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Figure 1: Given a raw point cloud, our pipeline fits it with a set of geometric primitives by recovering surfaces, edges, and
corners simultaneously. The unified neural framework obtains a parametric and compact model representation, which enables
us to reconstruct the CAD model accurately and allows the users to edit its shape easily.

ABSTRACT
Fitting primitives for point cloud data to obtain a structural rep-
resentation has been widely adopted for reverse engineering and
other graphics applications. Existing segmentation-based approach-
es only segment primitive patches but ignore edges that indicate
boundaries of primitives, leading to inaccurate and incomplete re-
construction. To fill the gap, we present a novel surface and edge
detection network (SED-Net) for accurate geometric primitive fit-
ting of point clouds. The key idea is to learn parametric surfaces
(including B-spline patches) and edges jointly that can be assem-
bled into a regularized and seamless CAD model in one unified
and efficient framework. SED-Net is equipped with a two-branch
structure to extract type and edge features and geometry features of
primitives. At the core of our network is a two-stage feature fusion
mechanism to utilize the type, edge and geometry features fully.
Precisely detected surface patches can be employed as contextual
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information to facilitate the detection of edges and corners. Benefit-
ing from the simultaneous detection of surfaces and edges, we can
obtain a parametric and compact model representation. This enables
us to represent a CAD model with predefined primitive-specific
meshes and also allows users to edit its shape easily. Extensive ex-
periments and comparisons against previous methods demonstrate
our effectiveness and superiority.
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1 INTRODUCTION
As the point cloud is one of the most convenient forms directly
captured by 3D scanning devices, automatically reconstructing
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CAD models from point cloud data can save a lot of labor for
reverse engineering, digital twin, and other industrial applications.
To solve this problem, previous works predict a set of bounding
primitives, such as cubes and superquadrics, to roughly abstract
input shapes [31, 36, 38, 39, 41, 60]. However, this straightforward
solution tends to lose a lot of geometric details. The conversion of
mapping a 3D point cloud to a collection of geometric primitives
that best fit the underlying shape would undoubtedly benefit many
downstream tasks. However, leading primitive fitting methods [20,
37, 53] only segment primitive patches, but ignore edges which
are important visual features. As a result, the reconstructed model
would inevitably suffer from visual artifacts, due to the existence of
errors in surface fitting which could create gaps between patches.
Guo et al. [7] detect primitive patches, edges, corners, and their
topology relationship by using a complex network. Indeed, edge
information is fully discovered by Guo et al. [7] but ignored in other
methods [37, 53]. We argue that edges in fact indicate boundaries
of primitive patches, and incorporating edge information would
certainly facilitate the segmentation of primitive patches to achieve
more accurate and seamless 3D shape reconstruction. However,
fully discovering edges, i.e., predicting edges and their relationships
to patches, requires a complex network, which increases training
difficulty. Incorrectly predicted relationships would also lead to
failure, which injures the robustness. We propose a compromise
between the two technical routes by leveraging edge information
in an effective network.

Given a point cloud, our goal is to predict a set of geometric
primitives for generating a seamless and high-quality mesh model,
which is consistent with the underlying shape. What remarkably
distinguishes our method from previous approaches lies in that (i)
we utilize edge information to boost the performance of primitive
segmentation, (ii) we implement a joint fitting strategy to obtain
primitive patches and edges as the clear boundaries consecutively
by using our precisely segmented primitives and edge points. To
this end, we propose the Surface and Edge Detection Network (SED-
Net), which achieves the detection of surface patches and edges
to fit geometric primitives by exploring their relationship in an
end-to-end deep learning-based framework.

Our SED-Net contains two branches to separately extract type
and edge features and local geometric features. Two individual point
decoders are introduced to extract type and boundary information
in the classification branch and geometry information from the
instance segmentation branch. The core of our network is a two-
stage feature fusion mechanism which utilizes the type, edge and
geometric features fully. In the early fusion stage, type and edge
features are embedded in the latent space of primitive features
and added to primitive features to combine the type and boundary
information with local geometric information. In the late fusion
stage, predicted edges and types are concatenated and encoded into
the instance segmentation branch. The primitive features are thus
further aligned with type and edge features of the two learned maps.
Taking advantage of features from edges and types, neighboring
primitives with similar geometry features and obscure boundaries
can be correctly distinguished. We design a hybrid loss function to
regress primitives together with their types and edges.

