
JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 1

Line-based 3D Building Abstraction and
Polygonal Surface Reconstruction from Images

Jianwei Guo, Yanchao Liu, Xin Song, Haoyu Liu, Xiaopeng Zhang, Zhanglin Cheng

Abstract—Textureless objects, repetitive patterns and limited computational resources pose significant challenges to man-made
structure reconstruction from images, because feature-points-based reconstruction methods usually fail due to the lack of distinct texture
or ambiguous point matches. Meanwhile multi-view stereo approaches also suffer from high computational complexity. In this paper, we
present a new framework to reconstruct 3D surfaces for buildings from multi-view images by leveraging another fundamental geometric
primitive: line segments. To this end, we first propose a new multi-resolution line segment detector to extract 2D line segments from each
image. Then, we construct a 3D line cloud by introducing an improved Line3D++ algorithm to match 2D line segments from different
images. Finally, we reconstruct a complete and manifold surface mesh from 3D line segments by formulating a Bayesian probabilistic
modeling problem, which accurately generates a set of underlying planes. This output model is simple and has low performance
requirements for hardware devices. Experimental results demonstrate the validity of the proposed approach and its ability to generate
abstract and compact surface meshes from the 3D line cloud with low computational costs.

Index Terms—3D reconstruction, 3D Line cloud, Scene abstraction, Polygonal mesh model

�

1 INTRODUCTION

Image-based 3D urban scene reconstruction is an important
problem in 3D vision and computer graphics. It is still
an active field of research because the 3D urban scene,
particularly buildings, is essential for a variety of real-world
applications, such as city planning, visualization, naviga-
tion, and simulations, etc.

A widely proven successful pipeline for automatic urban
building reconstruction consists of two steps: the Structure
from Motion (SFM) [1], [2], [3] first robustly obtains camera
poses and sparse 3D point cloud, while the subsequent
Multiple View Stereo [4], [5], [6] (MVS) generates a dense
point cloud for recovering fine shapes. Based on the stan-
dard SFM+MVS pipeline, many open-source packages (e.g.,
Bundler [7], VisualSFM [8], COLMAP [9], [10], MVE [11],
PMVS [4], [12]) and commercial software (e.g., Agisoft pho-
toscan, Pix4D) have been developed to make significant
advances in this domain; see [13] for a detailed perfor-
mance evaluation of different methods. Nonetheless, exist-
ing classic reconstruction techniques have several serious
limitations. First, this feature-points-based reconstruction
pipeline often fails when dealing with man-made environ-
ments which typically consist of large textureless surfaces
or repetitive parts. As a result, the point matching process

• Jianwei Guo and Xiaopeng Zhang are with NLPR, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100190, China. (Jianwei Guo
and Yanchao Liu are joint first authors with equal contribution.)

• Yanchao Liu and Haoyu Liu are with School of Artificial Intelligence,
University of Chinese Academy of Sciences, Beijing 100049, China, and
Institute of Automation, Chinese Academy of Sciences.

• Xin Song and Zhanglin Cheng are with the Shenzhen Key Laboratory
of Visual Computing and Analytics (VisuCA), Shenzhen Institute of
Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen
518055, China. (Zhanglin Cheng is the corresponding author. E-mail:
zl.cheng@siat.ac.cn)

Fig. 1. From multi-view images, we propose an algorithm to generate
a 3D line cloud (top right, where the color indicates different candidate
planes) to abstract the scene, from which we can further reconstruct a
polygonal surface model (bottom shows the mesh from two viewpoints).

is difficult and less reliable, thus leading to sparse and
low-quality surface meshes with holes and inaccuracies.
Second, the MVS step is computationally expensive. Even
top-performing MVS approaches would not cope in terms
of memory and computation time, especially for large-scale
urban scene reconstruction. In addition, the dense triangular
mesh reconstructed from the MVS point cloud may be
redundant, i.e., a simple planar surface is easily presented by
hundreds of thousands of faces. It requires a large memory
size to store or visualize such meshes.

Recently, several research works have demonstrated that
straight lines can be successfully used in camera pose esti-
mation [14], [15], structure from motion [16], [17], [18], line-
based SLAM [19], [20], [21], and 3D reconstruction [22], [23],
[24], [25]. As man-made objects primarily comprise planar
faces, line segments preserve more important structural

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 2

and semantic information of a scene than point features.
Moreover, line features are more robust to poorly-textured
objects, illumination change, and wide baselines, because
the position and orientation of line segments can be rather
accurately determined [18]. Therefore, man-made environ-
ments (indoor and outdoor scenes where linear structures
frequently occur) can be well described and abstracted by
the network of 3D line segments.

Inspired by this observation, in this paper we present
a new framework for 3D line cloud generation and
lightweight surface model reconstruction from those line
segments. We first propose a new 2D line segment detec-
tor, which combines the advantages of line segment de-
tection on both low and high resolution images. A clus-
tering approach is also conducted to merge similar and
redundant line segments. As a result, in terms of line
segment continuity and integrity, the proposed approach
has evident advantages compared with the commonly used
line segment detectors. Second, we introduce an efficient
3D line cloud reconstruction method by matching 2D line
segments across neighboring views. The resultant 3D line
cloud abstractions provide a compact representation of the
scene, which reveals high-level structures hidden in the raw
data. Finally, to obtain a mesh representation further, we
generate a set of candidate planes from the 3D line cloud,
where we cast the 3D line segments grouping as a Bayesian
probabilistic modeling problem. This step is the core of our
method. Then we construct the lightweight and manifold
3D mesh model using PolyFit [26] based on binary linear
programming. Benefiting from our approach, we can obtain
a memory-efficient representation of 3D surfaces to meet
the performance requirements of various applications. In
summary, the main contributions of this work include the
following:
• A novel framework for efficient 3D building abstraction

and polygonal surface reconstruction from a set of
images by taking advantage of line segments.

• An improved 3D line cloud generation approach with a
robust multi-resolution 2D line segment detector (MR-
LSD). The more complete and continuous 2D line seg-
ments can be aggregated into significant 3D lines by
constructing an undirected graph.

• A novel Bayesian plane prediction formulation, as the
core of our algorithm, which is able to generate can-
didate planes for the automatic 3D reconstruction of
building structure accurately.

2 RELATED WORK

We restrict the discussion to the most related works that
focus on 3D line cloud reconstruction and surface mesh
generation from line segments or primitive shapes. For
comprehensive 3D reconstruction approaches, we refer the
reader to the survey papers [6], [27].

2.1 Line-based 3D reconstruction

In traditional line-based 3D reconstruction methods, line
segments have been used in the procedure of structure
from motion by utilizing explicit line segment matching.
For example, Bartoli and Sturm [17] first propose a new

SFM pipeline from line correspondences across multiple
views by introducing an orthonormal representation for 3D
lines. Later Schindler et al. [16] incorporate the Manhattan-
world assumption into 3D line-based reconstruction for
urban scenes, which could improve the reconstruction per-
formance. Bay et al. [28] use line segments [29] in two
images of poorly-textured indoor scenes to address camera
self-calibration, bundle adjustment and 3D reconstruction.
Zhang and Koch [30] propose another full line-based SfM
pipeline, which introduces the Cayley representation of 3D
lines and their projections to reconstruct the scene structure
and estimate the camera motion. Salaün et al. [15] present
a robust approach for camera pose estimation without
Manhattan-world assumptions by combining both line and
point information. Micusik and Wildenauer [18] introduce
a SLAM-like line-based SfM system, where they consider
unstable endpoints by utilizing relaxed constraints on their
positions for line bundle matching and adjustment stages.
Although these methods using only line segments for cam-
era pose estimation achieved impressive results for some
special scenes, they are rarely used in real-world scenarios
because explicit line matching may not put enough con-
straints on the epipolar geometry for general cases.

More robust approaches in 3D line reconstruction relying
on given camera poses have been presented. Researchers
argue that accurate camera pose estimation alone is much
easier than obtaining dense 3D models, and it also works
well around complex and weakly textured objects [31]. In
the work of Jain et al. [32], a 3D line model is generated
by imposing global topological constraints given by con-
nections between neighboring lines. They formulate the
reconstruction procedure as an optimization problem and
use a sweeping-based approach to avoid explicit 2D line
matching between views. However, a disadvantage of this
sweeping approach is that it is computationally more ex-
pensive than previous methods. To improve the efficiency,
Hofer et al.propose a series of methods [23], [31] that use
weak epipolar-guided line segment matching and limit its
potential 3D locations to a discrete set coinciding with
these matches. Based on these techniques, they present a
robust and publicly available line-based 3D reconstruction
tool denoted as Line3D++ [24]. Ramalingam and Brand [33]
propose an optimization-based method for reconstructing
the 3D arrangement of lines extracted from a single image
using Manhattan-world assumption. However, all of above
methods only generate a meaningful 3D line cloud rather
than surface meshes.

