 8.25◦

(f) GCN

θ = 12.46◦

θ = 8.10◦

(g) BGNN

θ = 11.23◦

θ = 6.54◦

(h) Ours (i) GT

Fig. 8: Visual comparison of different methods [1], [3], [4], [10], [12] on the David model and the Pyramid model in the Kinect
Fusion dataset, where θ represents the value of the mean angular error and the values of the mean vertex error are left out
as they are close to each other.

(a) Noisy (b) GNF (c) NLLR (d) CNR (e) FGC (f) GCN (g) Ours

Fig. 9: Visual comparison of different methods [3], [4], [8], [9], [12] on two real-scanned models without ground truths,
including the (top) Angel model and the (bottom) Rabbit model. Note that the learning based methods are all conducted
with network parameters pre-trained only on the Synthetic dataset.

isons on several models. Among learning-based methods,
our approach takes almost half the time of the patch-to-
one based method GCN [9] and nearly a quarter of FGC
[8] on some models, as it avoids the cumbersome graph
coarsening and up-sampling pipeline. Although CNR [4]
has the least running time with relatively simple network
architecture, it leads to the least ability of feature preserving.
Regarding traditional methods, GNF [3] adopts face-wise
computation and takes even longer time as the face number
of the input mesh increases. On the other hand, NLLR
[12] transfers the denoising problem into a bunch of sparse
matrix computations and saves plenty of running time.
However, its unsatisfactory denoising results and tedious
parameter-tuning process are not as appealing.

4.4 Ablation Study

We perform various ablation studies to explore the role of
each part of the mesh denoising method we design.

4.4.1 Vertex Coordinate Learning

In the vertex-aware branch of our pipeline, there are two
ways for our network to learn the modified vertex coordi-
nates: 1) regress the offsets and add them to the original
coordinates; 2) regress the target coordinates directly. As
modification means some adjustment of offsets, we adopt
the first strategy. The validation losses of the first eleven
epochs trained on the Kinect Fusion dataset with the above
two strategies are demonstrated in Fig. 11 (a). We can tell

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) Noisy (b) GNF (c) NLLR (d) CNR (e) FGC (f) GCN (g) Ours

Fig. 10: Visual comparison of different methods [3], [4], [8], [9], [12] on three real-scanned scene-level models without
ground truths, where our methods stands out for its feature preserving effect. Note that the learning-based methods are all
conducted with network parameters pre-trained only on the Synthetic dataset.

(a) (b) (c)

Fig. 11: Results of ablation studies through out epochs. (a) The validation loss with two kinds of vertex learning strategies.
(b) The validation loss with or without the normal regularization loss. (c) The validation loss with different numbers of
residual blocks in the decoder.

that the network converges largely faster and performs
better on the former. We also conducted experiments to
explore the impact of normal regularization loss on vertex
learning, as shown in Fig. 11 (b). The results demonstrate
that incorporating the normal regularization loss into train-
ing leads to faster convergence and an increased likelihood
of finding the optimal solution. This observation is further
supported by a quantitative comparison between denoised
results obtained with and without (w/o) the normal regular-
ization loss in the vertex modification branch, as illustrated
in Fig. 12. After applying the regularization term to the
vertex-aware branch, we observed a significant reduction
in mean vertex errors for both M′

1 and M. This reduction
not only contributes to improved normal fidelity but also
highlights the effectiveness of the regularization term.

4.4.2 Number of Residual Blocks
We also tested different numbers of residual blocks for the
decoder, it turns out that four blocks are enough to achieve

optimal performance. More blocks make little difference and
may even impair the network’s performance with additional
space complexity. The validation loss for normal regression
throughout the first fifty epochs on the Kinect Fusion dataset
is shown in Fig. 11 (c).

4.4.3 Splitting Patch Size

To evaluate the robustness of our network with respect to
input graph size, we performed a series of experiments on
the splitting patch size for the inference of normal regres-
sion, with batch sizes ranging from 5k to 20k. The results
are presented in Fig. 13 (a) (results for vertex modification
can be inferred likewise). Interestingly, we observed that as
the splitting patch size increases, the performance of our
network on all four benchmark datasets remains stable. This
suggests that our network has learned to effectively model
connections and signal transmissions between graph nodes,
which can be generalized to input graph patches of any size.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Fig. 12: Results of the ablation studies on the normal reg-
ularization, where w/o normal regularization denotes that the
corresponding meshes in the pipeline go through the vertex-
aware branch by the network trained without the normal
regularization term.