Taking advantage of the detected edge points from our network,
the primitive patches are fitted accurately by excluding the influ-
ence from the wrong segmentation near edges. We predefine a
corresponding compact mesh representation for each geometric
primitive. With the final fitted primitives, we are able to construct
a compact and seamless model with such predefined primitive-
specific meshes, as shown in Fig. 1. Furthermore, a parametric
representation can be obtained, allowing the users to edit its shape
easily.

To summarize, our work makes the following contributions:

• SED-Net, a novel neural network with a two-branch struc-
ture, which separately extracts the type and edge features
and the geometric features, to boost the primitive segmenta-
tion performance on point cloud data.

• A two-stage feature fusion mechanism that fully utilizes clas-
sification information including types and edges, by fusing
type and edge features to the instance segmentation branch.

• A joint fitting strategy based on our simultaneously detected
primitives and edge points, which enables faithful recon-
struction of a compact, seamless and editable shape with
accurate patches, edges and corners.

2 RELATEDWORK
Primitive fitting. Traditionally, RANSAC [6, 22, 34], parameter

space [23, 32], primitive growing [2, 29], and variational surface
fitting [5, 52, 58] are mainstream methodologies of approximat-
ing and abstracting 3D shapes. Kaiser et al. [13] provide a survey
on primitive detection of 3D data. These methods require careful
parameter tuning for each shape category but our learning-based
approach is not user-aided.

With the development of deep learning, neural networks are used
to deal with the unordered point cloud data [4, 21, 40, 47, 59] and
inspire many applications [10, 26, 44, 45, 54]. Learning-based CAD
reconstruction methods represent 3D shapes by either (i) using ab-
stract representations or CAD instructions, or (ii) using parametric
surfaces. In category (i), cuboids [39, 41, 60], rounded cuboids [38],
superquadrics [31], configurations of planes [57], half-spaces [8],
box sequences [24] are learned by networks to abstract 3D shapes.
Furthermore, using constructive solid geometry (CSG) operations
is also a popular solution [11, 12, 14, 17, 18, 33, 35, 36, 42, 48–51, 55].
In category (ii), Li et al. [20] propose SPFN, which segments point
clouds and fits several primitive patches including plane, cylinder,
cone and sphere. However, the structure of SPFN limits the number
of segmented primitives not exceeding 20. Lê et al. [19] extend
SPFN to a cascaded structure to deal with high-resolution point
clouds. Sharma et al. [37] propose ParSeNet, which also fits B-spline
patches. But ParSeNet does not fully utilize information of shape
geometry. In contrast, our method exploits type and boundary in-
formation to promote the performance of primitive segmentation.
Yan et al. [53] propose HPNet, which leverages hybrid representa-
tions to obtain primitives with smooth boundaries. However, their
consistency adjacency matrix takes a lot of computation, which
increases the inference time. Our network uses a novel two-stage
feature fusion strategy to utilize type and edge features effectively
and efficiently. Recently, Guo et al. [7] detected primitive patches,
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Figure 2: Illustration of our SED-Net with a two-branch structure, including a classification branch and a instance segmentation
branch. After extracting point features by an encoder, we apply two point decoders to obtain type and edge features and
primitive features, separately. A two-stage feature fusion mechanism is then proposed to utilize features from the two branches.
Type and edge features are embedded in the primitive feature space and further fused by addition. The edge map E and types T
are regressed by two decoders respectively. E and T are concatenated together and encoded to early fused features. We regress
segmentation descriptors by a decoder from late fused features and segment points by mean-shift clustering. Finally, edges and
corners are detected and the compact model is reconstructed by predefined primitive-specific meshes.

edges, corners and their topology relationships. They trained a
complex network that consumes a lot of computational resources.

