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Fig. 1. Left: the large-scale dataset of deformed papers generated by our simulation method. Right: by analyzing the layout of the deformed document image,
we propose a divide-and-conquer approach to rectify the document image. After predicting the global and local UVs (Middle) using neural networks, we merge
the two and restore the flat paper image.

Single image rectification of document deformation is a challenging task.
Although some recent deep learning-based methods have attempted to solve
this problem, they cannot achieve satisfactory results when dealing with doc-
ument images with complex deformations. In this paper, we propose a new
efficient framework for document flattening. Our main insight is that most
layout primitives in a document have rectangular outline shapes, making
unwarping local layout primitives essentially homogeneous with unwarping
the entire document. The former task is clearly more straightforward to
solve than the latter due to the more consistent texture and relatively smooth
deformation. On this basis, we propose a layout-aware deep model working
in a divide-and-conquer manner. First, we employ a transformer-based seg-
mentation module to obtain the layout information of the input document.
Then a new regression module is applied to predict the global and local UV
maps. Finally, we design an effective merging algorithm to correct the global
prediction with local details. Both quantitative and qualitative experimental
results demonstrate that our framework achieves favorable performance
against state-of-the-art methods. In addition, the current publicly available
document flattening datasets have limited 3D paper shapes without layout
annotation and also lack a general geometric correction metric. Therefore,
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we build a new large-scale synthetic dataset by utilizing a fully automatic
rendering method to generate deformed documents with diverse shapes
and exact layout segmentation labels. We also propose a new geometric
correction metric based on our paired document UV maps. Code and dataset
will be released at https://github.com/BunnySoCrazy/LA-DocFlatten.
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1 INTRODUCTION
With the rapid development and popularity of portable photograph-
ing devices, e.g., cameras and smartphones, photography has become
the primary method to digitize documents. Compared with docu-
ments scanned by a flatbed scanner under fixed working conditions,
camera-captured document images often suffer from various distor-
tions and uneven illumination. This phenomenon can be explained
by three aspects. (1) Paper documents often have physical deforma-
tions such as wrinkling and bending. (2) The position and angle of
the handheld camera may cause the document image surface to be
non-orthogonal to the line of sight. (3) The lighting conditions of
the shooting scene are complicated. These undesirable drawbacks
of document images inevitably affect the user’s reading experience
and harm the downstream tasks, such as optical character recog-
nition (OCR), document layout analysis (DLA), etc. Consequently,
document image rectification has attracted increasing attention and
become an important topic for many document-related tasks.
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Previous conventional approaches mainly follow two research
directions, i.e., 2D image processing and 3D shape reconstruction.
Document unwarping based on 2D image processing estimates the
distortion by extracting the low-level features in the document im-
ages. These specific features usually contain letter/word [Fawzi et al.
2015; Zandifar 2007], boundaries [Brown and Tsoi 2006; Tsoi and
Brown 2007], and text lines [Kim et al. 2015; Lavialle et al. 2001; Mis-
chke and Luther 2005]. However, the performance of these methods
heavily depends on the quality of extracted low-level features.
Document unwarping based on 3D shape reconstruction first

recovers the 3D surface of document images and then maps it onto
a plane. Some existing methods depend on specific hardware de-
vices, such as multi-camera 3D scanning system [Brown et al. 2007],
laser range scanner [Zhang et al. 2008], and structured light [Brown
and Seales 2001; Sun et al. 2005]. However, these expensive equip-
ment requirements and specific lighting conditions may limit their
applicability. Due to these limitations, some other approaches re-
construct the 3D shape surface based on the simplified parametric
model assumption. These methods are either designed using the
shading information [Courteille et al. 2007; Tan et al. 2006; Wada
et al. 1997], or using the visual cues [He et al. 2013; Liang et al.
2008; Meng et al. 2018]. This kind of approach often suffers from
non-trivial optimization costs and achieves limited performance due
to complex distortions and inaccurate visual cue detection.
Recently, deep learning-based methods have been proposed to

rectify the warped document and achieve promising performance.
These methods usually model the unfolding process by estimat-
ing a pixel-wise displacement flow. Different aspects have been
focused on by these approaches: 3D coordinate regression [Das et al.
2019; Markovitz et al. 2020], foreground/background partition [Xie
et al. 2021a], iterative optimization [Feng et al. 2021b], and local
patch [Feng et al. 2021a; Li et al. 2019]. Although previous methods
perform well for simple deformations, they tend to be less effective
when unwrapping document images with complex deformations.
This situation can be attributed to the following problems. First,
most previous networks do not take advantage of the layout in-
formation provided by the document content. Second, the paper
shapes of the documents in the current datasets are not diverse and
complex enough.

For the network design, we propose a layout-aware rectification
method for single-image document flattening. The core idea is to
combine the UV maps of the entire document (from the global
view) and the layouts (from the local view) to obtain the robust
and exact deformation flow estimation, as shown in Fig. 1 (right).
Specifically, our network contains a layout segmentation branch,
a UV regression branch, and a UV map fusion module. The layout
segmentation branch adopts an encoder-decoder architecture to
predict the layout of the input document image. The UV regression
branch also follows an encoder-decoder design to estimate the UV
maps of the entire image and local patches extracted using the
predicted layout. The UV map fusion module combines the local
and global UV maps to obtain the final deformation flow.
In addition, most existing methods are evaluated on the real im-

age benchmark [Ma et al. 2018], which contains 130 pairs of flat and
deformed document images. However, this dataset does not provide
strictly pixel-wise correspondence between image pairs, and thus

cannot precisely measure the distortion degree of unwarped doc-
ument images. Furthermore, [Das et al. 2019] introduced a Doc3D
dataset via a rendering method. To obtain the 3D meshes of de-
formed documents, they first captured point clouds with a depth
camera, and then extracted the meshes. They also applied simple
flipping and random cropping for data augmentation. However, the
diversity of these collected meshes is limited, and the collection pro-
cess of point clouds is also tedious. The dataset contributed by [Li
et al. 2019] is designed for the patch-based method, which only con-
tains data pairs of 1,000 complete documents, and the deformation
of the documents is relatively simple. To improve the dataset quality,
we propose a fully automatic 3D mesh generation method based on
a physical simulation model. Some representative samples rendered
by our method are shown in Fig. 1 (left). The main contributions of
our work include:

• We propose a layout-aware document geometric rectification
network based on Transformer. By introducing a novel loss
function and adopting a divide-and-conquer strategy in UV
space, we design our network to be layout-aware, thereafter
allowing for robust estimation of the deformation flow.

• We introduce a paper shape simulation method based on a
physical mass-spring system. Instead of the tedious manual
scanning, our approach enables a fully automatic synthesis
pipeline to efficiently construct a large-scale dataset with di-
verse paper shapes and exact layout annotations for network
training.