2.2 Surface mesh generation from line segments

Early works focusing on surface reconstruction from line
segments usually use 3D lines as constraints in addition to
points. Baillard and Zisserman [34] reconstruct piecewise
planar models of urban buildings from multiple aerial im-
ages. The novelty of this approach is to generate a plane
hypothesis from a 3D line with a neighboring point set that
is detected in texture images. Zebedin et al. [35] present an
information fusion strategy that exploits the advantages of
several information sources (e.g., height field, building mask
and sparse 3D lines) to reconstruct buildings automatically.
The 3D line segments are used for obtaining a line-based

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 3

(a) Input (b) 2D line detection (c) 3D line cloud (d) Plane hypotheses generation (e) Face clipping and selection (f) Reconstructed model

Fig. 2. Overview of the proposed method. Starting from multi-view images (a), we detect 2D line segments in each view by proposing an improved
LSD method (b). Then the 2D line segments in neighboring views are matched and triangulated to reconstruct a 3D line could (c). As the core of
our system, we generate a set of plane hypotheses from the line cloud by introducing a clustering approach, see (d) where the same group of 3D
line segments are coded with the same color. Finally, the candidate faces are clipped (e) and selected to obtain a manifold surface mesh (f).

segmentation, thus helping to generate accurate geometric
primitives. Sinha et al. [36] compute a set of plane candidates
by fitting planes to the sparse point cloud and sparse 3D
line segments. Then the piecewise planar depth maps are
inferred to recover planar polygonal patches. Similarly, [25]
extend the original tetrahedra-carving method to extract 3D
surfaces using both 3D points and line cloud. They integrate
the 3D line segments with sparse point cloud under a global
optimization framework to produce a 3D surface that can
preserve sharp edges and flat planes.

Since the Line Segment Detector (LSD) [37] was devel-
oped, the study of surface mesh generation from pure line
segments has gained momentum as the 2D line segments ex-
traction task was fairly well solved. Aiming at applications
of robotic mapping and image-based rendering, [38] present
a maximally informative surface representation, where they
generate plane hypotheses from non-collinear coplanar 3D
line segments. Then an efficient plane intersection scheme
based on line segment relations is defined to build surface
faces that also satisfy the visibility constraint. However,
this approach does not scale well to many lines and the
output surface mesh is not watertight. Wang et al. [39]
construct a surface scaffold structure to enhance structural
characteristics and suppress irregularities in the building
models. They leverage a set of automatic or user-drawn
structural scaffold lines to improve the building regular-
ization. Starting from a point cloud, Boulch et al. [40] in-
troduce new regularization terms that minimize the length
of edges and number of corners in a reconstructed surface,
which can be formulated as a sparse mixed-integer linear
programming problem. Recently, Langlois et al. [41] extend
this framework by generalizing data fidelity and visibility
from points to 3D line segments. While they could gen-
erate watertight piecewise-planar surfaces with impressive
quality, this method consumes a lot of memory and the
running time is unacceptable for complex shapes due to the
cubic complexity in the number of detected planes. In our
approach, we formulate a Bayesian probabilistic modeling
problem to directly generate candidate planes from 3D line
segments, which can be efficiently solved by the Expectation
Maximization (EM) algorithm.

2.3 Primitive-based scene abstraction/reconstruction

The geometric primitives has been shown to be particu-
larly beneficial for representing and abstracting man-made

scenes. Li et al. [42] introduce the GlobFit to recover con-
sistently fitted primitives along with their global mutual
relations for man-made engineering objects. Limberger and
Oliveira [43] propose a real-time plane detection algorithm
based on a Hough-transform voting scheme. They use a
robust segmentation strategy to identify clusters of approxi-
mately coplanar samples, then cast votes for each cluster by
using a trivariate Gaussian kernel. To improve the robust-
ness to noise, Araujo and Oliveira [44] further present a new
detection method independent of parameter tunning based
on a novel planarity test drawn from robust statistics and on
a split and merge strategy. Recently, [45] and [46] fit shape
primitives from 3D CAD or architectural models to recover
structures. Aiming at indoor reconstruction, [47] present
a system that automatically recognizes different rooms as
separate components. They are capable of coping with
heavy occlusions and missing data. Monszpart et al. [48]
explore the regular arrangements of planes to provide com-
pact and simplified representations of urban scenes. Li et
al. [49] use a set of well-aligned boxes to approximate the
geometry of the buildings. Nan and Wonka [26] generalize
this idea to propose the PolyFit that reconstructs lightweight
polygonal surfaces. We refer to the survey paper [50] for
a more comprehensive discussion. Our work also falls in
this type of using a compact set of planes to reconstruct
urban buildings. Instead of inputting a 3D point cloud, our
technical contribution is to recover better 3D line cloud from
multi-view images, and extract candidate planes from the
line cloud by a novel clustering algorithm. Then we apply
the PolyFit [26] to generate the final polygonal surface mesh.

3 PROBLEM STATEMENT AND OVERVIEW

Our goal is to generate a complete and compact urban build-
ing model from images. Given a set of unordered images
I = {Ii}ni=1, the output of our method is a lightweight
polygonal surface model of buildings, S = {fj}mj=1.

As illustrated in Fig. 2, our algorithm undergoes three
main stages: 2D line segment extraction, 3D line cloud
reconstruction, and polygonal surface mesh reconstruction.
The algorithm starts with extracting 2D line segments in
every image. We propose an improved multi-resolution line
segment detector (MR-LSD) based on [37]. Specifically, we
combine the advantages of line segment detection on low-
and high-resolution images, and we also use a clustering

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 4

(a) Input image (b) s = 1.4 (c) s = 1.0 (d) s = 0.6 (e) s = 0.3

Fig. 3. Illustrating the effect of 2D line segment detection under different image resolutions. The detected line segments on high resolution images
are more precise but lack completeness and continuity, while the line segments on low resolution images better capture global structures but lose
precision.

approach to merge line segments extracted from multi-
resolution images. In this way, we ensure the continuity
and completeness of the line segments, thus improving the
quality of 2D line segments extraction.

In the second step, we first recover camera parame-
ters from the input image sequence by an arbitrary SFM
system (COLMAP [9] or Visual-SFM [8] are used in our
experiments). Then a 2D line-to-line matching is performed
to establish line segment correspondence using the corre-
sponding camera poses. A new 3D line cloud reconstruction
method is also presented to obtain clean and complete
3D lines, where we introduce an efficient clustering and
merging operator to filter out mismatched and redundant
3D line hypotheses.

Next, to build a polygonal surface model, we gen-
erate a set of candidate planes from 3D line segments,
where we formulate the plane hypotheses generation as a
Bayesian probabilistic modeling problem. Finally, we utilize
the method of PolyFit [26] to make selections from plane
candidates to construct the polygonal surface model.

4 METHODOLOGY

4.1 Multi-resolution Line Segment Detection
To generate a triangulated 3D line cloud, we require to first
extract a set of 2D line segments in each image. Line segment
detection itself is still a challenging problem in computer
vision due to its simple structure but uncertain length and
width in discrete pixels. The LSD algorithm [37] has been
widely used to detect 2D line segments. LSD is quite robust,
efficient, and produces accurate results without parameter
tuning. However, this algorithm computes the image gra-
dient quite locally, thus failing to reconstruct the global
structure. Especially in the case of uneven illumination or
occlusion, the detected line segments are incomplete and
discontinuous. Thus, they cannot effectively meet the needs
of stereo line matching and 3D surface reconstruction. By
contrast, the complete and continuous line segments can
ensure the effect of stereo matching and reduce the number
of false matching.
MR-LSD. To extract more complete line segments, we pro-
pose a multi-resolution line segment detector (MR-LSD) by
extending the original LSD to focus on the robust detection
of general line segments. Our approach exploits the observa-
tion that the quality of extracted line segment features heav-
ily depends on the image resolution. Generally speaking,

the detection results under high image resolution are more
precise but lack completeness and continuity because of
high frequency noise and textures. In contrast, the detected
line segments on low resolution images will lose precision
but can better capture global structures.

We introduce the MR-LSD to possess the advantages of
line segment detection on both low- and high-resolution
images. We observe that the detection error will be larger
if the resolution is too low (e.g., the sub-sampling factor is
smaller than 0.5), and the computational complexity will
be increased greatly if the resolution is too high while the
detection quality would not increase. Given the input image,
it will be appropriate to set three different scales of the
resolution, ranging from half to twice the raw resolution. In
most of our used examples, we specify the sampling factor
as 0.5, 1.0, 2.0, and we do not need to tune them too much.
In our implementation, we generate the high-resolution
images by using an upsampling method which is inter-
polated by the cubic spline interpolation. Low resolution
images are obtained by performing Gaussian filtering and
downsampling on the original images. Then for an image
with a specific resolution, we apply the LSD algorithm to
extract line segments reliably. Each detected line segment
Lmi = siei in image Im is represented as a vector that
consists of two endpoints si, ei ∈ R2. Fig. 3 shows the effect
of line segment detection under different image resolutions
(the scaling factor is s). As is shown, in some instances,
we cannot obtain line segments from the original image
but they can be well extracted from the upsampled image.
Meanwhile, the completeness of the line segment increases
as the resolution decreases, but the accuracy also decreases.
Clustering line segments. After detecting a set of 2D line
segments in images with different resolutions, we propose
an efficient clustering method to combine the corresponding
line segments, aiming at generating continuous and com-
plete line segments. The clustering algorithm groups similar
line segments together into a cluster. As such, we can find
a representative line segment for each cluster. To do so,
we first need to define the distance function to measure
the similarity between line segments. We apply similarity
measures that are adapted from the line segment Hausdorff
distance used in the area of pattern recognition [51].