Edge detection and point cloud consolidation. As important geo-
metric features, edges are critical to compact shape reconstruction
and point cloud consolidation. Öztireli et al. [30] identify and pre-
serve sharp features by using moving least squares. Huang et al.
[9] propose EAR to compute reliable normals and progressively
resample the point set for obtaining consolidated edges. Awrangjeb
[1] and Lin et al. [25] extract line segments from outdoor large-scale
point clouds. Yu et al. [56] propose EC-Net, which is a deep neural
network, to upsample point cloud and consolidate edges. Wang
et al. [46] propose the learning-based PIE-Net to infer parametric
edges and corners of point clouds. Metzer et al. [28] propose a
feature-aware point cloud consolidation network. Matveev et al.
[27] propose DEF to predict the distance to edges of each point
to reconstruct edges effectively. However, the distance field may
be obscure between close feature curves. In summary, previous
edge detection methods only detect edge points and their attributes,
hence information from non-edge regions is not fully utilized. Our
SED-Net treats edge detection and primitive segmentation as dual
tasks, which can achieve better performance.

3 METHOD
3.1 Problem Statement
Given a 3D point cloud with (or without) normals P = {p𝑖 ∈
R3 𝑜𝑟 R6, 𝑖 = 1, 2, ..., 𝑁 }, we aim to reconstruct a complete struc-
tured CAD model. The problem can be decomposed into two sub-
problems: (i) extract a collection of geometric primitives whose
combination accurately fits the input shape, and (ii) predict a set of
edges constituting clear boundaries of the primitives. Specifically,
we segment the input shape into 𝐾 primitives with primitive type
T = {t𝑖 ∈ [0, 1]𝐿}, where we useW = {w𝑖 ∈ [0, 1]𝐾 } to represent
the point-to-primitive membership. To accommodate the training
datasets, we set 𝐿 = 6 as we restrict to the following types of geo-
metric primitives: plane, cylinder, cone, sphere, and open and closed

B-spline patch. We set 𝐾 = 128 following [37] and [53]. The edges
are the intersection (i.e., line, circle, ellipse, and other freeform
curves) of the surface primitives. We also predict a binary edge
classification E = {e𝑖 ∈ [0, 1]2}, which classifies a point is an edge
point or not. Then the parameters of primitive patches (excluding
B-splines) and parametric edges (excluding freeform curves), as
well as the coordinates of corners can be directly fitted and calcu-
lated. To determine the parameters of B-splines, we reimplement
the fitting approach introduced by SplineNet [37]. The freeform
curves can be represented as a set of piecewise linear segments,
which can be efficiently calculated by the intersection of triangular
meshes of primitives. Finally, after learning the geometric elements
with corresponding parameters, we can reconstruct a compact and
seamless CADmodel by using predefined primitive-specific meshes
and fitted B-splines.

3.2 Learning to Instantiate Primitives
We exploit the assumption that accurate edge information would
greatly promote the performance of surface primitive segmentation.
Therefore, SED-Net is designed to learn an accurate primitive seg-
mentation of the input shape by taking full advantage of the type
and boundary information of primitives. Our network architecture
is summarized in Fig. 2, comprising two novel components: a two-
branch structure and a two-stage feature fusion mechanism. Given
the input point cloud, we apply a graph CNN encoder equipped
with three stacked edge convolution layers (EdgeConv) [47] to ex-
tract a point feature matrix F ∈ R𝑁×1280 including local and global
features. Then, from the same point decoder, we obtain two feature
matrices for the instance segmentation branch (FP ∈ R𝑁×256), and
classification branch (FC ∈ R𝑁×256), respectively. Then, the type
and edge features FC in classification branch are decoded to obtain
an edge map E and a type map T by supervision of our edge loss
and type loss.