• We construct a synthetic document dewarping evaluation
dataset along with an improved distortion metric calledMean
Pixel-level Distance (MPD). It allows us to fairly evaluate geo-
metric correction performance without being disturbed by
shadows, document content, and image resolution.

2 RELATED WORK

2.1 Document Rectification
2.1.1 TraditionalMethods. Asmentioned above, conventionalmeth-
ods for document image dewarping can be classified into two cate-
gories: 2D image processing and 3D shape reconstruction.

2D image processing. In the literature, the most used low-level
features extracted from document images include letter/word, bound-
aries, space, and text lines. Ulges et al. [2005] corrected the perspec-
tive and page curl distortion by estimating the local line spacing
and the cell shape around the letters. Stamatopoulos et al. [2011]
proposed a coarse-to-fine strategy to rectify the document images.
This method first restores the large distortions based on detected
word and text lines, and then word-level normalization is applied us-
ing baseline correction. However, the estimation of the continuous
representation of text lines is non-trivial. Kim et al. [2015] adopted
the discrete representation of text lines and text blocks proposed
by [Koo and Cho 2010]. With this simple representation, the docu-
ment dewarping can be easily modeled as an energy minimization
problem. On the basis of the features of text lines and characters,
Fawzi et al. [2015] rectified the skew and perspective distortions of
camera-captured document images. Instead of using text lines them-
selves, Salvi et al. [2015] estimated a more accurate 2D distortion
grid from white space lines. Takezawa et al. [2017] mainly solved
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the perspective distortions on camera-captured document images
with the RANSAC algorithm and the Radon transform. However,
the detection and perception of low-level features in the deformed
document images is non-trivial and thus limits the application of
those image processing-based methods.
3D shape reconstruction. The 3D surface of document images

can be reconstructed by exploiting the shading variations in a single
image [Tan et al. 2006; Wada et al. 1997; Zhang et al. 2009]. In addi-
tion, the curved text lines and boundaries are also prevalent cues
for guiding 3D surface reconstruction. Cao et al. [2003] modeled the
document surface as a cylindrical surface, which is estimated using
the extracted baselines of text lines. Liang et al. [2008] estimated the
3D page shape by using the texture flow fields, which rely on the
extracted local text line and vertical character stroke directions. Dif-
ferent from them, Tian et al. [2011] utilized the domain knowledge,
i.e., line structure and local stroke statistics, to better estimate 2D
distortion grids. Meanwhile, they proposed a shape-from-texture
formulation to reconstruct 3D surfaces with no restrictions on the
shape. In [He et al. 2013], book boundaries, including two horizontal
boundary curves and six corners, were used to reconstruct the 3D
page shape. Based on the assumption that document pages tend
to curve into a developable surface, Meng et al. [2014] recovered
two 3D curves using two beams and interpolated a developable
surface to these two curves. These methods usually add simplifica-
tion constraints on the reconstructed 3D surface, which limits the
performance when unwarping the document image with complex
geometric deformations.

2.1.2 Deep Learning-Based Methods. With the advance of deep
neural networks, e.g., convolutional neural networks (CNNs), more
attention has been paid to deep learning-based solutions for docu-
ment image rectification. Das et al. [2017] applied a CNN model to
detect creases and then performed a 2D boundary reconstruction
based on polynomial regression. Later, Das et al. [2019] proposed
DewarpNet, which explicitly regresses the 3D shape of document
paper and then estimates the deformation flow field. Instead of learn-
ing the distortion flow in the entire image, Li et al. [2019] designed
a patch-based processing pipeline, including patch partition, patch-
level flow estimation, patch stitching, and illumination adjustment.
Burden et al. [2019] rectified the camera-captured document image
with a content-ware rectification framework, which sequentially
processed text and non-text regions. To extract the valid structural
cues and suppress the interferences of clutter backgrounds and
blank margins in the document images, Liu et al. [2020] designed an
adversarial gated unwarping network. Xie et al. [2021b] estimated
the reference points and control points to construct the rectification
mapping. Similar to the iterative manner in [Dasgupta et al. 2020],
Feng et al. [2021b] progressively corrected the geometric distortion
with a lightweight recurrent architecture. Xie et al. [2021a] jointly
solved the document image rectification and background removal
with a fully convolutional neural network. Das et al. [2021] pro-
posed a patch-based method similar to [Li et al. 2019], whereas they
divide 3D shape maps and employ a network to stitch pieces. Feng et
al. [2021a] proposed a Transformer-based framework consisting of
a geometric unwarping module and an illumination correction mod-
ule. The former captures the global context with the self-attention

operation to address the geometry distortion, and the latter cor-
rects the illumination distortion to enhance the visual quality. To
automatically handle images with wide margins, Zhang et al. [2022]
first removed the margins and did preliminary dewarping, and then
iteratively predicted the displacement flow. Ma et al. [2022] collected
a training dataset consisting of real photos and for the first time
trained a network on a mixture of real and synthetic images. Re-
cently, Feng et al. [2023] introduced the first learning-based method
specifically designed for rectifying unrestricted document images.
Both Jiang et al. [2022] and Feng et al. [2022] utilized the geomet-
ric information of text lines to aid in flattening, where the former
also introduced boundary constraints, and the latter predicted 3D
shapes as cues for global correction. However, the document layout
contains not only text but also tables, lists, and pictures. Therefore,
compared with the methods using text lines, our approach exploits
more types of document content, thus it is still applicable when
there is a lack of text in the document.

Ma et al. [2018] developed an end-to-end network called DocUNet,
which is designed to digitally flatten a distorted document image by
stacking two U-Net networks to regress pixel-wise moving vectors.
However, their training dataset was constructed by warping the
mesh in a 2D plane, which may not accurately capture the realistic
creases and real-world lighting and shadow information due to the
lack of dimensionality. In contrast, we use a Transformer-based
network and simulate the paper distortion in 3D space. [Das et al.
2019] also constructed a Doc3D dataset, including 3Dmeshes and 2D
images. Their 3D meshes are manually captured via scanning and
have not very rich shapes. By contrast, we propose a fully automatic
rendering pipeline to produce deformed document images with a
simulated mesh generation method. Furthermore, different from
existing methods that also utilize the forward flow [Li et al. 2019; Ma
et al. 2018; Xie et al. 2021a], we propose a layout-aware document
flattening network, which simultaneously perceives the global and
local geometric deformation. Our design mitigates the challenge of
predicting the UV map and enhances the robustness of deformation
flow estimation.