Our distance function contains three components: angle
distance (dθ), vertical distance (dv) and parallel distance
(dp). Given two line segments Li = siei and Lj = sjej , we

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 5

𝜃

𝐿𝑗

𝐿𝑖

𝑙1

𝑙2
𝐿𝑗

𝐿𝑖 𝐿𝑗
′

𝑙𝑝

Fig. 4. Definition of distance functions for 2D line segments clustering.
The left shows the angle distance and vertical distance, while the right
shows the parallel distance.

assume that the line segment Li is longer than Lj without
loss of generality, as illustrated in Fig. 4. The angle distance,
dθ , between two lines is borrowed from [51] and defined as:

dθ = ‖Lj‖sinθ , (1)

where θ is the angle between Li and Lj . ||Lj || is the length
of Lj , which transforms the angular difference into distance.
As a result, the value of angle distance can be directly com-
pared with the vertical distance and parallel distance. Note
our angle distance is designed for line segments without
directions, in other words, eisi represents exactly the same
line segment as siei.

To compute the vertical distance dv , we denote l1 and l2
as the projection distance of the endpoints sj and ej onto the
underlying line ofLi, respectively. Then the vertical distance
can be defined by the Lehmer mean [52] with the order of
filter 2:

dv =
l21 + l22
l1 + l2

. (2)

The parallel distance dp can be understood as the interval
distance between two collinear line segments, while the
collinearity may be not a general situation (see Fig. 4). We
compute the projected line segments L′j of Lj onto the
underlying line of Li. Naturally, the length lp should be
the Euclidean distance between two closest end points of
L′j and Li. While Li and L′j have an intersection part, dp
should be zero. Therefore, dp is defined as:

dp =

{
0, if Li intersects with L′j
lp, else

. (3)

Finally, the distance function between two line segments
for clustering is defined as the weighted sum of these three
items:

d(Li, Lj) = αdθ + βdv + γdp , (4)

which has two constraints:

0 < α, β, γ < 1 ,
α+ β + γ = 1 .

(5)

After defining the distance function, we next group the
line segments into different clusters. As we have no prior
knowledge about the scene, the appropriate number of
clusters is difficult to determine. Moreover, the extracted
line segments are usually noisy, incomplete, and with out-
liers. Thus we should not only consider the distance func-
tion between line segments, but also consider their distri-
butions especially the transitivity between line segments.

𝐿𝐿𝑖𝑖

𝒔𝒔

𝒆𝒆
𝒐𝒐

𝒗𝒗

𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

Fig. 5. Illustrating the process of merging 2D line segments. The green
line segments represent the inputs, while the yellow one is the final
merged result.

As shown in the inset figure,
if a red line segment runs be-
tween the two black line seg-
ments, the three line segments
very likely belong to the same
line segment because the broken
line segments may be caused by
image noise; otherwise, the probability that the two black
line segments belong to the same cluster is low. In our imple-
mentation, we find that the density-based spatial clustering of
applications with noise (DBSCAN) [53] is suitable for solving
our problem. The DBSCAN algorithm is robust to noise
and does not require specifying the number of clusters.
In addition, such a density-based clustering approach is
useful to find distinctive patterns and identify the transi-
tivity between line segments. DBSCAN contains two main
parameters: the density-reachable radius ε and the local
density threshold minPts. As the line segments are usually
noisy and contain many duplicates, we set ε = 0.6 and and
a relatively large minPts = 5 in default. This default value
generally works well in our used data sets.
Merging line segments. The final step of our line segment
detector is to merge the items belonging to the same cluster
to determine a representative line segment for each cluster.
Given a cluster containing segments C = {L1, L2, · · · , Ln}
to be merged, we first compute their geometric center o and
average direction v. When calculating the average direction,
we need to keep the orientation of all line segments consis-
tent, i.e., the inner product of two arbitrary line segments Li
and Lj should be non-negative. As illustrated in Fig. 5, the
geometric center o and average direction v jointly determine
the line Linf where the merged line segment should be
located. Then we project the endpoints of each line segment
in set C onto linf , thus the projection points will distribute
on both sides of point o along v. We identify the two farthest
projected endpoints in the opposite direction of o as point
s and e, namely the starting point and the endpoint of the
line segment after merging. The yellow line segment L in
Fig. 5 is the final merged line segment. More details on this
merging step are given in Algorithm 1.

4.2 3D Line Cloud Generation
As mentioned above, we have extracted a set of more con-
tinuous and complete 2D line segments. Our next goal is to
generate a corresponding set of candidate 3D line segments
by using the associated camera poses. This process contains
two steps: establishing correspondences between matched

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 6

Algorithm 1 Merging 2D line segments in one cluster
Input: A line segments cluster C = {L1, L2, · · · , Ln}
where Li = siei
Output: A merged line L = se

1: o← s1 + e1
2: v ← −−→s1e1
3: for i← 2, n do
4: o← o + s1 + e1
5: if v · −−→siei < 0 then
6: v ← v −−−→siei
7: else
8: v ← v +−−→siei
9: end if

10: end for
11: o← o/2n
12: v ← v/‖v‖
13: tmax ← −∞
14: tmin ← +∞
15: for i← 1, n do
16: ts ← −→osi · v
17: te ← −→oei · v
18: tmax ← max(tmax, ts, te)
19: tmin ← min(tmin, ts, te)
20: end for
21: s← o + tminv
22: e← o + tmaxv
23: L← se
24: return L

2D line segments, and then generating and grouping 3D
line segments to obtain a 3D line cloud.
3D segment hypotheses generation by 2D line-to-line
matching. 2D line-to-line matching is performed on pairs of
images. However, to reconstruct an urban scene, hundreds
of images are usually required, even much more for a com-
plex scene. Matching among all images is unnecessary and
infeasible, because most pairs of images have no common
parts between them. For efficient matching, we select a set
of neighboring views that should satisfy the following three
conditions:

• The neighboring views should share a large field of view
overlap, which can be evaluated by counting the number
of matched SIFT feature points.

• Appropriate distance between the cameras corresponding
to the images is essential. The reason is that two images
taken from the same viewpoint will never rebuild the 3D
line segments even if they have a lot of overlaps.

• Each image can only be matched with a certain number
of neighboring images, which can reduce the number
of unnecessary matches caused by too densely captured
images when the camera positions may not be evenly
distributed.

For each pair of selected neighboring images, we then
match all line segments in the reference image Ir to all line
segments in the target image It. To accomplish this goal,
we establish the correspondences by satisfying the epipolar
constraint. Specifically, for each line segment Li = siei in
Ir , we compute the corresponding epipolar lines, eis and eie,
in It for the two endpoints of Li. According to geometric

𝐿𝑖 𝐿𝑗

𝐼𝑟 𝐼𝑡

𝐼𝑡

𝑒𝒔
𝑖

𝑒𝒆
𝑖

𝑄

𝑃

S

𝑇

𝐿𝑗

Fig. 6. An example for the epipolar-based matching procedure. Line
Segments Matching. The left subfigure shows two-view geometry of two
lines in respectively two matched image for match. The right subfigure
shows the projection of polar line of l1 in I2.

relationship, if line segment Lj ∈ It is matched to Li,
then the endpoints of Lj should be located on eis and eie,
respectively. For an example in Fig. 6, Ir and It are two
neighboring images, while Li and Lj are two line segments
located in the corresponding images. eis and eie are two
epipolar lines of Li projected in It. P and Q are two end
points of Lj , S and T are the intersection points of eis and
eie, and the straight line where Lj is located. The directional
matching score between Li and Lj can be evaluated in terms
of Intersection over Union (IOU):

s(Li, Lj) = 1− ‖PT‖+ ‖QS‖
‖ST‖

. (6)

We also compute s(Lj , Li) in the same way, and define
the final matching score between Li and Lj as the average
value of s(Li, Lj) and s(Lj , Li). Li and Lj are potentially
matched if the final matching score is bigger than a thresh-
old α (α = 0.35 in default).