In order to make full use of primitive type and boundary infor-
mation, we propose a novel two-stage feature fusion mechanism. In
the first fusion stage, the output features of the classification branch
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Figure 3: Visualization of the features extracted by the two
branches of our network. Arrows point out key areas. The
type and edge features (middle) are different in neighboring
primitives with an obscure boundary (top) and different near
and far from edges (bottom).

are embedded in the latent space of primitive features by imple-
menting a fully connected (FC) layer with batch normalization and
ReLU function. The embedded feature matrix is then added with the
primitive features in an element-wise manner. In the second fusion
stage, the edgemap E and typemap T are concatenated together and
encoded into the instance segmentation branch by another FC layer
and ReLU function. Thus the primitive features are further aligned
with type and edge features, which contributes to distinguishing
primitives with similar geometry features or complex edges. Finally,
a primitive decoder is used to regress the primitive segmentation
features, and a mean-shift clustering procedure is applied to the
point-wise features to segment primitives, which is similar to [37].

Mathematically, the two-stage feature fusion mechanism can be
formulated as:

F𝑒𝑎𝑟𝑙𝑦 = FP + 𝜇 Embed(FC), (1)

F𝑙𝑎𝑡𝑒 = F𝑒𝑎𝑟𝑙𝑦 + 𝜈 Encode
(
Concat(T, E)

)
, (2)

where F denotes a feature matrix, F𝑒𝑎𝑟𝑙𝑦 ∈ R𝑁×256, F𝑙𝑎𝑡𝑒 ∈ R𝑁×256.
In the implementation, we set 𝜇 = 0.2, and 𝜈 = 0.2.

Benefiting from our two-branch structure, the boundary and
type information can be extracted by the classification branch. In
contrast, local geometric features are extracted by the instance
segmentation branch. Our two-stage feature fusion mechanism
fully utilizes these features, by fusing type and edge information
with local geometry information. Type information can distinguish
neighboring primitives belonging to different types. Edges indicate
the boundaries of each primitive. They are both important supple-
ments for the instance segmentation branch. We visualize features
in each branch before the early fusion in Fig. 3, by using t-SNE [43]
to embed the feature matrices to 3-dimensional vectors. The top
row of Fig. 3 shows that the classification branch can separate the
neighboring primitives with a smooth boundary, which is hard
to be learned by the instance segmentation branch individually
due to the similar local geometric features. The bottom row of
Fig. 3 reveals that the classification branch learns different features
near and far from the edges. In contrast, the instance segmentation
branch learns the geometric features of each surface primitive patch,
which encodes information on patch types and edges for further
improvement. Consequently, the fused features contribute to the

differentiation of neighboring primitives and clear recognition of
boundaries. Note that we do not extract type features and edge
features individually, because the three-branch structure would
increase the network complexity and do harm to the practicability
of the network.

3.3 Loss Functions
To precisely detect primitives, we train SED-Net through the mini-
mization of the sum of three objective terms:

L = 𝛼L𝑡𝑦𝑝𝑒 + 𝛽L𝑒𝑑𝑔𝑒 + L𝑒𝑑𝑔𝑒_𝑒𝑚𝑏 , (3)

where L𝑡𝑦𝑝𝑒 and L𝑒𝑑𝑔𝑒 represent the type loss and edge loss
used for training the type and edge classification, respectively.
L𝑒𝑑𝑔𝑒_𝑒𝑚𝑏 denotes the edge-enhanced embedding loss for super-
vising the segmentation of primitive patches. We set the weight
parameters 𝛼 = 1 and 𝛽 = 1 in default, which generally works well
in our experiments.

Type loss is calculated in a point-wise manner. A cross-entropy
𝐻𝐶𝐸 is employed to measure the loss between the predicted point-
wise primitive type 𝑡𝑖 and the ground truth label 𝑡𝑖 :

L𝑡𝑦𝑝𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

𝐻𝐶𝐸 (𝑡𝑖 , 𝑡𝑖 ). (4)

Edge loss is used to classify whether or not a point is an edge
point. We denote p𝑖 as an edge point if its nearest distance to
the edges of the ground truth shape is less than a threshold 𝜖
(𝜖 = 7 × 10−3 in default). We employ a weighted cross-entropy loss
to define the edge loss:

L𝑒𝑑𝑔𝑒 =
1
𝑁

( ∑︁
p𝑖 ∈Φ𝑒

𝐻𝐶𝐸 (𝑒𝑖 , 𝑒𝑖 ) +
|Φ𝑒 |

|P| − |Φ𝑒 |
∑︁

p𝑗∉Φ𝑒

𝐻𝐶𝐸 (𝑒 𝑗 , 𝑒 𝑗 )
)
, (5)

where p𝑖 , p𝑗 ∈ P, 𝑒𝑖 ∈ [0, 1] indicates whether p𝑖 is an edge point,
Φ𝑒 is the ground truth edge point set, | · | denotes point number.