2.2 Document Layout Analysis
Next, we briefly review some recent works related to document lay-
out analysis (DLA). We refer readers to the survey [Binmakhashen
and Mahmoud 2019] for more details. Borges Oliveira et al. [2017]
first embedded the pre-segmented document blocks into 1D signa-
tures, and then introduced 1D CNN to identify the types of these
blocks. DLA can also be regarded as a kind of semantic segmen-
tation, and thus fully convolutional network (FCN) [Long et al.
2015] is adapted to DLA task [He et al. 2017; Wu et al. 2021]. He et
al. [2017] proposed a multi-scale, multi-task FCN to produce page
segmentation and contour detection jointly. They also introduced
a conditional random field (CRF) to improve the final segmenta-
tion results. Wu et al. [2021] modified the FCN with a proposed
dynamic residual feature fusion module, and designed a dynamic
selection mechanism for efficient limited-input fine-tuning. To facil-
itate the research about DLA, especially deep learning-based meth-
ods, Zhong et al. [2019] collected a large-scale dataset, PubLayNet,
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Fig. 2. Overview of dataset construction (left) and geometric rectification (right). Color blocks represent 2D data (yellow), 3D data (green), neural networks
(pink), and non-neural processing modules (orange). During the training phase, warped document images are used as the inputs of the neural networks,
warped UV flows serve as the labels of the UV Network, while warped layouts are the labels of the Layout Network.

by automatically annotating the layout of over 1 million PDF docu-
ments. Due to the tedious pixel-wise segmentation annotations for
ancient document layout analysis, Davoudi et al. [2021] proposed an
unsupervised representation learning method for ancient DLA. A
sparse autoencoder is designed to learn the representation of image
patches, and then a feed-forward network is applied to classify each
pixel into semantic categories. In this paper, we design a document
flattening framework with the aid of the results of layout analysis.
In addition, we merge the PubLayNet dataset [Zhong et al. 2019]
into our deformed document image rendering method.

3 OVERVIEW

3.1 Problem Formulation
Given a distorted document image S as input, we aim to obtain the
flatten version D by learning a mapping as follows:

D(u,v) = F (S(x,y)), (1)

where (x,y) is the 2D space coordinate, and (u,v) is the texture
coordinate of the document in D. The relationship between two
coordinates can be represented via a backward mapping Fbw :

(x,y) = Fbw (u,v). (2)

Following [Li et al. 2019; Ma et al. 2018], we first predict a for-
ward mapping Ff w as an intermediate result. Compared with Fbw ,
Ff w describes the mapping of a flat document texture to a warped
document image:

(u,v) = Ff w (x,y). (3)
As we assume that all of the document content is visible, there
exists a pixel-to-pixel correspondence between the input and output
images, making the above twomappings invertible. After converting
Ff w to Fbw , the RGB color of each pixel in the resulting image can
be obtained by

D(u,v) = S(Fbw (u,v)). (4)
We set the background values in Ff w to (-1, -1) to differentiate them
from the non-negative values in the foreground. For simplicity, we
use UV to denote Ff w in the following.

3.2 Our Approach
In this paper, we rectify the single distorted document image with
a layout-aware transformer-based framework. Our work covers
dataset construction and network design, each of which we briefly
describe below.

Dataset Construction. The reviewed literature has not pre-
sented publicly available datasets containing the exact 3D meshes
and layout segmentation labels. Therefore, we synthesize a large-
scale dataset with the rendering tool Blender©. The overview of
dataset construction is shown in Fig. 2 (left). Our approach ex-
tends the rendering pipeline [Das et al. 2019] with more diverse and
controllable 3D paper shape generation and layout segmentation
annotation. Specifically, we use the mass-spring system to represent
paper shape, and apply random external forces on vertices to simu-
late the deformation of the paper. We use the document images with
fine-grained layout annotations [Zhong et al. 2019] as texture. This
scheme allows us to render an infinite number of deformed paper
images with corresponding UV labels and layout ground truth.

Geometric Rectification. Our rectification pipeline is shown in
Fig. 2 (right), in which the whole process contains three stages. In
Stage I, we employ the UV regression network and layout segmen-
tation network to predict the global coarse UV map and document
layout, respectively. In Stage II, we utilize the layout segmentation
results as masks to extract local patches in the input document im-
age and feed them into the UV network to predict locally accurate
UV maps. In Stage III, we merge the global and local UV maps using
the Poisson blending approach and transform the combined result
into an inverse UV map, which is then used to predict the final flat
document image.

4 DATASETS
In this work, we propose a fully automatic rendering method for
generating deformed document images. Our dataset is similar to
the Doc3D dataset [Das et al. 2019], but with three key differences:
(1) The meshes utilized by Doc3D are manually scanned, while our
meshes are automatically generated based on a physical simulation
model. (2) We introduce the document layout into the rendering
pipeline, which is not included in Doc3D. (3) The Doc3D dataset con-
tains 3,000 uniquely shaped document meshes, while ours contains
66,000 distinct meshes. Fig. 3 illustrates our rendering process.

4.1 Mesh Simulation
We use the quadrilateral mesh to represent the shape of the paper.
After setting the mesh to a soft body with stiff quads, the mesh
becomes a mass-spring model. In a quadrilateral mesh, adjacent
vertices are connected by explicit edges, and each pair of opposite
corners is connected by virtual edges. The interior force acting on
vertex vi , generated by the structural spring between vertex vi and
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(a) (b) (c) (d)

xy

z

Fig. 3. Given an image and the corresponding layout bounding boxes (a) from [Zhong et al. 2019], we first render the rectangular segmentation map (middle
in b) corresponding to the flat document. Then we use the flat document image (upper in b), layout label, and flat UV flow (bottom in b) as the mesh textures
to render deformed images. Specifically, we first deform the flat mesh into a crumpled paper-like shape, then rotate along the y-axis to avoid the bottom
illegal area, and rotate along the z-axis to obtain various backgrounds. The camera’s position and orientation are adjusted in sync with the mesh’s transform.
The final rendered results contain the deformed paper image, layout label, and UV label (d).