After 2D matching, we obtain pairwise matched lines,
our next goal is to find the set of 2D line segments that
correspond to one 3D line. To this end, we use an undirected
graph to organize the matching relationships, in which
a node represents a line segment, and an edge between
two nodes indicates that the line segments are potentially
matched. By utilizing the graph structure, we can extract
a set of connected components from the graph. Ideally, if
all of the matches are correct, we can reconstruct an exact
3D line segment for each connected component. In practice,
some false matches always occur due to imprecise line
detection or occlusions. Finding an optimal graph parti-
tioning solution is NP-complete. Although some standard
graph partitioning algorithms (e.g., spectral partitioning,
multilevel methods) can be used, an appropriate clustering
evaluation metric should be found. Although the matching
score defined on the graph edges can be used, it may lead
to inaccurate partitioning results due to the false matches.
Indeed, our goal is to minimize the re-projection error of
a generated 3D line segment with respect to each view.
Thus the 3D line segments should be taken into account. To
solve this issue, we apply a greedy algorithm based on the
breadth-first search. We first find the two nodes that are the
best match. Then we generate an initial and accurate 3D line
segment by triangulating the two corresponding endpoint
pairs from the corresponding images. Then starting with
these two nodes, we visit other nodes in the connected com-
ponent in a breadth-first-search manner. For each visited
node representing a line segment Li in view Im, we project

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 7

the initial 3D line segment to Im to obtain a projected 2D line
segment Lp. If the distance between Li and Lp is small, we
think Li is a correct match and use it to optimize the initial
3D line segment. Otherwise, the node representing Li is
deleted from the current connected component. Finally, after
visiting all of the nodes, an initially connected component
in the graph may be partitioned into several components,
from each of which we can reconstruct a 3D line segment.
3D line grouping. To accelerate the matching process in
the above stage, instead of performing pairwise line match-
ing among all images, we only match line segments in
neighboring views. Such local matching would generate
redundant 3D line segments. For instance, the same 3D line
may be generated in different sets of neighboring views.
Therefore, we apply a 3D line clustering algorithm to re-
move the redundant 3D line segments and the possible
outliers. Given that the number of reconstructed 3D line
segments in a building scene is very large (usually hundreds
of thousands), directly performing clustering on all 3D line
segments will lead to a huge time cost because each pair of
line segments should be compared. However, we find that
many pairs of line segments are impossible to be grouped
together, e.g., the line segments that are very far apart.

To efficiently group those 3D line segments, we utilize
the Bounding Volume Hierarchy (BVH) [54] tree to accelerate
the clustering process. Specifically, we propose a two-step
clustering approach where the position and direction of
line segments are considered separately. Firstly, each 3D
line segment is regarded as a point in the 3D space, and
the distance between two 3D line segments is measured
by the Euclidean distance between their midpoints. We
construct the BVH tree by wrapping the 3D line segments
in bounding volumes based on a top-down partitioning ap-
proach. We then perform DBSCAN algorithm (with param-
eters ε = 0.016,minPts = 4), in which we can efficiently
traverse the nearest 3D line segments in the BVH tree. In
the second step, we further cluster the segments based on
their directions. We convert the direction vector of each line
segment into spherical coordinates, thus the direction can
be regarded as a point on a sphere. Then, we parameterize
the spherical surface into a rectangle. Next, we construct
a BVH tree again and conduct the DBSCAN clustering
procedure (with parameters ε = π/36,minPts = 4) with
BVH traversal acceleration. After clustering, we merge the
3D line segments in each cluster by using the merging
operator described in Sec. 4.1 to obtain the final 3D line
model.

4.3 Surface mesh reconstruction

Once we have constructed a 3D line cloud L = {li|i =
1, 2, · · · , n}, where each line segment contains two end-
points p1(x1, y1, z1) and p2(x2, y2, z2) in 3D space, our next
goal is to obtain a compact and manifold surface model.
To accomplish this goal, we first generate plane hypotheses
from 3D line segments, then make a face selection from
plane candidates to construct the final polygonal mesh.
Plane hypotheses generation. In this step, we formulate
the candidate planes generation as a Bayesian probabilistic
modeling problem, where we aim to minimize the distance
from all 3D line segments to the corresponding candidate

Algorithm 2 Estimating parameters of candidate planes
Input: A 3D line cloud L = {li|i = 1, · · · , n}
Output: Probabilistic model’s parameters:
{P(fj),vj ,nj , σj}

1: Set initial values for P(fj),vj ,nj , σj , and set the maxi-
mum iteration number N

2: while N > 0 do
3: E step: calculate the plane response:

γ̂ij =
P(fj)P(li|fj)∑k
j=1 P(fj)P(li|fj)

4: M step: update the probabilistic model’s parameters
(1) compute the priori probability:

P̂(fj) =

∑n
i=1 γ̂ij
n

(2) update the standard deviation:

σ̂2
j =

∑n
i=1 γ̂ij{[(pi1 − vj) · nj]

2 + [(pi2 − vj) · nj]
2}∑n

i=1 γ̂ij

(3) update the plane parameters:

v̂j =

∑n
i=1 γ̂ij(pi1 + pi2)

2
∑n
i=1 γ̂ij

,

An̂j = λminn̂j ,

where the matrix is computed as:

A =

n∑
i=1

γ̂ij [(pi1−vj)(pi1−vj)
T +(pi2−vj)(pi2−vj)

T].

5: N = N − 1
6: end while

planes. We suppose the input 3D lines are sampled from k
different planes (k can be a reasonably large number) and
each plane is represented by a vertex v = (vx, vy, vz) and
a normal vector n = (nx, ny, nz) with n2x + n2y + n2z = 1.
To determine the initial planes, we compute the bounding
box of the 3D line cloud and denote its diagonal length
as dscene. Then we uniformly sample m nodes with an
interval distance of τ , thus having m = dscene/τ + 1 (we
set τ = 0.02dscene in default). At the position of each
node, we generate three orthogonal planes along the axes,
and we can obtain a set of dense planes with k = 3m.
Next, we iteratively perform two steps until reaching the
convergence criteria: (1) assigning each 3D line segment to
its nearest plane; (2) updating the plane parameters (v and
n) according to the assignment.

In detail, we assume that the probability of a 3D line seg-
ment li = (pi1,pi2) belonging to a plane fj is represented
as a Gaussian distribution:

P(li|fj) =
1√
2πσj

exp

{
− [(pi1 − vj) · nj]

2 + [(pi2 − vj) · nj]
2

2σ2
j

}
.

(7)
According to the Bayes’ theorem, if we have the priori prob-
ability P(f) of the planes, the joint probability distribution
P(li, fj) can be written as:

P(li, fj) = P(fj)P(li|fj), (8)

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 8

where
∑k
i=1 P(fj) = 1, and initially we set P(fj) = 1/k.

We then obtain the marginal probability of observing a line
segment li:

P(li) =
k∑
j=1

P(li |fj)P(fj) . (9)

Therefore, given an observed 3D line cloud L in which
each line segment li is independent, we can maximize a
likelihood function P(L|θ) to obtain the parameters of each
plane fj :

max
n∏
i=1

k∏
j=1

[P (li|fj)P (fj)]
γij , (10)

where we use θ to denote all parameters in the parameter-
ized model. γij is the hidden variable indicating the plane
to which the line segments belong:

γij =

{
1, li ∈ fj ,
0, otherwise

(11)

For each li, the hidden variable is γij unknown. Hence,
we leverage the EM algorithm to solve our optimization
problem iteratively. The algorithm is terminated when the
maximal iteration number N is reached or the priori prob-
ability P(f) does not change between two iterations, i.e.,
|Pi(f)− Pi−1(f)| < δ, where we set N = 180, δ = 10−5 by
default. We implement the algorithm by using matrix oper-
ations to further speed up the computation. The numerical
algorithm for estimating plane parameters is given in Algo-
rithm 2, and the detailed formula derivation and calculation
process can be found in the supplementary materials.
Surface mesh reconstruction. After acquiring the param-
eters of all candidate planes, we make face selections for
constructing our surface models. We modify the PolyFit [26]
framework to directly process our extracted planar primi-
tives. It solves the integer optimization problem to seek an
optimal combination of them to obtain the final manifold
polygonal surface meshes.

4.4 Computational complexity

Our approach includes three main stages: multi-resolution
2D line segment detection (MR-LSD), 3D line cloud genera-
tion, and surface mesh reconstruction. The MR-LSD is built
on the original linear-time LSD algorithm [37], thus its time
complexity isO(sP), where s = 3 is the number of scales for
multi-resolution, and P is the number of pixels in the image.
To cluster 2D line segments, we apply the DBSCAN whose
computational time is O(mlogm), where m is the number
of detected line segments in an image.

In the 3D line cloud generation phase, we first perform
a 2D line-to-line matching between neighboring images to
extract a set of potential 3D lines. In the worst case scenario,
this step costs O(vm2) with v is the number of neighboring
views. Then a graph is constructed to refine potential 3D
lines, where we extract the connected components in a
breadth-first-search manner, which runs in O(vm + e) (e is
the number of edges in the graph). Finally, 3D line grouping
is based on two iterations of DBSCAN with the complexity
of O(nlogn), where n is the number of generated 3D line
segments.