Edge enhanced embedding loss can pull the primitive segmen-
tation descriptors of points close to each other in the same primitive
patch, and push the descriptors of different patches farther apart.
Edge points contribute larger value in this term, thereby increasing
accuracy near edges:

L𝑒𝑑𝑔𝑒_𝑒𝑚𝑏 =
1
𝐾

𝐾∑︁
𝑘=1

1
|P̂𝑘 |

∑︁
p𝑖 ∈ P̂𝑘

𝜆𝑖 max(∥d𝑖 − dP̂𝑘
∥ − 𝛿1, 0)

+ 1
𝐾 (𝐾 − 1)

∑︁
𝑘<𝑘 ′

max(𝛿2 − ∥dP̂𝑘
− dP̂𝑘′

∥, 0),
(6)

where P̂𝑘 represents 𝑘-th ground truth primitive patch, d𝑖 denotes
the primitive segmentation descriptor of p𝑖 , dP̂𝑘

=
∑
p𝑖 ∈ P̂𝑘

d𝑖/|P̂𝑘 |.
𝜆𝑖 takes different values for an edge point or not, when 𝑒𝑖 = 1,
𝜆𝑖 = 1.2, when 𝑒𝑖 = 0, 𝜆𝑖 = 1. We set 𝛿1 = 0.5, 𝛿2 = 1.5.

3.4 Primitive Fitting
Our network learns the edge map, type map, and primitive segmen-
tation from the raw point cloud. We then fit each primitive with
the assistance of the edge map and type map. For a primitive patch
P, its type T (P) is determined by the mode of 𝑡 (p), where p ∈ P,
𝑡 (·) denotes predicted type of p. To eliminate the negative influ-
ence from wrongly segmented points near edges, we fit each basic
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Figure 4: Parametric edges can be calculated as the intersec-
tion of primitives (e.g., plane, cylinder, cone, sphere).

primitive by applying the least-squares fitting to those primitives
excluding edge points:

A∗
𝑖 = argmin

A𝑖

∑︁
p∈P𝑖&p∉E

(dist(p, 𝑆 (A𝑖 ))), (7)

where A𝑖 and P𝑖 represent the parameters and the point set of 𝑖-th
primitive patch respectively, E is the edge point set classified by
SED-Net, and dist(·) denotes the point-to-surface distance between
a point p and a surface patch 𝑆 (·) represented by A𝑖 . For open
and closed B-spline patches, we follow SplineNet [37] to predict B-
spline control points, from which a discrete mesh can be generated.
Note that the predicted edge points in the B-spline patches should
also be input into SplineNet.

Precisely segmented and fitted primitive patches can be used as
contextual information to obtain accurate parametric edges. Lines,
circles and ellipses are calculated as intersections of planes, cylin-
ders, cones and spheres, which is illustrated in Fig. 4. Intersection
points of parametric edges, which are corners of the shape, can also
be obtained. Then the predefined meshes of each primitive type
can be used to reconstruct a compact shape. However, freeform
intersections are difficult to be represented as a parametric style,
for example, a cylinder intersecting with another cylinder or a B-
spline intersecting with other basic primitives. To represent such
freeform edges, we generate explicit geometry by using piecewise
line segments to approximate them. Specifically, according to the
fitted parameters of primitive patches and the corresponding para-
metric edges, predefined meshes which are restricted by calculated
parametric edges and the bounding box can be generated. Two
triangles from two patches have an intersection line, thus piece-
wise line segments are obtained to represent freeform edges. Since
a tiny fitting error may lead to no intersection of two primitive
patches, we implement a jitter of which the amplitude is set to 0.01
on the primitive patches for obtaining edges. With the freeform
edges calculated by the intersection of two triangulated mesh prim-
itives, we cut the mesh into two parts and the part attached with
original points is retained. Fig. 5 displays two examples of freeform
edges which are intersections of cylinders or cones. Fig. 6 shows
predefined meshes that are cut by piecewise linear segments.