(a) (b) (c)

Fig. 4. For a basic quadrilateral mesh under a mass-spring system (a), in
addition to the internal forces on the black edges, internal forces also appear
on the diagonals, as represented by the gray lines. To increase the number
of movable vertices, we add a new edge (red), which acts as a hinge in (b)
and brings significant deformation to the mesh (c) when the vertices receive
external forces.

vj is given by:

fint(xi , vi , xj , vj ) =
xi j

| |xi j | |
[ks (| |xi j | | −li j )+kd (vj −vi )

xi j
| |xi j | |

], (5)

where xi j is the difference between the position vectors (xj − xi ) of
two masses, li j is its rest length, ks is the spring’s stiffness, and kd is
the damping constant. In addition to internal forces, external forces
are applied to the mesh to deform it, as shown in Fig. 4. For this
purpose, we choose the Turbulence force field because it is random
and does not shift the overall position of the mesh. For vertex vi ,
the external force it received can be expressed as follows:

fext(xi ) = turbulence(xi ), (6)

where xi represents the position of vi . The turbulence force field
in Blender© is implemented based on wavelet noise. We refer the

Fig. 5. Various mesh shapes generated by our simulation method.

reader to the original work [Kim et al. 2008; Pfaff et al. 2010] for
additional details. To simulate complex shapes, we add new edges to
the mesh. Without setting bending stiffness, each newly added edge
can be regarded as a hinge, bringing a greater range of deformation
to adjacent patches. The displacement of the vertex follows the
formula:

fti = fext(xti ) +
∑

j
fint(xti , v

t
i , x

t
j , v

t
j ),

vt+1i = vti + ∆t ·
fti
mi
,

xt+1i = xti + ∆t · v
t
i .

(7)

Following [Ma et al. 2018], we divide the types of paper defor-
mation into two categories: curl and crease deformations. For the
curl deformation, we divide the mesh into 8 × 8 quadrilateral faces
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Fig. 6. The orange lines in the figure are the data flows of the layout network, while the blue lines describe the data flows of the UV network, and the gray
dotted lines represent the general data flow. The numbers in the color blocks indicate the spatial dimensions of the output feature maps. We only draw one
encoder in the figure because the structure of the encoders of the UV network and layout network is exactly the same, while their parameters are independent.
Details of the reshape module and components marked with color blocks can be found in Sec. 5.1, and we detail the remaining modules in Sec. 5.2 and Sec. 5.3.

and enable smooth shading when rendering. For the crease defor-
mation, we add edges with random positions and orientations to
the mesh, with the number ranging from 5 to 50. The number of
faces in the quadrilateral meshes varies from 6 to 951. Fig. 5 shows
the mesh shape we generated. Our simulation method can generate
32 meshes per second, which is much more efficient than manual
scanning. By setting the strength and the scale of the random force
field or the number of edges in the mesh, we can simulate the paper
shapes with different degrees of deformation. Furthermore, we can
initialize a flat mesh of any size to cover various document sizes in
the real world. Details of Blender’s configuration and the meshes
we generate are available in the supplemental materials.

4.2 Layout Segmentation Label Rendering
In PubLayNet [Zhong et al. 2019], the documents’ layout is anno-
tated with bounding boxes and polygonal segmentation. Our goal is
to predict rectangular layout primitives in curved documents, there-
fore, we render all bounding boxes as solid rectangles. The layout
of the paper documents is classified into five categories, namely,
title, text, table, list, and image, and each category is illustrated
with different color labels. Then, by using the document image and
the layout segmentation label as the texture of the deformed paper
mesh, we render the deformed paper image and the correspond-
ing deformed layout segmentation label. Similar to the process in
Doc3D [Das et al. 2019], we randomly sample the environment lights
from 2,100 environment maps provided by the Laval Indoor HDR
dataset [Gardner et al. 2017] when rendering the document images.

In contrast, all external light sources are eliminated when rendering
the layout labels. To make full use of the background image and
avoid unrealistic black backgrounds when rendering the image, we
rotate the paper and camera synchronously. Specifically, we take
the center of the paper shape as the origin, the horizontal direction
of the paper plane is parallel to the y-axis, the vertical direction is
parallel to the x-axis, and the plane normal is (0, 0, 1). We first rotate
θy along the y-axis, where θy is randomly selected from range of
[60◦, 90◦] to avoid illegal areas. Then, we rotate θz along the z-axis,
ranging from 0◦ to 360◦, to take advantage of different angles of the
background. Accordingly, we calculate the corresponding camera
position and orientation. For the shape of the paper, we use the
scanned 24,000 meshes contributed by Doc3D [Das et al. 2019] and
66,000 meshes generated by our simulation. As a result, we rendered
a total of 90,000 pairs of data, in which the shapes of all documents
are unique.

5 GEOMETRIC RECTIFICATION

5.1 Network Architecture
As shown in Fig. 6, our network consists of two sub-networks,
i.e., the UV network and Layout network, which both adopt the
encoder-decoder architectures. The two networks share the same
encoder structure, but their decoders are slightly different because
they are oriented toward pixel-level regression (UV prediction) and
classification tasks (layout segmentation), respectively. To obtain
high-resolution fine results, we also adopt a hierarchical refinement
scheme, which has been widely used in many tasks [Amirul Islam

ACM Trans. Graph., Vol. XX, No. XX, Article XX. Publication date: December 2023.



Layout-Aware Single-Image Document Flattening • XX:7

et al. 2017; Ding et al. 2020; Lin et al. 2017b,a]. Below we describe
the details of our networks.

Hybrid ViT Encoder. Compared with CNNs that focus on cap-
turing local information, the self-attention mechanism [Vaswani
et al. 2017] enables vision transformers (ViTs) [Dosovitskiy et al.
2021] to capture long-range dependencies. Our geometric rectifica-
tion network contains two sub-tasks of pixel-level regression and
classification, therefore, we expect our encoder to work with both
global contexts and local high-resolution details. We adopt a hybrid
vision transformer architecture borrowed from [Dosovitskiy et al.
2021], which employs a ResNet-50 backbone and 12 transformer
layers with patch size 16 × 16. In our network, we move stage 4 of
ResNet-50 to stage 3, along with four downsampling layers, and the
pixels of each spatial dimension in the final feature map correspond
to a 16 × 16 image patch. Given an input image S ∈ R384×384×3 and
denoting the i-th stage of ResNet as Ri , the output feature map after
R3 is fR3 ∈ R

1024×24×24. Then, 24 × 24 tokens with a dimension of
768 are obtained after patch embedding, which will go through 12
transformer layers maintaining the same dimensions. To maintain
the high-resolution information, we add several skip-connections
from the middle encoding layers to the decoder. Denoting the i-th
layer of the Transformer as Ti , we directly extract the features after
{R1, R2, T6, T9, T12} to form a multi-scale feature pyramid. While the
outputs of ResNet-50 naturally form image-like shapes, the outputs
of the Transformer layers are flattened. After reshaping them to
restore the spatial dimension information, we employ 3× 3 convolu-
tions of strides 1, 2, and 4 to reduce the spatial resolution of feature
maps gradually. The spatial resolutions corresponding to the final
feature pyramid {P1, P2, P3, P4, P5} are {96 × 96, 48 × 48, 24 × 24,
12 × 12, 6 × 6}, respectively.