4.4.4 Number of ResGEMfs
Moreover, different numbers of ResGEMf s are experi-
mented to prove the necessity of using multiple ResGEMf s
in our pipeline to regress the denoised normals in a cas-
caded manner. Fig. 13 (b) plots the performance on different
datasets. The results on three types of models in the Syn-
thetic dataset are demonstrated separately. We can tell that
the performance on most datasets improves significantly
during the first few iterations. However, the problem of
over smoothing emerges afterwards. For models with richer
features, the over-smoothed effect starts earlier. Considering
both time efficiency and the denoise quality, we use three
ResGEMf s in our implementation.

4.4.5 Vertex Modification
To verify the necessity of the vertex-aware branch in our
pipeline, vertex conditions of the Girl03 model in the Kinect
v2 dataset at different stages of our pipeline are compared
with another two GCN-based methods in Fig. 18. The
denoised result of the first iteration appears to be messy
in vertex distribution because only normal information is
considered, which seems almost the same as the result of
GCN [9]. The vertices in the result of BGNN [10] are well-
organized thanks to its simultaneous constraint on both nor-
mal and spatial domains, yet they are too well-distributed to
distinguish slight features from the over-smoothed surface,
such as the areas magnified at the right bottom. After
performing vertex modification, the distribution of vertices
becomes better arranged, and some features are recovered as
well. With new rounds of normal prediction conducted, the
denoised result after the final vertex updating has the sur-
face topology the most consistent with the ground truth and
maximum feature preservation. Thus the sequential training
strategy for normal regression and vertex modification in
our design is proven to be more effective for mesh denoising
than the simultaneous scheme adopted in BGNN [10].

4.4.6 Rationality of the Topology-consistent Design
To demonstrate the superiority of our hybrid, topology-
consistent approach over those incorporating graph pool-
ing, we conduct additional experiments to assess the ef-
ficiency of our network compared to graph convolution
approaches with graph pooling operations. The findings

(a) (b)

Fig. 13: Results of two more ablation studies. (a) Experiment
results on different splitting patch sizes during the inference
for normal regression. (b) Experiment results on different
iteration numbers of normal regression. The synthetic data
are under the scale of the left y axis and the Kinect data
are under the right. In both images, the legend labels Kv1,
Kv2 and K-F represent Kinect v1 dataset, Kinect v2 dataset and
Kinect Fusion dataset respectively.

Fig. 14: Ablation studies on different network structures and
training strategies.

are outlined in Tab. 2. ”Hybrid w/o pooling” refers to our
multi-scale design utilizing two types of graph convolu-
tions, while ”FeaSt Conv w/ pooling” indicates a network
solely built with FeaSt Conv layers and graph pooling oper-
ations. The interpretation of ”ECC w/ pooling” follows sim-
ilarly. As graph pooling operations, combined with symmet-
rical up-sampling processes, typically necessitate consistent
graph convolution structures throughout the network to re-
store the original graph, hybrid structures with pooling are
unnecessary to consider. As depicted, our network without
pooling significantly outperforms the pooling networks in
both denoising effectiveness and efficiency. This observation
underscores the rationality of our hybrid and multi-scale de-
sign, which adeptly captures multi-scale geometric features
and noise patterns without the need for pooling operations.

TABLE 2: Comparisons with networks that utilize pooling
on the Synthetic dataset. We measure the mean angular errors
(MAE) and the average inference times (in seconds) of
the first normal regression iteration. The best results are
highlighted in bold.

Structure Time (s) MAE
Hybrid w/o pooling (Ours) 42.6 3.15

FeaSt Conv w/ pooling 44.0 4.93
ECC w/ pooling 43.1 4.83

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

Fig. 15: An illustration of different stages of the pipeline and
their corresponding notations.