4 EXPERIMENTS
4.1 Implementation Details
We evaluate the performance of SED-Net on the widely-used ABC-
Parts dataset [37] (a portion of ABC dataset [16]) which provides a
large source of 3D CADmodels with labeled surface primitive patch-
es and edge information. Following previous works [37] [53] [7],
we use 24𝐾 , 4𝐾 , 4𝐾 models for training, validating and testing
respectively, where each model contains 10000 points.

We stack three EdgeConv layers of [3, 64, 64, 128] to extract local
features and concatenate them to a feature matrix of 𝑁 × 256. A

Input points Our edges Our primitives Our final models

Figure 5: The intersection of cylinders or cones is hard to be
represented by parametric curves. We use piece-wise linear
segments to represent them.

Fitted primitives Fitted primitivesCut mesh Cut mesh

Figure 6: Meshes of B-splines fitted by a network and the
primitive meshes are cut by the edges. Blue patches are B-
splines.

fully connected layer and a max-pooling layer are used to extract
a global feature vector of 1 × 1024. Then, we tile global features
and concatenate them with local features to yield a matrix of 𝑁 ×
(256 + 1024), which is our point feature. The point decoder, edge
decoder, type decoder, and primitive decoder are shared MLP layers
of size [1280, 256], [256, 2], [256, 6] and [256, 128], respectively.
The primitive segmentation descriptors are used to obtain point-
to-primitive membershipW by a mean-shift clustering procedure.
SED-Net is trained with batchsize=8 for 100 epochs, which takes
20 hours on two NVIDIA-2080Ti GPUs.

4.2 Comparisons
To demonstrate the effectiveness of our SED-Net, we compare
it against state-of-the-art methods on primitive fitting for point
clouds, including ParSeNet [37], HPNet [53], ComplexGen [7], as
well as an edge detection method, PIE-Net [46].

Qualitative comparison. Fig. 7 displays the qualitative com-
parison results of primitive segmentation. It can be seen that the
competitors may not distinguish primitives which have similar
geometric and type features. For example, in the first column, all
previous methods detect the two separate circles as one primitive.
Taking the nail model in the second column and the handle of
the hammer model in the third column as another two examples,
cylinders with similar geometric and type features are detected as
one primitive by previous methods. Furthermore, Fig. 7 obviously
shows that previous methods over-segment some large primitives.
By contrast, our SED-Net, which takes advantage of fused type in-
formation and boundary information from a two-branch structure,
can precisely detect primitives with similar features and segment
points robustly.
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Figure 7: Qualitative comparison with state-of-the-art methods, including ParSeNet [37], and HPNet [53]. Our SED-Net can
accurately segment both large and small primitive patches and distinguish primitives with similar geometric and type features
robustly.

Input points Our edges 
with corners Our meshes Voronoi Poisson GT meshesGT edges 

with corners
ComplexGen

Edges with corners 
ComplexGen

meshes CAPRI-Net

Figure 8: Primitive patches, edges and corners are used to reconstruct compact shapes. We compare our reconstructed
meshes with two learning-based CAD reconstruction methods (ComplexGen [7], CAPRI-Net [55]) and two popular surface
reconstruction methods, including screened Poisson reconstruction [15] and the Voronoi-based approach [3].

Fig. 8 compares our method with two learning-based CAD recon-
struction methods (ComplexGen [7], CAPRI-Net [55]) and two pop-
ular surface reconstructionmethods, including the screened Poisson
reconstruction [15] and an efficient Voronoi-based method [3], to
verify the effectiveness of our solution on primitive fitting. As the
direct reconstruction methods are vulnerable to noise, we use clean

data for this experiment. Previous methods which directly recon-
struct meshes from point clouds may generate artifacts due to the
sparseness and non-uniformity of input point clouds. Few points
can be exactly sampled on edges, which leads to residual errors on
sharp edges for direct reconstructionmethods. Fig. 8 also shows that
wrong topological relations (top row) or wrong patch types (cones
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Table 1: Quantitative comparison of different methods. The
best results are shown in bold.

