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Supplementary Material
Line-based 3D Building Abstraction and Polygonal Surface
Reconstruction from Images

Jianwei Guo, Yanchao Liu, Xin Song, Haoyu Liu, Xiaopeng Zhang, Zhanglin Cheng

1 PLANE HYPOTHESES GENERATION

This supplementary material gives the technical details
of obtaining a set of candidate planes {fi, f2,- -, fx},
(where k is unknown) from a given 3D line cloud £ =
{li,la,--- 1.}

Geometry representation. Each 3D line segment is repre-
sented by using two end points:

I=p1: (96‘1,:1/1721) — p2: (z2,Y2,22) .

For a plane, we use a point in it and a normal vector to
represent:

f={v:(a,b,c),n: (ngy,ny,n;)}.

Probability modeling. Assume we already know the
k  which indicates the number of planes and the
probability distribution of those planes should satisfy:

P(f1),P(f2), -, P(fr), Z P(f;) = 1. Additionally, we
define the condltlonal probablhty hypothesis of a 3D line
segment I; = (p;1, Pi2) belonging to a plane f; as:

1
P(li|f;) = mexp{ 952
J J

Then, we can get the joint probability distribution of the
line segment /; and the plane f; by using Bayes’ theorem:

P, f3) = Pl |£5)P(f;) -
The marginal probability is exactly the probability that the

line I; occurs:
k

> P |f)P(f5) .

j=1

P(l;) =

Since we get the probability of each sample line segment and
each sample is regarded independent, we will maximize the
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i = vy) -0y + [(piz — vy) - nj]Q}.

likelihood function P(D|0) to get parameters of each plane

it
maxﬁP(ll)
i=1

Here we use 6 to denote all parameters in our likelihood
function of the parameterized model.

Parameters estimation. Since the product of probabilities
cost too much, we use the log-likelihood function instead:

P(D|0)]

Zln[P (1:]6)] Z

i=1

k
H[Z P(li|f;,0;)P(f;)].

In order to calculate the likelihood, we use a hidden variable
7i; to indicate which plane f; the line /; belongs to:

L Lef;
Vi = 0, otherwise

So the complete likelihood function can be written as:

P(l,~|6) = HP(lm Vil Yizs - - - Yik|0)
i=1
n k
=TI ®Pis, 0P
i=1j=1
k n
= H K H (Lilf5, 0],

=1

<.
||

where ¢; = > | 7;;. Then the log-likelihood function on
data D is defined as below:

k n
InP(l,~|0) = Z{lenP(fj)"—Z’Yij |:1n \/%U‘
~5p (P v) )+ (i = vy) )

EM algorithm for optimization. Because the likelihood
function contains hidden variables, we use the EM algo-
rithm to solve the maximum problem.
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First, In the expectation (E) stage, let
Q(6,0"™) =E[In P(1,710)|1,6™)]

—5{§{CJIDP i) +2;%] [m\/%
b, w)-nj)zj?dpm—vj>~nj>2”}

L& 1
;{Z (7i5) In P(f5) +;5%J {n\/TToj

(P —vj) - 1) 2j?((pi2 —Vi)- nj)Q}} /

_ ((pir —

The expectation &(v;;|l;,0) here is denoted as #4;; for
convenient which can be computed as:

Yij =€ (Yizlli, 0) = P(vij = 1{l;, 05)
_ Pl = 1,L[6;)
i1 Pyij = 1,il6))
__ Plilyij = 1,6;)P(yi; = 1])
Z?:l P(lilyi; = 1,0;)P(vi; = 1/0)
__ PU)PUlf.0)
Yr_y P(£)P (il £5,0)

With 455, ¢; = Z?_l ¥ij, we can easily get the Q function:
n
0, H(m) ¢jln P(
o le ’ ) zz: [ V2ra;
(P = v4) - my)? + ((Piz —