TABLE 1
Quantitative comparison of 2D line segments detectors. |L| is the

number of detected segments, lavg is average length of all line
segments in one image. The best result of each measurement is

marked in bold font.

Scene Image No. CannyLine [55] LSD [37] Ours
|L| lavg |L| lavg |L| lavg

Indoor

1 641 41.40 1165 30.20 350 54.59
2 393 50.62 721 32.89 284 55.12
3 442 39.93 630 29.15 277 48.65
4 201 71.21 263 48.33 102 76.34
5 486 37.11 1047 22.36 396 38.45
6 297 77.92 617 44.12 151 84.07
7 399 54.81 709 34.64 247 62.73
8 527 34.27 1005 20.95 372 38.77
9 456 45.74 1086 25.61 351 47.26
10 229 56.38 361 37.11 102 74.73

Outdoor

1 608 32.24 1544 22.37 332 36.86
2 456 32.00 806 20.64 317 34.88
3 252 34.68 427 23.37 151 43.83
4 316 37.16 972 18.56 301 39.67
5 301 40.22 512 27.87 201 43.11
6 405 34.90 907 18.49 346 37.99
7 629 41.65 1243 26.80 346 52.39
8 643 38.91 1393 25.41 407 42.84
9 402 41.41 691 26.39 296 42.02
10 458 35.52 876 20.92 321 41.46

For surface reconstruction, 3D lines are used to predict
3D planes in a Bayesian probabilistic modelling formulation
solved under standard expectation maximization (EM). The
computational time of this step takes O(ikn) where n is
the number of input 3D lines, k is the number of assumed
candidate planes, and i is the number of EM iterations. We
set the maximum iteration number to 100, but we find that
our algorithm usually only needs a few dozen iterations.

5 EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of our
approach in several scenes with different styles and shapes.
We also evaluate the proposed algorithm qualitatively and
quantitatively through the visual inspection of our results
and a comparison with previous point-based and line-based
reconstruction methods. Our algorithm is implemented in
C++ and Python. All results presented in this paper are
obtained on a desktop computer equipped with an Intel i7-
7700k processor with 4.2 GHz and 16 GB RAM.

5.1 Comparison on 2D line detection and 3D line cloud
generation
Compared with other 2D line segment extraction methods,
the main feature of our method is a line detector under
multi-resolution images, and a line segment clustering and
merging operation, both of which improve the integrity
and continuity of the detected line segments. Here we
compare two popular robust detectors, CannyLines [55] and
LSD [37], in terms of the quality of extracted line segments
for scene abstraction and reconstruction. We employ the
YorkUrbanDB dataset [59] which consists of 102 images that
are captured from real-world urban scenes. Each image in
the database has been hand-labeled to identify the set of
major line segments, which can be regarded as ground-truth
lines. We first select 20 images from the database for testing,

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 9

(a) Input (b) CannyLine (c) LSD (d) Our MR-LSD

Fig. 7. Visual comparison of different line segment extraction methods using indoor and outdoor scenes.

0 0.5 1 1.5 2
Total line segment length (pixels) 10 4

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

CannyLine
LSD
Ours

0 100 200 300 400
Number of line segments

0

0.2

0.4

0.6

0.8

1

R
ec

al
l

CannyLine
LSD
Ours

0 0.2 0.4 0.6 0.8 1
Recall

0

0.2

0.4

0.6

0.8

1

Pr
ec

is
io

n

CannyLine
LSD
Ours

Fig. 8. Performance of the proposed MR-LSD compared with previous 2D line segment detectors. From left to right are precision-recall, recall as a
function of the number of segments returned, and recall as a function of the total length of segments returned.

(a)

(b)

(c)

(d)

Fig. 9. Comparing our approach (right column) to Line3D++ [56] (middle
column) on 3D scene abstraction and wireframe model reconstruction.

of which 10 are indoor scenes and 10 are outdoor scenes.
Fig. 7 shows the line segment extraction results of two
representative examples. Through the visual comparison,
we can observe that our results are much cleaner. More-

over, the completeness and continuity of the line segments
extracted by our method are the best because we have the
least number of broken line segments. For quantitative eval-
uation, Table 1 reports the number of detected line segments
and also calculates the average length of all line segments.
To measure the distance between the ground-truth and
detected line segments further, we adopt three evaluative
measures proposed by [60], including precision-recall, recall
as a function of the number of segments, and recall as a
function of total segment length. From Table 1 and Fig. 8, it
can be seen that we use fewer line segments to represent the
scenes. The average length of our line segments is much
longer than the comparison methods while not reducing
detection accuracy. It indicates that in general our proposed
approach extracts more meaningful line segments.

Next, we evaluate the results of 3D line cloud generation.
We select Line3D++ [56] as a competitor since to the best
of our knowledge it is still the state-of-the-art method, and
it has been widely used in several line-based 3D scene
abstraction and reconstruction approaches. Fig. 9 gives four
visual comparison examples by showing the reconstructed
3D wire-frame models. The first two examples are our cap-
tured real-world scenes, and the last two synthetic scenes
are from [61], which introduces a synthetic dataset by
rendering multi-view images of the buildings in Blender
with synthetic textures. Based on the synthetic data, we
can also conduct a quantitative comparison. Given that a

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 10

Input DBSCAN Hierarchical ClusteringPhoto

(a)

(b)

3D-KHT OursRANSAC

Fig. 10. Visual comparison of different clustering methods using real-world data. From left to right: the reference photo, input 3D line clouds, the
clustering results of DBSCAN [53], hierarchical clustering [57], RANSAC [58], 3D-KHT [43] and ours. A full comparison to all of previous methods
can be found in the supplementary materials.

Input Mean Shift DBSCAN Hierarchical Clusterig

(a)

GlobFitRANSAC

(b)

(c)

3D-KHT Ground-truthOurs

Fig. 11. Visual comparison of different clustering methods using synthetic data. The ground-truth labeling is provided in the last column. Please
zoom in to compare the clustering details.

TABLE 2
Quantitative comparison to Line3D++ using the synthetic data shown in
Fig. 9. Emean and ERMS represent mean and root mean square (RMS)
of the reconstruction error measuring the per-point distance between

the reconstructed 3D line segments and the ground-truth mesh.

Scene Line3D++ Ours
Emean ERMS Emean ERMS

Fig. 9 (c) 3.74 17.18 5.03 14.36
Fig. 9 (d) 3.01 12.14 2.23 8.79

set of ground-truth 3D lines are very difficult to synthe-
size, we instead compute the reconstruction error which
measures the distance between the generated 3D lines of
our approach (or Line3D++) and the ground-truth surface
mesh. As shown in Fig. 9, the 3D line clouds generated by
Line3D++ are quite noisy. In contrast, the proposed method
outperforms Line3D++ in terms of noise control, line seg-
ment consistency and completeness, and visual effects. In
addition, Table 2 shows that we still have comparable
reconstruction fidelity with Line3D++. Therefore, our ap-
proach is more suitable for plane detection and surface mesh
reconstruction.

5.2 Comparison on plane hypotheses generation

One of the critical steps for the successful reconstruction of
our algorithm is the Bayesian plane prediction formulation
(see Sec. 4.3) which has two functions: (1) finding the
group of 3D line segments belonging to the same plane,
and (2) returning the plane parameters. To demonstrate its
efficiency, we compare our approach against two kinds of
methods: direct clustering methods (e.g., mean shift [62],
DBSCAN [53] and hierarchical clustering [57]) and plane
detection methods (e.g., RANSAC [58], GlobFit [42] and 3D-
KHT [43]). For the clustering methods, we feed the same
3D line segments to all clustering methods to judge the
performance of the clustering. For plane detection meth-
ods, we input the endpoints of 3D line segments to them,
and evaluate their clustering performance by converting
their plane detection results into the clustering of 3D line
segments. It can judge whether they are able to accurately
generate candidate planes.

In Fig. 10, we use two real-world data to show the
clustering comparison, and the visual results illustrate the
superiority of our algorithm. In Fig. 10 (a), the planes
indicated by yellow and cyan boxes in the reference photo
are two small planes, which are difficult to be accurately
detected by other methods, while our approach can cor-
rectly recover such small planes. Furthermore, our approach
is also capable of distinguishing planes with similar normal

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 11

TABLE 3
Quantitative comparison of different clustering methods. #l represents
the number of input 3D line segments, #GC is the ground-truth number

of clusters in each example, and #C is the final number of clusters
obtained by each method.