Dual Decoders. For UV prediction and layout segmentation, we
employ two structurally similar decoders (right side of Fig. 6). As
the spatial resolutions of the feature maps are gradually reduced,
we expect our decoder to fuse multi-scale features to obtain high-
resolution predictions. Inspired by [Chen et al. 2020; Lin et al. 2017b;
Ranftl et al. 2021; Xian et al. 2018], we employ a fusion module
that mainly contains residual convolution blocks and pixel-wise
summation. Formally, the intermediate result of the l-th fusion layer
could be expressed as follows:{

ResConv(P l ), l = 5
ResConv(F l+1f used + ResConv(P

l )). l < 5
(8)

The fusion module further performs bilateral interpolation to in-
crease the spatial dimension of the feature. The final output result
of the l-th fusion layer is:

F lf used = proj(UP2( ÛF
l
f used )), (9)

whereUP2 is a bilateral interpolation with a scale of 2, and proj is a
1 × 1 convolutional layer used to adjust the number of channels of
the output feature to align with the next fusion layer. The end head
networks contain three convolutional layers to reduce the number
of channels and restore the same spatial dimension as the input
image. The output of the UV network is F̂uv ∈ R384×384×2 and the
output of the Layout network is F̂M ∈ R384×384×7.

Final PatchInput Image

(a)

(b)

I

Bupper

Blower

Bleft

Bright

∩

∩

∩

∩

∩

Fig. 7. Illustration of extracting local patch according to layout segmenta-
tion (a). The unqualified connected areas are removed in the raw segmenta-
tion, and the clean ones are left in (b).

Loss Function. We define two objective terms for UV prediction
sub-task, the first one is an element-wise L1 loss, which measures
the distance between the predicted result F̂uv and ground truth
Fuv :

Ldistance =
F̂uv − Fuv


1 . (10)

Additionally, we propose a novel layout-aware loss term encourag-
ing the network to capture document layout:

Llayout =
F̂layout − Flayout


1
, (11)

where F̂layout ∈ R384×384×1 is the layout segmentation converted
from F̂uv and Flayout is the ground truth. The flat layout contains
P units of {i ∈ P | pi , ti }, where pi ∈ R2 is the height and width of
the layout unit and ti ∈ R2 describes the location of the layout unit.
We obtain pi and ti from the ground truth of a flat layout which is
provided by [Zhong et al. 2019], and Flayout is rendered during the
dataset construction. We first calculate the signed distance field for
each layout unit in UV space:

D̂i = dist(F̂uv − ti ; pi )
=

max(
��F̂uv − ti

�� − pi , 0)
 (12)

+min(max(
��F̂uv − ti

�� − pi ), 0).

We then convert the signed distance field to layout segmentation:

F̂layout =
P∑
i
Φ(−η · D̂i ) · ci , (13)

where Φ is a sigmoid function, η is a hyper-parameter that controls
the sharpness of the layout boundary, ci is the category to which
the i-th layout unit belongs. Note the transformation process from
F̂uv to F̂layout is fully differential. The overall objective of our UV
network is defined as the combination of the above two terms:

Luv = Ldistance + λ · Llayout , (14)

where λ is a balance factor.
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Original UV Linear Scaled UV Merged UV

G

Ri

Fig. 8. An example of UVmerging. The original local UV predicts the relative
flow. We first linearly scale it to the global flow, and then apply Poisson
blending to produce a seamless merged UV.

For the layout segmentation sub-task, we employ the cross-entropy
loss as the semantic segmentation loss:

Lseд = −
1
N

N∑
j

M∑
c=1

yj ,c log(pj ,c ), (15)

where N = 384 × 384 is the total number of pixels andM = 7 is the
total number of segmentation categories, pj ,c is the predicted prob-
ability that pixel j belongs to c class, and yj ,c is a binary indicator
(0 or 1) indicating whether pixel j belongs to c or not.

5.2 Merging Global UV and Local UV
To merge the local and global UV maps, we first extract the valid
patch according to predicted layout segmentation with two steps
(see Fig. 7), namely, patch selection and contour fitting.

Patch Selection. Among the layout segmentation results, each
connected component is a candidate patch mask. As we have as-
sumed that each primitive of the document layout is rectangular
after flattening, segments that do not match this assumption should
be eliminated. A valid patch mask should satisfy the following con-
ditions: (1) it is a solid region without holes; (2) it has four distinct
inflection points; and (3) it does not contain slender branches. We
use a series of simple but effective operations to convert and filter
each segment according to the above conditions. We denote the
segmentation result as S , a 5× 5 square structure element as K5, and
the i-th connected component of S ◦ K5 as Si . We use the closing
operation to fill in the inner holes, i.e., Pi = Si • K10. Denote the
convex hull of Pi as Hi , we calculate the ratio of areas of Pi and Hi
as ai = area(Pi )/area(Hi ), and Hi is the number of Harris corners
of Pi . We only keep the connected components with ai >= 0.97 and
Hi = 4 as patch masks.

Contour Fitting. After the patch selection stage, the selected patches
are already aligned with our assumptions about the layout. How-
ever, the resolution of each patch is much smaller than that of the
entire image (i.e., 384 × 384). If the segmented patch is directly re-
sized with the same size as the image fed into the UV network, then
the contour of the patch will be rough. Therefore, we propose a
method to fit the four edges of the patch region with four cubic
curves, obtaining a patch mask with smooth edges. Specifically, for
the segmented area of each patch, we first scale it to the original
image resolution, use the Sobel operator to extract two horizontal
and vertical edges, and fit each edge with a cubic curve. We take the
fitted curve as the boundary to form four binary partition graphs,
{Bupper , Blower , Blef t , Br iдht }, where the value of the patch region

（a） （b） （c）

Fig. 9. Illustration of converting UV (a) to backward mapping (c). We first
swap the UV and space coordinates to produce the intermediate result (b),
where the points do not necessarily fall on the grid intersections. Then, we
interpolate (b) to generate the full inverse map (c) and use it to sample the
final rectified image.

is 1, and the value of the other region is 0. The final patch image can
be obtained by {I

⋂
Bupper

⋂
Blower

⋂
Blef t

⋂
Br iдht } and will be

fed back into the UV network for local prediction.