2
v;) - 1y) }
5 .
20]-
Next, in the maximum (M) sta e, we need maximize the

Q function to get parameters #(™) in each iteration. The
maximum problem could be formulated as:

max Q(0, 0(m))

k
j=1

In general, we use Lagrange multiplier to convert the con-
strained optimization problem to a Lagrangian function:

k
L£=Q(6,0) + A [1 - Zp(fj)] .
j=1
Then, we calculate the partial derivatives of Lagrange func-
tion for each parameter. Because our Lagrange function is
a convex function, the function reaches maximum when all
partial derivatives are 0 values. As for P(f;):

5'£ _ Cj
oP(f;)  P(f;)
I3
cj = AP(fj)
i3
k k
> e =Y _AP(f;)
j=1 j=1
i3
A=k.

—A=0

So we can get:
P(fj) =

(1) For o, let the partial derivative be 0:

3

" (Pir — v;) - 0;)° + ((Piz — v;) *my)° — 07
=35 =0
80] =1 Uj

Then we obtain the value of o;:

o2 = > Yil((Pa — vj) - 1y)? + ((Piz — v;) - nj)?]
J 21 Vi

(2) Similarly, let
OL =i
v = > U]; [n] (pi1 — v;)n, + 1] (pi2 — v;)n;] =0

Then, we can get the parameter of v;:

iz Z%J [nJ T(pi1 + Piz — 2V])} =0

a] =1
U
1 L 2 n
P ;jn; { ¥ij(Pi1 + Pi2) | = ;n]n;‘-r <Z %—j> v,
/ =1 J i=1
4
v — Yiz1 i (P + Pi2)

(3) Finally, setting the partial derivative as 0:

oL LA
i Z Ufé[(le —v;) ' (pir — vi)+
J i=1 "J
(Piz — v;) m(pia — v;)] =0,
we can get the parameter of n;:
1 N T
2 Z’Yij [(Pﬂ —v;)(pi1 — Vi) +
J =1

vj)T} } n; =0

For convenient in the late discuss, we use matrix A to
denote the matrix in the left of equal sign above. To solve
the linear equation An; = 0, considering the equation may
have no non-zero solutions, we convert it to an optimization
problem:

(Pi2 — Vj)(pm -

min || An,||.
n;
After adding the constraint of normal n;, we can get
minn; TAT An;
n;

T
s.t. n;

n; = ].

This problem is equal to the Rayleigh quotient problem.
Since A is a semi-positive definite symmetric matrix, n;
must be the eigenvector corresponding to the minimum

eigenvalue that is:

Al’lj = )\mmnj .