Input Methods #C RI NMI

Fig. 11 (a)
#l=1800
#GC=20

Mean Shift 34 0.8150 0.6411
RANSAC 23 0.9384 0.8056
DBSCAN 24 0.7940 0.6280

Hierarchical Clustering 7 0.8694 0.5943
Globfit 24 0.9418 0.8121

3D-KHT 17 0.7945 0.4976
Ours 20 0.9701 0.8920

Fig. 11 (b)
#l=2428
#GC=12

Mean Shift 18 0.7814 0.4282
RANSAC 23 0.5073 0.3622
DBSCAN 27 0.7891 0.4749

Hierarchical Clustering 7 0.7871 0.3688
Globfit 39 0.5396 0.3786

3D-KHT 10 0.9299 0.7810
Ours 12 1.0000 1.0000

Fig. 11 (c)
#l=4878
#GC=16

Mean Shift 45 0.8483 0.4440
RANSAC 33 0.8719 0.6629
DBSCAN 41 0.7855 0.3812

Hierarchical Clustering 7 0.7979 0.3096
Globfit 13 0.8382 0.6419

3D-KHT 20 0.9392 0.7893
Ours 16 1.0000 1.0000

directions. For example, the green and purple planes labeled
in the reference photo in Fig. 10 (b) have a small difference
the in normal direction. Compared with previous methods,
we can separate these two planes better.

For a quantitative comparison, we randomly generate 3D
line segments on three synthetic models from [26], as a result
the ground-truth clusters can be provided (see Fig. 11).
We adopt two commonly used measures, Rand Index (RI)
and Normalized Mutual Information (NMI), to determine the
quality of clustering. RI computes the similarity between
two clusterings by considering all pairs of samples and
counting pairs assigned to the same or different clusters in
the predicted and true clusterings:

RI =
TP + TN

TP + FP + FN + TN
, (12)

where TP, TN,FP, FN are the number of true positives,
true negatives, false positives, and false negatives, respec-
tively. This index gives a value between zero and one, for
RI = 1 the two clusterings are identical. The value of NMI
depends on the mutual information I(· ; ·) and the entropy
H(·) of the labeled classes Ω and clusters C:

NMI =
2× I(Ω ;C)

H(Ω) +H(C)
. (13)

NMI = 0 indicates no mutual information, and 1 means
perfect correlation. Fig. 11 shows the qualitative results
of different methods, while Table 3 reports the numerical
statistics of the clustering performance. Both qualitative and
quantitative comparison show that our approach outper-
forms the other methods in terms of RI and NMI, and we
are able to extract candidate planes accurately.

5.3 Comparison on surface reconstruction
Finally, we demonstrate the effectiveness of our proposed
pipeline by comparing it against both point-based and line-
based surface reconstruction methods. Given the input set

of images for each dataset, we follow the typical photogram-
metry pipeline using SfM to obtain the camera poses as well
as a sparse point cloud. Then we run MVS to generate a
dense point cloud. For a thorough evaluation, we compare
with previous methods by assembling different compati-
ble configurations. First, we apply the screened Poisson
reconstruction [63] on the sparse and dense point clouds
respectively to reconstruct corresponding surface meshes.
Then the PolyFit method [26] is utilized on the sparse point
cloud to obtain a lightweight polygonal surface. We have
also implemented another baseline approach, where we
sample a point cloud from our reconstructed 3D line cloud,
then we detect planes from this point cloud by performing
RANSAC, and input the planes to PolyFit to generate the
final mesh. Finally, we feed our generated 3D line cloud into
SRLS (Langlois et al. [41]), which can directly reconstruct the
surface from 3D line segments.

Fig. 12 and Fig. 13 display the visual comparison results
on several selected real-world and synthetic datasets, re-
spectively. For quantitative comparison, we first use the real-
world data to inspect the computation time of each method
as well as the face number in the reconstructed mesh, as
shown in Table 4. We then use synthetic data to compute
the reconstruction error between the mesh generated by
each method and the ground-truth surface. Table 5 reports
corresponding quantitative comparison using Hausdorff
distance. As shown in Figures 12 and 13, due to missing
data, the 3D surfaces reconstructed from sparse point clouds
lack structural details and contain holes and inaccuracies.
Although Poisson reconstruction on a dense point cloud ob-
tains models with fine shapes, the mesh of a single building
has hundreds of thousands or even millions of faces (see
Tables 4 and 5) which will lead to a large storage burden for
large-scale urban reconstruction. Moreover, MVS+Poisson
reconstruction often represents planar regions with a large
number of bumps, as noise exists in plane normal directions
due to the inference error in depth computation. Compared
with purely point-based methods, PolyFit is able to re-
construct piecewise planar models. However, this method
fails to reconstruct faithful models due to missing data and
unreliable plane detection from a point cloud, because it
heavily relies on plane detection results. SRLS [41] detects
planes from a line cloud with visibility information, then
reconstructs a surface mesh by labeling each 3D cell of the
plane arrangement as full or empty. Therefore, although this
method can capture more building details, it is sensitive to
the quality of input 3D line segments, where the noisy or
outlier line segments would cause a large number of invalid
cells. In addition, Table 4 shows that this method is very
time consuming (usually takes over 30 minutes) because of
a cubic complexity in the number of planes. By comparison,
we could reconstruct a good approximation of the buildings
with compact and clean representations. Furthermore, our
approach generates structured surface meshes that achieve
a good trade-off between the face number and the running
time.

5.4 Limitations

While producing convincing results, our framework still has
several limitations. First, our algorithm may fail to extract

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 12

(a) Input (b) Sparse+Poisson (c) Dense+Poisson (d) Sparse+Polyfit (e) RANSAC+Polyfit (f) SRLS

Te
ch

 B
ui

ld
in

g
D

JI
SI

AT
B

ar
n

(g) Ours

Fig. 12. Comparison to point-based or lightweight reconstruction methods using real-world data. From left to right are: (a) the reference photos, (b)
sparse point cloud + Poisson [63], (c) dense point cloud + Poisson [63], (d) sparse point cloud + PolyFit [26], (e) RANSAC [58] + PolyFit [26], (f)
SRLS [41], (g) our reconstruction results.

(a) Input (b) Sparse+Poisson (c) Dense+Poisson (d) Sparse+Polyfit (e) RANSAC+Polyfit (f) SRLS

Sy
nt

he
ti

S2
Ti

m
be

r H
ou

se
 S

yn
th

et
i S

1

(g) Ours (h) Ground-truth

Fig. 13. Comparison to point-based or lightweight reconstruction methods using synthetic data where the ground-truth surface meshes are provided.

TABLE 4
Quantitative comparison to different reconstruction methods using real-world data (Fig. 12) in terms of computation time (t∗ in seconds) and the

face number (#f) in the output mesh. #img is the number of input images for each scene. For our approach, t3DLine, tPlane and tMesh

represent the running time of extracting a 3D line cloud, 3D plane detection and surface mesh reconstruction by PolyFit, respectively.

Scene #img
Sparse+Poisson Dense+Poisson Sparse+PolyFit RANSAC+PolyFit SRLS Ours

tSFM tPoiss. ttotal #f tMV S tPoiss. ttotal #f tRecons. ttotal #f tRecons. ttotal #f tRecons. ttotal #f t3DLine tPlane tMesh ttotal #f

Tech Building 120 317 3.9 320.9 61070 5400 25.8 5742.8 1217139 4.48 321.48 12 8.46 325.46 472 4969 5286 5232 52 14.23 6.89 390.12 490

DJI 218 1539 12.8 1551.8 83457 10582 31.7 12152.7 773706 10.68 1549.68 268 5.19 1544.19 216 9181 10720 4187 98 24.85 39.09 1700.94 389

SIAT 206 1016 8.4 1024.4 186164 9529 27.6 10572.6 650920 13.84 1029.84 452 19.05 1035.05 472 7847 8863 9133 88 13.31 6.39 1123.7 466

Barn 410 902 8.2 910.2 128061 15609 29.5 16540.5 696741 5.55 907.55 104 16.32 918.32 272 12035 12937 39910 70 29.15 32.84 1033.99 417

TABLE 5
Quantitative comparison to different reconstruction methods using synthetic data (Fig. 13) in terms of Hausdorff distance and the face number

(#f) in the output mesh. Hmean and HRMS represent mean and root mean square (RMS) of the Hausdorff distance, respectively, with respect to
the bounding box diagonal of the ground-truth.

Scene #img
Sparse+Poisson Dense+Poisson Sparse+PolyFit RANSAC+PolyFit SRLS Ours

#f Hmean HRMS #f Hmean HRMS #f Hmean HRMS #f Hmean HRMS #f Hmean HRMS #f Hmean HRMS

Synthetic S1 35 30556 5.3213 8.1652 244867 0.0726 0.1242 46 7.5983 10.3291 108 4.8246 8.5199 6518 1.4128 2.8233 114 0.0266 0.0480

Synthetic S2 35 40330 3.0717 5.4218 270312 0.1127 0.2415 322 9.4290 12.9280 112 3.6546 4.4746 20492 0.6639 1.5575 212 0.0401 0.0462

Timber House 240 128766 1.0594 1.2549 549202 0.1427 0.5316 66 4.6438 8.0946 384 1.7177 2.8251 6016 1.2525 1.5646 596 0.8656 0.9195

faithful candidate planes if the plane has no or only a few
line segments. Taking Fig. 14 as an example, line segments

are difficult to extract from the hollow structure near pil-
lars. Thus, the building shape can not be maintained well.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 13

Fig. 14. We can not reconstruct the hollow structure near the pillars
because it is hard to extract valid support lines from these regions.