Merging Strategy. Merging the UV maps of the local layout with
the global one can be done on different targets, including forward
UV maps, reverse UV maps, and flattened images. In this work, we
choose to fuse the forward UV map (Fig. 8) because it is directly
generated by the network and does not require post-processing
operations that may introduce accumulated errors. Let G be the
global UV area and R be the local UV areas, the simplest fusion
method is the linear fusion, which is expressed as:

fa =

{
дa, a ∈ (G \

⋃
i Ri )

la, a ∈
⋃
i Ri

(16)

where Ri is the UV map of i-th local patch. However, in our experi-
ments, we found that linear fusion sometimes leads to misalignment
of the edges of the fusion region. Therefore, we adopt an image
blending method, namely, Poisson blending, to achieve seamless
fusion. In general, Poisson blending uses the gradient domain of
the image as guidance to achieve seamless merging between two
images. Let N be the four-neighborhood of the pixel a, the bound-
ary of Ri is ∂Ri = {a | Na ∩ Ri , ∅,a ∈ (Gi \ Ri )}. Our goal is to
use the vector field of the local prediction results as guidance to
solve f |Ri = { fa,a ∈ Ri }. The solution yields a discrete, quadratic
optimization problem:

min
∑

<a,b>∩Ri,∅

(fa − fb −vab )
2 s .t . ∀a ∈ ∂Ri , fa = дa . (17)

Then, we use the Gauss-Seidel iteration method to drive an ap-
proximate solution efficiently. According to our experiments, one
Poisson merging takes 13 × 10−4 seconds, and one linear merging
takes 4×10−4 seconds. As the local UV prediction is a relative result,
we need to transform it to the global position and linearly scale the
UV value according to the maximum and minimum values of the
edge positions of the global UV before merging.

5.3 Converting UV to Backward Mapping
As we stated in Sec. 3.1, we need to convert the forward UV map
to the reverse UV map, obtaining the mapping from the deformed
paper to the flat paper. The conversion process is shown in Fig. 9.
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Specifically, we first take the values of all pixels in the predicted
UV as coordinates, and use their coordinates as values to achieve
part of the backward mapping. Then, we apply the nearest point
interpolation method to complete the structured mapping, and use
median filtering to remove outliers. Finally, we scale the inverse
map to the exact resolution as the original image using bilateral
interpolation upsampling, and use it to resample the original image
to obtain the final flattened document image. Note that although the
spatial size of the UV directly output by the network is 384 × 384,
the resulting image has the exact resolution as the original image
because we rectify the original image using the up-sampled inverse
map. In other words, the input image to our framework can be
of arbitrary resolution, and the final rectified image has the same
resolution as the input image.

5.4 Implementation Details
Our model is implemented with PyTorch and is trained on a TITAN
RTX GPU from NVIDIA®. We train the UV regression and layout
segmentation networks separately with the same hyper-parameters.
We employ 6,900 distinct document textures (such as papers, books,
posters, and magazines) to train the UV branch network. In parallel,
we train the layout branch network using 20,000 unique academic
paper textures. Besides, we train the UV branch network with global
images only because the shapes of a local patch and the entire
document are both developable surfaces. After the neural network
learns the UV of the severely deformed entire document, it can also
correctly predict the forward flow of a single local content and the
mildly deformed patch. Specifically, we train our networks with an
Adam optimizer [Kingma and Ba 2015] and a batch size of 12. Each
epoch consists of 16,500 iterations for the UV regression network
and 8,000 iterations for the layout segmentation network. The initial
learning rate is set as 6 × 10−5 and reduced by a factor of 0.25 if the
loss does not improve in the last two epochs. For hyper-parameters
in Eq. (13) and Eq. (14), we set η = 250 and λ = 0.05 by default,
which generally works well in our experiments. The UV branch
and layout branch networks contain 1.2 × 108 parameters each. We
adopt the interpolation function in SciPy 1.7.3 to perform the nearest
point interpolation in Sec. 5.3 and use the filtering algorithm from
OpenCV 4.5.2.

6 EXPERIMENTAL RESULTS
We thoroughly compare our approach with recent state-of-the-art
methods, including DocProj [Li et al. 2019], DewarpNet [Das et al.
2019], FCN-based [Xie et al. 2021a], DocTr [Feng et al. 2021a], Piece-
Wise [Das et al. 2021], DDCP [Xie et al. 2021b], DocScanner [Feng
et al. 2021b], Marior [Zhang et al. 2022], PaperEdge [Ma et al. 2022],
RDGR [Jiang et al. 2022], and DocGeoNet [Feng et al. 2022] on two
public benchmarks and our synthetic dataset. Then, we conduct
ablation studies to verify the effectiveness of the components of our
method.

6.1 Evaluation on Real Image Benchmark
DocUNet benchmark. [Ma et al. 2018] collected an evaluation
dataset for document unfolding, named as DocUNet Benchmark,
which is widely used in existing works. They scanned 65 unique

Table 1. Quantitative comparison with previous geometric rectification
methods on the DocUNet benchmark. Note that we follow DewarpNet [Das
et al. 2019] and DocTr [Feng et al. 2021a] to report ED and CER on their
selected 50 and 60 pairs of images, respectively. Bold indicates the best
result, and underline indicates the second-best result. MS is short for MS-
SSIM. Ours w/o SP is the result of our model trained on the dataset rendered
using Doc3D meshes only, without simulated paper.

Methods MS↑ LD↓ AD↓ ED↓ CER↓
Distorted 0.246 20.51 1.012 2111.6/1552.2 0.535/0.509
DocProj 0.293 18.51 0.994 1812.1/1293.4 0.445/0.430
DewarpNet 0.474 8.39 0.426 885.9/525.5 0.237/0.210
FCN-based 0.448 7.84 0.434 1792.6/1031.4 0.421/0.316
DocTr 0.511 7.76 0.396 724.8/464.8 0.183/0.175
Piece-Wise 0.492 8.64 0.468 1069.3/743.3 0.268/0.262
DDCP 0.473 8.99 0.453 1442.8/745.4 0.363/0.263
Marior 0.478 7.27 0.403 776.2/593.8 0.193/0.214
PaperEdge 0.473 7.81 0.392 777.8/375.6 0.201/0.154
RDGR 0.497 8.51 0.461 729.5/420.3 0.172/0.156
DocGeoNet 0.504 7.71 0.380 713.9/379.0 0.182/0.151
DocScanner 0.518 7.45 0.334 632.3/390.4 0.165/0.149
Ours w/o SP 0.511 7.24 0.307 644.7/482.5 0.178/0.182
Ours 0.526 6.72 0.300 695.0/391.9 0.175/0.153

Table 2. Quantitative comparison with previous geometric rectification
methods on the DIR300 benchmark.

Methods MS↑ LD↓ AD↓ ED↓ CER↓
Distorted 0.3169 39.58 0.771 1500.56 0.5234
DewarpNet 0.4921 13.94 0.331 1059.57 0.3557
FCN-based 0.5035 9.75 0.331 1939.48 0.5099
DocTr 0.6160 7.21 0.254 699.63 0.2237
DDCP 0.5524 10.95 0.357 2084.97 0.5410

PaperEdge 0.5836 8.00 0.255 508.73 0.2069
DocGeoNet 0.6380 6.40 0.242 664.96 0.2189
Ours w/o SP 0.6410 6.12 0.204 548.17 0.1967

Ours 0.6518 5.70 0.195 511.13 0.1891

documents, manually deformed each sheet into two different shapes,
and then photographed them with a camera, creating 130 images of
the deformed documents. The origins of document paper include
magazines, receipts, posters, and academic articles, and the shape of
the paper contains different degrees of deformation. Note that the
64-th pair of distorted images in the original DocUNet benchmark
rotates by 180 degrees, which does not match the ground truth
image. We have fixed this issue before evaluation.