Methods P-mIoU ↑ T-mIoU ↑ Recall ↑ Recall* ↑ Residual ↓
ComplexGen \ \ 87.90 \ 0.0196
ParSeNet 82.12 88.46 80.02 88.91 0.0131
HPNet 85.05 90.35 82.55 92.52 0.0109
Ours 88.70 91.06 89.91 97.07 0.0074

Table 2: Quantitative comparison of different surface recon-
struction methods in terms of reconstruction fidelity and
storage.

Methods 𝐷𝑐 (10−3 ) ↓ 𝐷ℎ (10−2 ) ↓ Model Size (KB)
Poisson reconstruction 12.1 2.33 856

Voronoi-based reconstruction 9.97 2.58 674
Ours 9.41 1.71 57

and cylinders are classified as B-splines by mistake in the bottom
row) lead to imprecise results of ComplexGen. It is obvious that our
method can generate mesh models with sharper edges and clearer
corners. To further validate our superior performance on edge de-
tection, we compare our method with PIE-Net [46] and DEF [27],
which are learning-based edge detection approaches. Fig. 9 shows
that our precisely segmented primitive patches can effectively pro-
mote the correct detection of edges and corners since the mutual
assistance of surface and edge detection plays an important role in
this task.

Quantitative comparison. For quantitative evaluations, we
follow the metrics that are commonly used in previous methods [7,
53], including primitive mean IoU (P-mIoU), type mean IoU (T-
mIoU), primitive recall rate, and point residual error. The P-mIoU
and T-mIoU are meanmIoU between the ground truth and primitive
segmentation results or type prediction results, respectively. Since
ComplexGen [7] does not segment points, mIoU numbers are not
reported for this method. The point residual error is the mean
distance from points of the ground truth patch to the predicted
patch. The statistics on the test dataset of ABCParts are reported
in Table 1. Note that we retrain all of these methods under the
same experimental conditions. To compute the recall number, we
follow the setting of [7], where a patch is regarded as a recalled one
if the chamfer distance between the matched ground truth patch
and the detected one is less than 0.1. The recall* is calculated from
the matched patches without the restriction of chamfer distance.
Without this restriction, ComplexGen would detect patches with
large errors, which causes failure of reconstruction, so this term of
ComplexGen is not listed.

To quantitatively compare our SED-Net with other surface re-
construction methods, we introduce mesh distance as a quantitative
metric to measure the approximation error between the results and
the ground truth model. We randomly sample dense point clouds
P𝐷 and Q𝐷 (both containing 𝑀 = 100𝐾 points) from the ground
truth model and our reconstructed model. The mesh distance be-
tween P𝐷 and Q𝐷 includes two terms, the chamfer distance (𝐷𝑐 )
and the Hausdorff distance (𝐷ℎ). Statistics listed in Table 2 show
that our SED-Net achieves the best performance for maintaining
the geometric fidelity of the shape and occupies the least storage.

Robustness and generalization. To further evaluate our ro-
bustness, following [7, 37], we generate noisy and partial data

Table 3: Comparison of robustness on noisy data.

Methods P-mIoU↑ T-mIoU ↑ Residual↓
ParSeNet 74.65 84.44 0.036
HPNet 79.25 86.74 0.032
Ours 85.90 88.62 0.019

Table 4: Ablation study. Statistics of our network without
each module are listed.