JOURNAL OF IATEX CLASS FILES, VOL. PP, NO. 99, 2022 3
TABLE 1
A quantitative study of the detected line segments on different image resolutions. The original resolution is 640 x 480. |L| is the number of
detected segments, and l4.,4 is average length of all line segments in one image.
Scene Image No. 0.25x 0.5x 1.0x 2.0x 3.0x 4.0x
|L| lavg | |L| lavg | |L] lavg | L] lavg | |L] lavg | |L| lavg
1 124 | 78.2573 | 440 | 46.8173 | 1165 | 30.20 | 1553 | 22.1111 | 1728 | 16.9567 | 1734 | 13.6109
2 133 | 79.0504 | 304 | 52.2456 | 721 32.89 | 888 | 25.2391 | 1026 18.665 1016 15.46
3 83 | 87.6051 | 245 | 49.7764 | 630 | 29.15 | 926 19.2731 985 14.3942 | 932 11.163
4 85 103.503 | 150 | 74.1285 | 263 | 48.33 | 291 41.3061 364 31.67 403 | 26.7109
Indoor 5 140 | 63.3353 | 356 | 42.1044 | 1047 | 2236 | 1630 | 154868 | 1914 | 12.4044 | 2023 | 10.4497
6 133 | 107.658 | 264 | 74.3048 | 617 | 44.12 | 681 34.934 690 | 299118 | 824 | 21.5923
7 106 | 93.1815 | 272 | 614677 | 709 | 34.64 | 1036 | 23.4001 | 1245 | 17.1196 | 1263 | 14.3316
8 90 | 76.6843 | 288 | 43.642 | 1005 | 2095 | 1517 | 13.6175 | 1892 | 9.86138 | 2055 | 8.28433
9 133 | 76.0159 | 363 | 50.3593 | 1086 | 25.61 | 1617 | 17.0247 | 1888 | 13.2578 | 2051 | 11.0655
10 76 | 82.6764 | 151 | 68.1072 | 361 37.11 443 | 28.8096 | 500 | 21.0465 | 485 16.2492
1 93 | 79.4491 | 294 | 42.7977 | 1544 | 2237 | 2104 | 17.2915 | 2463 | 12.1952 | 2323 | 9.74857
2 99 | 60.5676 | 273 | 38.201 806 | 20.64 | 1497 | 13.1333 | 2294 | 8.70146 | 2723 | 6.56693
3 50 | 94.6057 | 126 | 54.6287 | 427 | 2337 | 778 14.3778 | 1204 | 9.48372 | 1427 | 7.39014
4 45 | 78.3989 | 138 | 449543 | 972 | 1856 | 1695 | 12.0164 | 2023 | 8.76439 | 1925 | 7.40929
Outdoor 5 55 | 89.7073 | 176 | 49.5047 | 512 | 27.87 | 858 17.4857 | 1052 | 12.7129 | 1010 | 11.2438
6 86 | 689187 | 258 | 40.204 907 | 1849 | 1737 | 10.565 | 2857 | 6.63371 | 3327 | 5.25962
7 125 | 81.037 | 410 | 50.7672 | 1243 | 26.80 | 1905 | 18.1855 | 2373 | 13.3093 | 2461 11.379
8 137 | 71.7757 | 428 | 43.2967 | 1393 | 25.41 | 2481 | 15.7332 | 3367 | 10.4702 | 3597 | 8.0886
9 114 | 725957 | 260 | 50.7367 | 691 26.39 | 1059 17.36 1368 | 12.1259 | 1355 | 10.5473
10 81 68.0393 | 228 | 40.5233 | 876 | 20.92 | 1208 | 15.0142 | 1399 | 11.4713 | 1489 | 9.42491

2 DiscussiON AND MORE RESULTS

As we show in the main paper, the quality of extracted line
segment features also depends on the image resolution. In
Table 1 in this appendix, we use 20 images of indoor and
outdoor scenes from YorkUrbanDB dataset [7] to conduct
a quantitative study. We set six sub/upsampling levels
(the scaling factor is s) to count the number of detected
line segments and compute the average length of all line
segments under different image resolutions. As we can see,
as scaling factor s increases, the number of detected line
segments increases but the average length drops. It indicates
that the detection results under high image resolution are
more precise but generate more broken line segments, thus
lacking completeness and continuity. Besides, when s is
larger than 2.0, the detection quality would not change too
much. On the other hand, we detected a smaller number of
line segments with longer length on low resolution images,
meaning that it can better capture global structures but
lose precision. Especially when the sub-sampling factor is
smaller than 0.5, it would introduce large detection errors.
Therefore, we use three levels, and set the sampling factor
as 0.5, 1.0, 2.0, which works well in our used examples.

Fig. 1 shows the full comparison with all of previous
clustering methods and plane detection methods on two
real-world data. The visual comparison results demonstrate
that our approach achieves the best performance in terms of
clustering 3D line segments for plane detection.
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Fig. 1. Visual comparison of different clustering methods using real-world data. For each example, we show the reference photo, input 3D line
clouds, the clustering results of mean shift [1], DBSCAN [2], hierarchical clustering [3], RANSAC [4], GlobFit [5], 3D-KHT [6] and ours.