DIR300 benchmark. [Feng et al. 2022] constructed the DIR300
dataset, which contains 300 pairs of images from 300 different docu-
ments. Compared to the DocUNet benchmark, the photos in DIR300
have more diverse backgrounds and illuminations. Besides, DIR300
contains more severely deformed documents, where the authors
deliberately increased the degree of deformation of the document
when constructing the dataset.

Image similaritymetrics.Multi-Scale Structural Similarity (MS-
SSIM) [Wang et al. 2003] and Local Distortion (LD) [You et al. 2018]
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Distorted DocProj DewarpNet FCN-based DocTr Piece-Wise DDCP Marior PaperEdge RDGR DocGeoNet DocScanner Ours

Fig. 10. Qualitative comparisons on DocUNet benchmark. The dotted lines in the rectified images should be horizontal or vertical if the corrections are perfect.

are two quantitative metrics that have been widely used in previous
methods. SSIM uses a slidingwindowmethod to calculate luminance,
contrast, and structure comparison of the two images. MS-SSIM
builds a Gaussian pyramid of two images to calculate the weighted
summation of SSIM over multiple resolutions. In keeping with previ-
ous work, we set the weights for each level as: 0.0448, 0.2856, 0.3001,
0.2363, 0.1333. LD measures the average deformation of each pixel
by performing dense image registration using SIFT-flow [Liu et al.
2010] between two images. AD effectively enhances the MS-SSIM by
employing translation and scaling techniques to reduce the global
offset present within the flattened image. Additionally, it incorpo-
rates image gradients as weight factors, thereby diminishing the
error of LD within the textureless regions. We calculated the three
above metrics using Matlab R2019a in our experiments.
OCR metrics. Given the reference and recognized text, Edit

Distance (ED) is the minimal number of substitutions (s), insertions
(i), and deletions (d) to convert the recognized text to the reference
text. Based on ED, Character Error Rate (CER) is used to calculate
the ratio instead of quantity. It is defined as CER = (s + i + d)/N ,
where N is the total number of characters in the reference text. To
perform OCR evaluation on the DocUNet benchmark, [Das et al.
2019] and [Feng et al. 2021a] selected 50 and 60 pairs of images,

respectively. We follow these settings and calculate ED and CER on
the same two subsets for a fair comparison. Furthermore, we select
150 images in our dataset and the same 90 images as [Feng et al.
2022] in DIR300 for OCR evaluation. The OCR recognition in our
experiments is based on Tesseract v5.0.1.2022011 and PyTesseract
v0.3.9 ∗. All ground truth strings are recognized using PyTesseract
from the flat document images.

Comparison results. In Tab. 1, we first compare our approach
against the previous methods on the DocUNet benchmark. The re-
sults show that our method produces significantly better results in
terms of image similarity metrics. In addition, we conduct qualita-
tive comparison in terms of global image (Fig. 10) and local regions
(Fig. 11). We select some challenging test cases with complex defor-
mations or large perspective angles for evaluation. It can be seen
that our method corrects the distorted image to be smoother (take
the dotted lines as the reference). Furthermore, our method presents
more complete and straight contours compared with other methods.
We further report the quantitative and qualitative comparison

results on the DIR300 dataset in Tab. 2 and Fig. 12. Note that Piece-
Wise [2021], RDGR [2022], Marior [2022], and DocScanner [2021b]
did not release their code or test results on DIR300, so they were

∗https://pypi.org/project/pytesseract/
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Fig. 11. Qualitative comparisons of local rectifications on DocUNet benchmark. The dotted lines are added for better visibility.
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Fig. 12. Qualitative comparisons on DIR300 dataset.

not included in the comparison. The results in Tab. 2 show that our
method outperforms previous methods on MS-SSIM, LD, and CER,
and ranks second best on ED. It can be seen from Fig. 12 that our
method is able to pull the outline of the paper to the edge of the
image, making the corrected document texture fill the entire image.
In contrast, other methods fall short of completely eliminating out-
of-document regions.

6.2 Evaluation on Our Synthetic Dataset
Building synthetic evaluation dataset.Although existing bench-
marks and evaluation metrics can intuitively measure the correction
quality of flattened images, they have some drawbacks. We summa-
rize them into the following three aspects: (1) The unevenness of
illumination in the distorted documents is often preserved in the
results of geometric rectification. This situation can lead to poor
evaluation results even for perfectly geometrically corrected images.
(2) Existing evaluation metrics are only suitable for certain textured
documents. For example, OCR metrics can only evaluate text-rich

Table 3. Paper shape deformation classification for our synthetic dataset.
We used this taxonomy in Fig. 15, Tab. 6, and Tab. 8.

ID Shape characteristics of the distorted paper
1 Flat, without crease nor curve.
2 One noticeable crease with no curved surface.
3 Two noticeable creases with no curved surface.
4 Convex curved surface with no crease.
5 Complex curved surface with no crease.
6 At least three creases mixed with curved surface.
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Fig. 13. Some examples of our synthetic evaluation dataset.

document images, while image similarity metrics only work on re-
gions with varying textures. (3) Although the DocUNet benchmark
contains papers with varying degrees of deformation, the textures
and backgrounds of these images are also different, making it im-
possible to exclude the influence of other factors when measuring
the robustness to purely varying degrees of deformation.
To overcome the above shortcomings, we construct a synthetic

image dataset containing 1,500 deformed document images and
propose new evaluation metrics based on UV flow. Compared to
real image datasets and traditional evaluation methods, our evalua-
tion method is independent of light, shadow, and document texture.
Furthermore, by simply changing the shape of the document sheet
while keeping the background image, global illumination, and doc-
ument texture consistent, we can fairly compare the performance
of various methods on sheets with varying degrees of deformation.

Fig. 13 shows some examples of our synthetic evaluation dataset.
For a flat document texture T, we first render a deformed image
Pwarp according to the method mentioned above, and the deformed
texture image Twarp corresponding to the deformed image, the
deformed UV flow UVwarp and deformed grid-looking UV Gwarp .
We denote the mapping function from the flattened expression
Pwarp to the flattened image Pf lat as F , and we apply the function
F to Twarp , UVwarp , and Gwarp to obtain

Pf lat = F (Pwarp ),Tf lat = F (Twarp ),

UVf lat = F (UVwarp ),Gf lat = F (Gwarp ),
(18)
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Table 4. The Coefficient of Variation (CV) and the running time of each distortion metric when processing images with the same or the symmetrical geometric
distortion. For the original image (a), we obtain the image with shadow (b), the lower resolution image (c), the image with different document content (d), and
the image with symmetrical deformation (e). Since their perspective angles are the same, an ideal evaluation metric should produce consistent results.