4.4.7 Overall Pipeline Design

In our implementation, the vertex modification process
takes place after the initial iteration of normal regression.
This design is motivated by the observation that the prob-
lem of over-smoothing becomes more pronounced as sub-
sequent normal filtering processes occur, posing a challenge
for the vertex-aware branch to recover features effectively.
To substantiate our hypothesis, we conducted additional
tests by modifying vertices at various stages of the pipeline.
The quantitative results on both the Kinect v1 dataset and the
Kinect v2 dataset are presented in Fig. 17. As expected, M′

1

exhibits superior performance compared toM′
2 andM′

3 in
terms of mean vertex errors on both datasets, achieving the
most comprehensive recovery of vertex positions. However,
this stage yields relatively lower performance in terms of
average normal errors, as some noise is inevitably retained
while simultaneously recovering the surface topology pat-
tern. Conversely, due to the over-smoothing problem arising
from exclusive normal filtering, the vertex position errors of
Mis remain relatively high. As a solution to achieve simul-
taneous denoising effects on both normals and vertices, we
updated the vertex positions ofM′

1 with predicted normals
from M3, resulting in a significant reduction in errors for
both metrics. More visualized comparisons can be found in
the Supplementary Material.

4.4.8 Network and Training Design

Subsequently, we experiment on different network architec-
tures and training strategies to verify our network design.
The following conditions are taken into account:

• w/ a static EEM only: The encoding part only contains
a static EEM.

• w/ a static and a dynamic EEM (k=8) only: The encoding
part combines the embedding results of a static EEM
and a dynamic EEM with only a small scale of
neighborhood (the number of neighbors is 8).

• w/ a dynamic EEM (k=8) only: The encoder only con-
tains a dynamic EEM with a small scale of neighbor-
hood (the number of neighbors is 8).

• w/ multi-scale dynamic EEMs (k=8,16,32) only: The
encoder combines the embedding results of three
dynamic EEMs with different scales of neighborhood
(the numbers of neighbors equal to 8, 16 and 32).

• w/o residual structures: The basic residual blocks in the
decoder are all replaced by plain graph convolution
layers.

• w/ a residual static EEM as the decoder: The graph
convolution layers in the decoder are all replaced by
the same ones as the static EEM in the encoder.

• w/o smooth regularization: The network with the full
architecture is trained under the supervision of only
the normal recovery loss for normal regression.

• w/o key points extraction: The training set is generated
with randomly sampled seed points through the
farthest point sampling (FPS) algorithm instead of
carefully selected key points.

• our full: The full architecture with a four EEMs in
the encoder and residual structured decoder, which
is trained on the training set generated from pre-
detected key points and supervised by the normal
joint loss.

Fig. 14 plots the normal regression results of different design
choices of our network training on the Synthetic dataset. As is
demonstrated, each part of our network training design con-
tributes to the mesh denoising performance. Particularly, the
decoder utilizing the FeaSt Conv outperforms the decoder
that employs the same convolution unit as the encoder.
This observation highlights the carefully designed network
structure, featuring distinct modules in both the encoder
and decoder. Moreover, as the key points extraction strategy
has been replaced by the simple and random FPS algorithm,
the denoising ability of the network has been significantly
diminished. As a result, comprehensive training using the
full network architecture, along with the original training
schemes involving key points extraction and smooth regu-
larization, achieves the best performance. This underscores
the superiority and rationality of our design.

5 LIMITATIONS

Although our method enables high-quality solutions for
mesh denosing on various models, there still exist limi-
tations that can be further optimized to enhance its per-
formance. One limitation of our proposed framework is
that the smooth regularization term can cause the network
to prioritize smoothness over fine-scale or sharp features,
resulting in a tendency to over-smooth. Additionally, our
connection-based graph extraction strategy can only gen-
erate graphs from connected surfaces, and the number of
nodes in each input graph must exceed the number of
neighbors required for the feature embedding module at the
largest scale, which is 32 in our implementation. Therefore,
it is worth exploring alternative methods for constructing
graphs that can capture surface information while relying
less on local connectivity.