Modules (without) P-mIoU ↑ T-mIoU ↑ 𝐷𝑐 (10−3) ↓
Two-branch structure -17.2 \ \

Late fusion -5.36 -0.61 +0.82
Early fusion -4.12 -1.46 +0.24

𝜆𝑖 in L𝑒𝑑𝑔𝑒_𝑒𝑚𝑏 -0.90 -0.11 +0.11
Fitting only non-edge points \ \ +1.57

respectively, and retrain our network on the two datasets for eval-
uation. Noisy: for the coordinates, we add random noise in the
range [−4%, +4%] of the radius of the bounding sphere in the nor-
mal direction. For the normals, we add random noise in the range
[−5◦, +5◦] to the original direction. Table 3 shows that the negative
impact of noise on our network is smaller than that of other com-
petitors. Partial: we use partial point clouds which are produced
by 3 − 4 scan views on the bounding box corners. Our results on
noisy and partial data are visually shown in Fig. 10. It can be seen
that for a partial patch, our approach could reconstruct its complete
form by the fitting operation. Taking the box in the third row as
an example, a part of each face is retained in the input point cloud,
thus the segmented and fitted patches can be used to calculate the
complete edges and reconstruct the missing corner.

We further test our pipeline on two real-scanned point clouds
obtained from AIM@SHAPE-VISIONAIR repository. The network
trained with synthetic noisy data is adopted. Results on the Door-
knob andMechanical Pin in Fig. 11 reveal that our method performs
well on real-scanned data with noise and non-uniform distribution.

4.3 Ablation Study
Finally, we conduct ablation studies to evaluate the effectiveness of
our proposed two-stage feature fusion mechanism, edge-enhanced
embedding loss function, and fitting strategy which excludes edge
points. Table 4 lists evaluation results, which are tested by using
points with normals. Only the decrease or increase amplitudes rel-
ative to the full pipeline are listed. Note that we use a baseline
network with only one branch to extract primitive features and seg-
ment the point cloud without our two-branch structure. Thus the
fusion mechanism is not used in this network. Features extracted
from only one branch have insufficient ability to represent geome-
try, type and edge information of the input point cloud, which is
revealed by the performance of the network without a two-branch
structure. Without the two-stage feature fusion mechanism, the net-
work can not fully utilize type and boundary information, which
is also shown in Table 4. By comparison, using the two-branch
structure, both the two-stage feature fusion mechanism and the
edge-enhanced embedding loss could contribute to the performance
improvement of primitive segmentation. Furthermore, our fitting
strategy excluding edge points detected by our network avoids the
negative impact of incorrectly segmented points near edges.
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4.4 Limitations
Since we fit each primitive patch by using the least-square method,
small holes or gaps would not damage our results. However, signifi-
cant missing regions with several neighboring primitives may lead
to the failure of our method. Fig. 12 shows an example with a large
data missing region (e.g., the bottom cylinder is totally missed).
First, the missing primitives cannot be detected. Second, the circle
edge of the plane patch (in green color) cannot be calculated due
to missing of the cylinder, thus the plane mesh is restricted by a
bounding box, which leads to failure.

5 CONCLUSIONS AND FUTUREWORK
We have presented a novel pipeline to detect and fit primitive patch-
es and edges from point cloud data. At the core of our method is
the SED-Net, which has a two-branch structure to simultaneously
extract geometric, type, and edge features. These features are fully
utilized by our novel two-stage feature fusion mechanism to pre-
cisely detect the primitives. Taking advantage of the simultaneous
detection of surfaces and edges, we are able to obtain a parametric,
compact and seamless model representation. This enables us to
represent the model with predefined primitive-specific meshes and
allows the user editing to create variations. Since other attributes
(e.g., color) of point clouds also provide structure information of
shapes, we would like to train our network with these data type to
further improve segmentation accuracy.
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Input points PIE-Net Ours GT GT meshesDEF

Figure 9: We compare our method with PIE-Net [Wang et al.
2020] and DEF [Matveev et al. 2022] which extract parametric
edges with corners from point clouds.

Input points Edges with corners Our meshes GT edges with corners GT meshes

Figure 10: Our primitive detection and reconstruction results
on noisy (top two rows) and partial (bottom two rows) data.

Input points Segmentation Edges Reconstructed meshes

Figure 11: Testing results on two real-scanned point clouds
validate the generalization of our approach.

Input points Our edge Our mesh GT edge GT mesh

Figure 12: A failure example of SED-Net when handling a
large missing region.
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