Second, we use a modified PolyFit to obtain the final surface
mesh from candidate planar primitives. However, according
to our experiments, the running time of PolyFit would be a
bottleneck if a large number of candidate planes for complex
buildings exist. Finally, as our goal is to reconstruct coarse
polygonal surfaces quickly, the geometric details (e.g., doors,
windows) of the buildings are missing. A possible solution
for future study would be to perform instance segmentation
on the input images, then add the details to our coarse
model using a template assembly approach [64].

6 CONCLUSION AND FUTURE WORK

We have presented a new approach for line-based 3D scene
abstraction and modeling from images with rich line seg-
ments texture. Our algorithm can extract more complete and
continuous 2D line segments, which are then matched to ob-
tain a high-quality 3D line cloud. Moreover, we propose an
optimization approach to find candidate planes for 3D line
segments accurately. It allows us to create a manifold and
compact surface model. We demonstrate the effectiveness
and advantages of our approach by comparing it with the
state-of-the-art methods on synthetic and real data.
Future work. Besides addressing the limitations above, we
would like to extend our approach to support 3D curves [65]
or other types of geometric primitives (e.g., cylinders and
spheres). This approach would allow us to generate polyg-
onal surfaces for more complex and general scenes.

In addition, we plan to perform semantic analysis on
2D line segments using deep learning to distinguish the
semantic and textural line segments [66]. A semantic line
represents the edge of the outline of an object, and it is
the intersection of different planes; the textural line is the
boundary due to the change of texture color, and it is only
located on a single plane. Such semantic information can
be used to verify the matching relationship between line
segments and filter false matches, i.e., only the line segments
with the same semantics can be a possible correct match.

ACKNOWLEDGMENTS

The authors thank anonymous reviewers for their valu-
able comments. They also would like to thank Yuzhi
Chen and Zhenbang He for preparing the results of
some comparison methods. This work is partially funded
by the National Natural Science Foundation of China
(62172416, U22B2034, U21A20515, 61972388), Shenzhen Sci-
ence and Technology Program (JCYJ20180507182222355,
GJHZ20210705141402008), and Youth Innovation Promotion
Association of the Chinese Academy of Sciences (2022131).

REFERENCES

[1] H. C. Longuet-Higgins, “A computer algorithm for reconstructing
a scene from two projections,” Nature, vol. 293, no. 5828, p. 133,
1981.

[2] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world from
internet photo collections,” Int. Journal of Computer Vision, vol. 80,
no. 2, pp. 189–210, 2008.

[3] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M.
Seitz, and R. Szeliski, “Building rome in a day,” Communications of
the ACM, vol. 54, no. 10, pp. 105–112, 2011.

[4] Y. Furukawa and J. Ponce, “Accurate, dense, and robust multiview
stereopsis,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp.
1362–1376, 2010.

[5] H.-H. Vu, P. Labatut, J.-P. Pons, and R. Keriven, “High accuracy
and visibility-consistent dense multiview stereo,” IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. 34, no. 5, pp. 889–901, 2011.

[6] Y. Furukawa and C. Hernández, “Multi-view stereo: A tutorial,”
Foundations and Trends® in Computer Graphics and Vision, vol. 9, no.
1-2, pp. 1–148, 2015.

[7] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: Exploring
photo collections in 3d,” ACM Trans. Graph., vol. 25, no. 3, pp.
835–846, Jul. 2006.

[8] C. Wu, “Visualsfm: A visual structure from motion system,”
http://ccwu.me/vsfm/, 2011.

[9] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion re-
visited,” in IEEE Computer Vision and Pattern Recognition (CVPR),
2016.

[10] J. L. Schönberger, E. Zheng, M. Pollefeys, and J.-M. Frahm,
“Pixelwise view selection for unstructured multi-view stereo,” in
European Conference on Computer Vision (ECCV), 2016.

[11] S. Fuhrmann, F. Langguth, N. Moehrle, M. Waechter, and M. Goe-
sele, “Mve—an image-based reconstruction environment,” Com-
puters & Graphics, vol. 53, pp. 44–53, 2015.

[12] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, “Towards
internet-scale multi-view stereo,” in IEEE Computer Vision and
Pattern Recognition (CVPR), 2010, pp. 1434–1441.

[13] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and
temples: Benchmarking large-scale scene reconstruction,” ACM
Trans. Graph., vol. 36, no. 4, pp. 1–13, 2017.

[14] A. Elqursh and A. Elgammal, “Line-based relative pose estima-
tion,” in IEEE Computer Vision and Pattern Recognition (CVPR),
2011, pp. 3049–3056.

[15] Y. Salaün, R. Marlet, and P. Monasse, “Robust and accurate line-
and/or point-based pose estimation without manhattan assump-
tions,” in European Conference on Computer Vision (ECCV), 2016, pp.
801–818.

[16] G. Schindler, P. Krishnamurthy, and F. Dellaert, “Line-based struc-
ture from motion for urban environments,” in 3DPVT, 2006, pp.
846–853.

[17] A. Bartoli and P. Sturm, “Structure-from-motion using lines: Rep-
resentation, triangulation, and bundle adjustment,” Comput. Vis.
Image Underst., vol. 100, no. 3, pp. 416–441, 2005.

[18] B. Micusik and H. Wildenauer, “Structure from motion with
line segments under relaxed endpoint constraints,” Int. Journal of
Computer Vision, vol. 124, no. 1, pp. 65–79, 2017.

[19] P. Smith, I. Reid, and A. J. Davison, “Real-time monocular slam
with straight lines,” in BMVC, 2006.

[20] G. Zhang, J. H. Lee, J. Lim, and I. H. Suh, “Building a 3-d line-
based map using stereo slam,” IEEE Trans. Robot., vol. 31, no. 6,
pp. 1364–1377, 2015.

[21] B. Micusik and H. Wildenauer, “Descriptor free visual indoor
localization with line segments,” in IEEE Computer Vision and
Pattern Recognition (CVPR), 2015, pp. 3165–3173.

[22] C. Baillard, C. Schmid, A. Zisserman, and A. Fitzgibbon, “Au-
tomatic line matching and 3d reconstruction of buildings from
multiple views,” in ISPRS Conference on Automatic Extraction of GIS
Objects from Digital Imagery, vol. 32, 1999, pp. 69–80.

[23] M. Hofer, A. Wendel, and H. Bischof, “Incremental line-based 3d
reconstruction using geometric constraints.” in BMVC, 2013.

[24] M. Hofer, M. Maurer, and H. Bischof, “Efficient 3d scene abstrac-
tion using line segments,” Comput. Vis. Image Underst., vol. 157,
pp. 167–178, 2017.

[25] T. Sugiura, A. Torii, and M. Okutomi, “3d surface reconstruction
from point-and-line cloud,” in International Conference on 3D Vision
(3DV), 2015, pp. 264–272.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 14

[26] L. Nan and P. Wonka, “Polyfit: Polygonal surface reconstruction
from point clouds,” in IEEE Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 2353–2361.

[27] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guen-
nebaud, J. A. Levine, A. Sharf, and C. T. Silva, “A survey of sur-
face reconstruction from point clouds,” in Comput. Graph. Forum,
vol. 36, no. 1, 2017, pp. 301–329.

[28] H. Bay, A. Ess, A. Neubeck, and L. Van Gool, “3d from line
segments in two poorly-textured, uncalibrated images,” in 3D
Data Processing, Visualization, and Transmission, 2006, pp. 496–503.

[29] H. Bay, V. Ferraris, and L. Van Gool, “Wide-baseline stereo match-
ing with line segments,” in IEEE Computer Vision and Pattern
Recognition (CVPR), 2005, pp. 329–336.

[30] L. Zhang and R. Koch, “Structure and motion from line corre-
spondences: Representation, projection, initialization and sparse
bundle adjustment,” Journal of Visual Communication and Image
Representation, vol. 25, no. 5, pp. 904–915, 2014.

[31] M. Hofer, M. Maurer, and H. Bischof, “Improving sparse 3d
models for man-made environments using line-based 3d recon-
struction,” in International Conference on 3D Vision (3DV), 2014, pp.
535–542.

[32] A. Jain, C. Kurz, T. Thormählen, and H.-P. Seidel, “Exploiting
global connectivity constraints for reconstruction of 3d line seg-
ments from images,” in IEEE Computer Vision and Pattern Recogni-
tion (CVPR), 2010, pp. 1586–1593.

[33] S. Ramalingam and M. Brand, “Lifting 3d manhattan lines from a
single image,” in IEEE International Conference on Computer Vision
(ICCV), 2013, pp. 497–504.