6 CONCLUSIONS AND FUTURE DIRECTIONS

We presented a novel graph convolution network termed
ResGEM for efficient patch-to-patch mesh denoising. Our
network employs a structured encoder-decoder architecture,
incorporating hybrid graph convolutions to balance denois-
ing effectiveness and computational complexity. In the en-
coder, multi-scale edge-conditioned convolutions efficiently

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

θ = 44.71◦

ϵ = 6.83

θ = 36.65◦

ϵ = 11.23

(a) Noisy

θ = 6.72◦

ϵ = 3.15

θ = 6.74◦

ϵ = 6.28

(b) GNF

θ = 11.07◦

ϵ = 2.57

θ = 6.04◦

ϵ = 4.04

(c) NLLR

θ = 8.61◦

ϵ = 2.57

θ = 6.99◦

ϵ = 4.74

(d) CNR

θ = 7.08◦

ϵ = 2.30

θ = 5.42◦

ϵ = 4.31

(e) FGC

θ = 3.95◦

ϵ = 1.73

θ = 5.03◦

ϵ = 3.79

(f) GCN

θ = 2.81◦

ϵ = 1.46

θ = 4.61◦

ϵ = 3.61

(g) Ours

Fig. 16: Visualized normal angular error heatmaps of different methods [3], [4], [8], [9], [12] on unseen extreme noise,
including model (top) Fandisk with the Gaussian noise of level 0.6le and (bottom) Nicolo with the impulsive noise of level
0.6 (both in percentage and strength). The θs represent the MAE values and the ϵs represent 103 times and 104 times of
MVE values of the Fandisk models and the Nicolo models respectively.

(a) Kinect v1 (b) Kinect v2

Fig. 17: The quantitative comparison between the denoised results on the Kinect v1 dataset and the Kinect v2 dataset from
different pipeline stages, where Mi denotes the denoised mesh after the i-th iteration of normal regression, M′

i denotes
the vertex modification result of meshMi, andMi denotes the final updated mesh fromM′

i with the predicted normals
of M3. A more intuitive map is illustrated in Fig. 15 to exhibit the relations between the above notations. Note that the
number of normal iterations is fixed to 3 with respect to the ablation study demonstrated in section 4.4.4.

extract multi-level features in a topology-consistent manner,
while the decoder utilizes more intricate convolutions to
reconstruct the noise-free surface at manageable compu-
tational costs. Additionally, unlike previous dual-domain
methods [10], [11] that perform simultaneous training on
both normal and facial graph representations, we propose
a two-branch pipeline to sequentially facilitate the recovery
of local geometric information and correct vertex distortion,
leading to significant improvements in denoising quality.
Furthermore, the integration of regularization terms for both
normal regression and vertex modification enhances conver-
gence and denoising accuracy by constraining local normal
consistency and fidelity. Exhaustive qualitative and quan-
titative experimental results demonstrate that our method
outperforms state-of-the-art approaches in denoising effects
and generalization ability.

In the future, there are two main research directions

that are worthy of exploration. Firstly, the development of
unsupervised or semi-supervised learning methods is neces-
sary, since noisy models usually lack corresponding ground
truth, especially for real-world scanned ones. Secondly, most
existing methods perform normal prediction and vertex up-
dating sequentially and separately, which is not an end-to-
end trainable pipeline. How to integrate normal prediction
and vertex updating into a fully end-to-end architecture is
still an open yet quite valuable issue.

ACKNOWLEDGEMENT

This work is partially funded by the Strategic Priority
Research Program of the Chinese Academy of Sciences
(XDB0640000), National Natural Science Foundation of
China (62172415,62102414,62172416), and the Guangdong
Science and Technology Program (2023B1515120026).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

(a) Noisy (b) GCN (c) BGNN (d) Ours-M1 (e) Ours-M′
1 (f) Ours-M (g) GT

Fig. 18: Visual comparison of vertex conditions in different stages of our pipeline and two other GCN-based methods [9],
[10], where Ours-M1 is the denoise result after the first iteration of normal prediction, Ours-M′

1 represents the adjusted
mesh after vertex modification and Ours-M denotes the vertex updating result of Ours-M′

1 by the predicted normals of
the third iteration.

REFERENCES

[1] Y. Zheng, H. Fu, O. K.-C. Au, and C.-L. Tai, “Bilateral normal
filtering for mesh denoising,” IEEE Trans. Vis. Comput. Graph.,
vol. 17, no. 10, pp. 1521–1530, 2010.

[2] K.-W. Lee and W.-P. Wang, “Feature-preserving mesh denoising
via bilateral normal filtering,” in IEEE Int. Conf. Comput. Aided
Des. Comput. Graph., 2005, pp. 1–6.

[3] W. Zhang, B. Deng, J. Zhang, S. Bouaziz, and L. Liu, “Guided mesh
normal filtering,” Comput. Graph. Forum, vol. 34, no. 7, pp. 23–34,
2015.

[4] P.-S. Wang, Y. Liu, and X. Tong, “Mesh denoising via cascaded
normal regression,” ACM Trans. Graph., vol. 35, no. 6, pp. 1–12,
2016.

[5] W. Zhao, X. Liu, Y. Zhao, X. Fan, and D. Zhao, “NormalNet:
Learning-based normal filtering for mesh denoising,” IEEE Trans.
Circuit Syst. Video Technol., vol. 31, no. 12, pp. 4697–4710, 2021.

[6] Z. Li, Y. Zhang, Y. Feng, X. Xie, Q. Wang, M. Wei, and P.-A.
Heng, “NormalF-Net: Normal filtering neural network for feature-
preserving mesh denoising,” Comput. Aided Des., vol. 127, p.
102861, 2020.

[7] X. Li, R. Li, L. Zhu, C.-W. Fu, and P.-A. Heng, “Dnf-net: A deep
normal filtering network for mesh denoising,” IEEE Trans. Vis.
Comput. Graph., vol. 27, no. 10, pp. 4060–4072, 2020.

[8] M. Armando, J. Franco, and E. Boyer, “Mesh denoising with facet
graph convolutions,” IEEE Trans. Vis. Comput. Graph., 2021.

[9] Y. Shen, H. Fu, Z. Du, X. Chen, E. Burnaev, D. Zorin, K. Zhou,
and Y. Zheng, “GCN-denoiser: Mesh denoising with graph con-
volutional networks,” ACM Trans. Graph., vol. 41, no. 1, pp. 1–14,
2022.

[10] Y. Zhang, G. Shen, Q. Wang, Y. Qian, M. Wei, and J. Qin, “GeoBi-
GNN: Geometry-aware bi-domain mesh denoising via graph neu-
ral networks,” Comput. Aided Des., vol. 144, p. 103154, 2022.

[11] S. Hattori, T. Yatagawa, Y. Ohtake, and H. Suzuki, “Learning
self-prior for mesh denoising using dual graph convolutional
networks,” in Proc. Eur. Conf. Comput. Vis., 2022.

[12] X. Li, L. Zhu, C.-W. Fu, and P.-A. Heng, “Non-local low-rank nor-
mal filtering for mesh denoising,” Comput. Graph. Forum, vol. 37,
no. 7, pp. 155–166, 2018.

[13] M. Wei, J. Huang, X. Xie, L. Liu, J. Wang, and J. Qin, “Mesh
denoising guided by patch normal co-filtering via kernel low-rank
recovery,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 10, pp. 2910–
2926, 2018.

[14] X. Lu, S. Schaefer, J. Luo, L. Ma, and H. Ying, “Low rank matrix
approximation for 3D geometry filtering,” Comput. Graph. Forum,
vol. 38, no. 5, pp. 75–83, 2019.

[15] L. He and S. Schaefer, “Mesh denoising via l0 minimization,” ACM
Trans. Graph., vol. 32, no. 4, pp. 1–8, 2013.

[16] X. Lu, W. Chen, and S. Schaefer, “Robust mesh denoising via
vertex pre-filtering and l1-median normal filtering,” Comput. Aided
Geom. Des., vol. 54, pp. 49–60, 2017.

[17] Y. Zhao, H. Qin, X. Zeng, J. Xu, and J. Dong, “Robust and effective
mesh denoising using l0 sparse regularization,” Comput. Aided
Des., vol. 101, pp. 82–97, 2018.