[34] C. Baillard and A. Zisserman, “Automatic reconstruction of piece-
wise planar models from multiple views,” in IEEE Computer Vision
and Pattern Recognition (CVPR), vol. 2, 1999, pp. 559–565.

[35] L. Zebedin, J. Bauer, K. Karner, and H. Bischof, “Fusion of feature-
and area-based information for urban buildings modeling from
aerial imagery,” in European Conference on Computer Vision (ECCV),
2008, pp. 873–886.

[36] S. Sinha, D. Steedly, and R. Szeliski, “Piecewise planar stereo
for image-based rendering,” in IEEE International Conference on
Computer Vision (ICCV), 2009, pp. 1881–1888.

[37] R. Grompone von Gioi, J. Jakubowicz, J. Morel, and G. Randall,
“Lsd: A fast line segment detector with a false detection control,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 4, pp. 722–732,
2010.

[38] J. Witt and G. Mentges, “Maximally informative surface recon-
struction from lines,” in IEEE International Conference on Robotics
and Automation (ICRA), 2014, pp. 2029–2036.

[39] J. Wang, T. Fang, Q. Su, S. Zhu, J. Liu, S. Cai, C.-L. Tai, and
L. Quan, “Image-based building regularization using structural
linear features,” IEEE Trans. on Vis. and Comput. Graph., vol. 22,
no. 6, pp. 1760–1772, 2016.

[40] A. Boulch, M. de La Gorce, and R. Marlet, “Piecewise-planar
3d reconstruction with edge and corner regularization,” Comput.
Graph. Forum, vol. 33, no. 5, pp. 55–64, 2014.

[41] P.-A. Langlois, A. Boulch, and R. Marlet, “Surface reconstruction
from 3d line segments,” in International Conference on 3D Vision
(3DV), 2019, pp. 553–563.

[42] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mi-
tra, “Globfit: Consistently fitting primitives by discovering global
relations,” ACM Trans. Graph., vol. 30, no. 4, pp. 1–12, 2011.

[43] F. A. Limberger and M. M. Oliveira, “Real-time detection of planar
regions in unorganized point clouds,” Pattern Recognition, vol. 48,
no. 6, pp. 2043–2053, 2015.

[44] A. M. C. Araujo and M. M. Oliveira, “A robust statistics approach
for plane detection in unorganized point clouds,” Pattern Recogni-
tion, vol. 100, pp. 1–12, 2020, article 107115.

[45] F. Lafarge, R. Keriven, and M. Brédif, “Insertion of 3-d-primitives
in mesh-based representations: Towards compact models preserv-
ing the details,” IEEE Trans. Image Process., vol. 19, pp. 1683 – 1694,
08 2010.

[46] L. Zhang, J. Guo, J. Xiao, X. Zhang, and D.-M. Yan, “Blending
surface segmentation and editing for 3d models,” IEEE Trans. on
Vis. and Comput. Graph., vol. 28, no. 8, pp. 2879–2894, 2022.

[47] C. Mura, O. Mattausch, A. Jaspe Villanueva, E. Gobbetti, and
R. Pajarola, “Automatic room detection and reconstruction in
cluttered indoor environments with complex room layouts,” Com-
puters & Graphics, vol. 44, pp. 20–32, 2014.

[48] A. Monszpart, N. Mellado, G. J. Brostow, and N. J. Mitra,
“Rapter: rebuilding man-made scenes with regular arrangements
of planes.” ACM Trans. Graph., vol. 34, no. 4, pp. 103–1, 2015.

[49] M. Li, P. Wonka, and L. Nan, “Manhattan-world urban reconstruc-
tion from point clouds,” in European Conference on Computer Vision
(ECCV), 2016, pp. 54–69.

[50] A. Kaiser, J. A. Ybanez Zepeda, and T. Boubekeur, “A survey of
simple geometric primitives detection methods for captured 3d
data,” Comput. Graph. Forum, vol. 38, no. 1, pp. 167–196, 2019.

[51] J. Chen, M. K. Leung, and Y. Gao, “Noisy logo recognition using
line segment hausdorff distance,” Pattern recognition, vol. 36, no. 4,
pp. 943–955, 2003.

[52] P. S. Bullen, Handbook of means and their inequalities. Springer
Science & Business Media, 2013, vol. 560.

[53] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with
noise,” in KDD, 1996, pp. 226–231.

[54] Y. Gu, Y. He, K. Fatahalian, and G. Blelloch, “Efficient bvh con-
struction via approximate agglomerative clustering,” in Proceed-
ings of High-Performance Graphics Conference, 2013, pp. 81–88.

[55] X. Lu, J. Yao, K. Li, and L. Li, “Cannylines: A parameter-free
line segment detector,” in IEEE International Conference on Image
Processing (ICIP), 2015, pp. 507–511.

[56] M. Hofer, M. Maurer, and H. Bischof, “Line3d: Efficient 3d scene
abstraction for the built environment,” in German Conference on
Pattern Recognition, 2015, pp. 237–248.

[57] D. Müllner, “Modern hierarchical, agglomerative clustering algo-
rithms,” arXiv preprint arXiv:1109.2378, 2011.

[58] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-
cloud shape detection,” in Comput. Graph. Forum, vol. 26, no. 2,
2007, pp. 214–226.

[59] P. Denis, J. H. Elder, and F. J. Estrada, “Efficient edge-based
methods for estimating manhattan frames in urban imagery,” in
European Conference on Computer Vision (ECCV), 2008, pp. 197–210.

[60] E. J. Almazàn, R. Tal, Y. Qian, and J. H. Elder, “Mcmlsd: A
dynamic programming approach to line segment detection,” in
IEEE Computer Vision and Pattern Recognition (CVPR), 2017, pp.
5854–5862.

[61] Y. Luo, J. Ren, X. Zhe, D. Kang, Y. Xu, P. Wonka, and L. Bao,
“Learning to construct 3d building wireframes from 3d line
clouds,” arXiv preprint arXiv:2208.11948, 2022.

[62] K. Fukunaga and L. Hostetler, “The estimation of the gradient of
a density function, with applications in pattern recognition,” IEEE
Trans. Inf. Theory, vol. 21, no. 1, pp. 32–40, 1975.

[63] M. Kazhdan and H. Hoppe, “Screened poisson surface reconstruc-
tion,” ACM Trans. Graph., vol. 32, no. 3, pp. 1–13, 2013.

[64] L. Nan, C. Jiang, B. Ghanem, and P. Wonka, “Template assembly
for detailed urban reconstruction,” Comput. Graph. Forum, vol. 34,
no. 2, pp. 217–228, 2015.

[65] R. Fabbri and B. B. Kimia, “Multiview differential geometry of
curves,” Int. Journal of Computer Vision, vol. 120, no. 3, pp. 324–346,
2016.

[66] K. Zhao, Q. Han, C.-B. Zhang, J. Xu, and M.-M. Cheng, “Deep
hough transform for semantic line detection,” IEEE Trans. Pattern
Anal. Mach. Intell., 2021.

Jianwei Guo is an associate professor in Na-
tional Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of
Sciences (CASIA). He received his Ph.D. degree
in computer science from CASIA in 2016, and
bachelor degree from Shandong University in
2011. His research interests include computer
graphics and 3D vision.

JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2022 15

Yanchao Liu received his B.S. degree from Sun
Yet-sen University, China, in 2016. He is cur-
rently working towards the Ph.D. in computer
engineering at the School of Artificial Intelli-
gence, University of Chinese Academy of Sci-
ences and NLPR, Institute of Automation, Chi-
nese Academy of Sciences. His research inter-
ests include geometric learning, 3D reconstruc-
tion and computer vision.

Xin Song is a graphic engineer in TiMi Studio
Group, a subsidiary of Tencent Games. He got
his master’s degree in computer engineering at
Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences, in 2018. His re-
search interests include 3D reconstruction, ren-
dering and image processing.

Haoyu Liu received his B.S. degree from Harbin
Institute of Technology, Harbin, China in 2019.
He is currently working towards the M.S. degree
in computer engineering at the School of Artifi-
cial Intelligence, University of Chinese Academy
of Sciences and Institute of Automation, Chinese
Academy of Sciences. His research interests
include 3D reconstruction and point cloud pro-
cessing.

Xiaopeng Zhang received the PhD degree in
computer science from Institute of Software,
Chinese Academic of Sciences in 1999. He
is a professor in National Laboratory of Pat-
tern Recognition at Institute of Automation, Chi-
nese Academy of Sciences. He received the
National Scientific and Technological Progress
Prize (second class) in 2004 and the Chinese
Award of Excellent Patents in 2012. His main re-
search interests include image processing, com-
puter graphics and computer vision.

Zhanglin Cheng is a professor in the Shen-
zhen Key Laboratory of Visual Computing and
Analytics (VisuCA), Shenzhen Institute of Ad-
vanced Technology, Chinese Academy of Sci-
ences. He received the Ph.D. degree from In-
stitute of Automation, Chinese Academy of Sci-
ences in 2008. His research interests include
computer graphics and visualization.