[18] L. Zhu, M. Wei, J. Yu, W. Wang, J. Qin, and P.-A. Heng, “Coarse-to-
fine normal filtering for feature-preserving mesh denoising based
on isotropic subneighborhoods,” Comput. Graph. Forum, vol. 32,
no. 7, pp. 371–380, 2013.

[19] M. Wei, L. Liang, W.-M. Pang, J. Wang, W. Li, and H. Wu, “Tensor
voting guided mesh denoising,” IEEE Trans. Autom. Sci. Eng.,
vol. 14, no. 2, pp. 931–945, 2017.

[20] S. K. Yadav, U. Reitebuch, and K. Polthier, “Mesh denoising based
on normal voting tensor and binary optimization,” IEEE Trans. Vis.
Comput. Graph., vol. 24, no. 8, pp. 2366–2379, 2018.

[21] K. Li, M. Zhao, H. Wu, D.-M. Yan, Z. Shen, F.-Y. Wang, and
G. Xiong, “Graphfit: Learning multi-scale graph-convolutional
representation for point cloud normal estimation,” in Proc. Eur.
Conf. Comput. Vis. Springer, 2022, pp. 651–667.

[22] M. Zhao, L. Ma, X. Jia, D.-M. Yan, and T. Huang, “Graphreg:
Dynamical point cloud registration with geometry-aware graph
signal processing,” IEEE Trans. Image Process., vol. 31, pp. 7449–
7464, 2022.

[23] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and deep locally connected networks on graphs,” in Proc. Int. Conf.
Learn. Represent., 2014.

[24] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filtering,”
in Proc. Int. Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[25] D. Valsesia, G. Fracastoro, and E. Magli, “Learning localized
generative models for 3D point clouds via graph convolution,”
in Proc. Int. Conf. Learn. Represent., 2018, pp. 1–15.

[26] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph CNN for learning on point clouds,”
ACM Trans. Graph., vol. 38, no. 5, pp. 1–12, 2019.

[27] J. Zhang, B. Deng, Y. Hong, Y. Peng, W. Qin, and L. Liu,
“Static/dynamic filtering for mesh geometry,” IEEE Trans. Vis.
Comput. Graph., vol. 25, no. 4, pp. 1774–1787, 2019.

[28] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and
D. Cohen-Or, “MeshCNN: a network with an edge,” ACM Trans.
Graph., vol. 38, no. 4, pp. 1–12, 2019.

[29] J. Schult, F. Engelmann, T. Kontogianni, and B. Leibe,
“DualConvMesh-Net: Joint geodesic and euclidean convolutions
on 3D meshes,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
2020, pp. 8612–8622.

[30] N. Verma, E. Boyer, and J. Verbeek, “FeastNet: Feature-steered
graph convolutions for 3D shape analysis,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2018, pp. 2598–2606.

[31] I. Sipiran and B. Bustos, “Harris 3D: a robust extension of the
harris operator for interest point detection on 3D meshes,” Visual
Comput., vol. 27, no. 11, pp. 963–976, 2011.

[32] C. Harris, M. Stephens et al., “A combined corner and edge
detector,” in Alvey Vis. Conf., 1988, pp. 1–6.

[33] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Zeevi, “The farthest

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

point strategy for progressive image sampling,” IEEE Trans. Image
Process., vol. 6, no. 9, pp. 1305–1315, 1997.

[34] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned
filters in convolutional neural networks on graphs,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recog., 2017, pp. 3693–3702.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
June 2016, pp. 770–778.

[36] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation
based noise removal algorithms,” Phys. D: Nonlinear Phenom.,
vol. 60, no. 1-4, pp. 259–268, 1992.

[37] X. Sun, P. L. Rosin, R. Martin, and F. Langbein, “Fast and effec-
tive feature-preserving mesh denoising,” IEEE Trans. Vis. Comput.
Graph., vol. 13, no. 5, pp. 925–938, 2007.

[38] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-time dense surface mapping and tracking,” in
IEEE Int. Symp. Mix. Augment. Real., 2011, pp. 127–136.

[39] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in Proc. Int. Conf. Learn. Represent. Worksh.,
2019.

[40] L. Nan, “Easy3D: a lightweight, easy-to-use, and efficient C++
library for processing and rendering 3D data,” J. Open Source
Softw., vol. 6, no. 64, p. 3255, 2021.

Ziqi Zhou is currently a graduate student at
the School of Artificial Intelligence, University of
Chinese Academy of Sciences (UCAS). She is
also a research student at the State Key Labora-
tory of Multimodal Artificial Intelligence Systems
(MAIS) & National Laboratory of Pattern Recog-
nition (NLPR), Institute of Automation, Chinese
Academy of Sciences (CAS). Her research in-
terests include computer graphics, computer vi-
sion, and multimodal information processing.

Mengke Yuan received the bachelor’s degree
in applied mathematics and the master’s degree
in computational mathematics from Zhengzhou
University, Zhengzhou, China, in 2012 and 2015,
respectively, and the Ph.D. degree in com-
puter sciences from the State Key Labora-
tory of Multimodal Artificial Intelligence Systems
(MAIS) & National Laboratory of Pattern Recog-
nition (NLPR), Institute of Automation, Chinese
Academy of Sciences (CASIA), Beijing, China,
in 2019. He is currently a researcher at PIESAT

Information Technology Co Ltd. His research interests include image
processing, computer vision, and computer graphics.

Mingyang Zhao is currently a research assis-
tant professor at CAIR, Hong Kong Institute of
Science & Innovation, Chinese Academy of Sci-
ence (CAS). He received the PhD degree from
Academy of Mathematics and Systems Science,
CAS, in 2021. He now focuses his research
and development on robust estimation, geomet-
ric problems, and Gaussian processes. He is
awarded the grand Phd scholarship of Saudi
Arabian, and the excellent student prize of presi-
dent fellowships, Chinese Academy of Sciences

in 2020 and 2021, respectively.

Jianwei Guo is an Associate Professor at the
State Key Laboratory of Multimodal Artificial In-
telligence Systems (MAIS) & National Labora-
tory of Pattern Recognition (NLPR), Institute of
Automation, Chinese Academy of Sciences (CA-
SIA). He received his Ph.D. degree in computer
science from CASIA in 2016, and bachelor’s
degree from Shandong University in 2011. His
research interests include computer graphics,
geometric processing and 3D vision.

Dong-Ming Yan (Member, IEEE) is a professor
at the State Key Laboratory of Multimodal Artifi-
cial Intelligence Systems (MAIS) & National Lab-
oratory of Pattern Recognition (NLPR), Institute
of Automation, Chinese Academy of Sciences
(CAS). He received his Ph.D. from Hong Kong
University in 2010 and his Master’s and Bache-
lor’s degrees from Tsinghua University in 2005
and 2002, respectively. His research interests
include computer graphics, computer vision, ge-
ometric processing and pattern recognition.

	Introduction
	Related Work
	Mesh Denoising
	Traditional Methods
	Learning-based Methods

	Graph Convolutional Networks

	Method
	Data Preparation
	Graph Representation
	Graph Extraction and Alignment
	Key Points Based Training Set Generation

	Network Architecture
	Encoder
	Decoder

	Loss Function
	Loss Function for Normal Regression
	Loss Function for Vertex Modification

	Inference

	Experimental Results
	Datasets
	Synthetic Dataset
	Real-scanned Dataset
	Test Data

	Evaluation Strategy
	Comparison Methods
	Experimental Settings
	Error Metrics

	Comparison with State-of-the-art Approaches
	Results on Synthetic Models
	Results on Real-scanned Models
	Results on Unseen Noise Patterns
	Running Time

	Ablation Study
	Vertex Coordinate Learning
	Number of Residual Blocks
	Splitting Patch Size
	Number of ResGEMfs
	Vertex Modification
	Rationality of the Topology-consistent Design
	Overall Pipeline Design
	Network and Training Design

	Limitations
	Conclusions and Future Directions
	References
	Biographies
	Ziqi Zhou
	Mengke Yuan
	Mingyang Zhao
	Jianwei Guo
	Dong-Ming Yan