Groundtruth (a) (b) (c) (d) (e) CV (%) Time (s)

Figure - -

MS-SSIM 1.000 0.393 0.248 0.429 0.260 0.409 22.305 5.500E-01
LD 0.000 14.002 13.712 5.554 18.021 18.745 33.503 4.340E+00
AD 0.000 0.863 0.529 0.395 0.727 0.647 25.445 4.825E+00
DEPE 0.000 16.706 16.706 16.723 16.706 36.702 38.614 3.630E-04
MPD 0.000 18.608 18.608 18.627 18.608 18.627 0.050 3.539E-04
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Fig. 14. Visual comparisons on our synthetic dataset. To eliminate the
interference of light and shadow, and show the effect of geometric correction
more clearly, we provide the Tf lat (left) and Gf lat (right) of each method.

whereTf lat is the texture correction result without light and shadow.
Gf lat should have a regular grid appearance under perfect geomet-
ric correction, so we use it as a reference for visual evaluation.
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Fig. 15. Quantitative comparison of geometric correction methods on our
synthetic dataset. The horizontal axis coordinates correspond to different pa-
per deformation types, which are listed in Tab. 3. For Multi-Scale Structural
Similarity, the higher the better, while the others are the opposite.

Table 5. Quantitative comparison with previous geometric rectification
methods on our synthetic dataset.

Methods MPD↓ MS↑ LD↓ AD↓ ED↓ CER↓
Distorted 18.869 0.205 20.50 0.728 1773.6 0.829
DewarpNet 6.390 0.566 5.66 0.188 772.0 0.302
FCN-based 7.912 0.458 7.87 0.300 838.8 0.297
DocTr 4.050 0.650 4.20 0.170 470.6 0.174
DDCP 6.427 0.552 6.74 0.300 948.0 0.334
PaperEdge 4.602 0.591 5.11 0.207 403.7 0.152
DocGeoNet 3.775 0.643 4.16 0.182 386.1 0.151
Ours w/o SP 3.981 0.664 4.10 0.136 449.0 0.171
Ours 3.496 0.677 3.64 0.138 365.4 0.135

UVf lat is the corrected UV flow, its ground truth value will be lin-
early distributed from 0 to 1 in the horizontal direction on the U
channel and the vertical direction on the V channel.

MPDmetric. To evaluate the document correction effect, [Li et al.
2019] first proposed to use End Point Error (EPE), which measures
the pixel-wise Euclidean distance between the predicted flow and
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the ground truth:

EPE =
1

HW

∑
p∈Ψ

(ÛVwarp (p) − UVwarp (p)), (19)

whereH ×W is the image resolution, p is the coordinate of a pixel, Ψ
is the inner area of the image, ÛVwarp andUVwarp are the predicted
and ground truth for forward flow of the warped document. The
main drawback of EPE is that it cannot evaluate methods that do not
predict the forward flow of distorted documents, such as methods
that directly generate backward flow [Feng et al. 2021a, 2022] or use
3D coordinates as intermediate results [Das et al. 2019]. To overcome
this shortcoming, a simple approach is to change the calculation
target of EPE from the forward flow of the warped document to the
forward flow of the flattened document. We denote this metric as
Dewarped End Point Error (DEPE):

DEPE =
1

HW

∑
p
(ÛVf lat (p) − UVf lat (p)), (20)

where ÛVf lat andUVf lat are the predicted and ground truth for the
forward flow of the dewarped document. As all corrective methods
must generate flattening function F , making ÛVwarp available,
DEPE is more general than EPE without the applicable restrictions.
However, the valid area of ÛVwarp may not completely overlap
with the ground truth. In non-coincident areas, DEPE calculates the
distance of the point to the origin instead of to the correct position.
To solve this problem, we further propose the Mean Pixel-level
Distance (MPD):

MPD =
1

HW

∑
p∈Ω

(ÛVf lat (p) − p), (21)

where Ω is the area covered by ÛVwarp . Note that there is no nec-
essary belonging relationship between Ω and Ψ. MPD inherits the
advantages of DEPE, i.e., it can sensitively reflect the geometric error
of details, and is not disturbed by texture, shadow, and background.
Fig. 16 illustrates the difference between EPE, DEPE, and MPD more
intuitively, indicating that MPD is able to circumvent calculations
within invalid regions (represented by gray color).

We conduct an experiment to demonstrate the robustness of MPD,
where the images of settings (a, b, c, d) in Tab. 4 have the exact same
perspective distortion, and the distortion of setting (e) is vertically
symmetric to the former. On the basis of (a), we add shadows (b),
reduce the resolution (c), change the content of the document (d),
and keep the texture consistency (e). We calculate the coefficient of
variation and running time of the five compared metrics. The ideal
evaluation metric should output consistent results when evaluating
these five images. The result shows that MPD has the strongest ro-
bustness to shadow, resolution, and different content, making MPD
a more equitable metric for evaluating geometric deformations than
others. Besides, MPD also has the highest computational efficiency.
Comparison results. Applying MPD along with previous tra-

ditional metrics, we compare the performance of our method and
several competitors on synthetic datasets, and the results are re-
ported in Tab. 5. The results show that our method can bring a better
geometric correction effect. We qualitatively compare the results
of all methods in terms of flattened images and grid-looking UVs,

(a) EPE (b) DEPE (c) MPD

Fig. 16. The difference between EPE, DEPE, and MPD. The predicted flow
is represented by the colored area, while the ground truth is encompassed
by the black dashed line.

(a)

(b) (d)

(c) (e)

(f)

Fig. 17. Visual comparison of different merging strategies: the uncorrected
local image (a), the rectification result using only the global rectification
module (b), the results of merging on the backward map with linear strategy
(c) and Poisson strategy (e), and the results of merging on UV with linear
strategy (d) and Poisson strategy (f).

as shown in Fig. 14. We can see that our method recovers the flat
document images with clear texture and reasonable shape (yellow
boundary in the second row). On the right side of Fig. 14, the re-
stored grid-looking UVs of our method are more regular. In addition,
Fig. 15 reports the numerical comparisons of our method with six
competitors on our synthetic dataset with six different deformation
types. For image similarity evaluation, especially LD and MPD, our
method shows clear advantages on all paper deformation categories.
For OCR evaluation, our CER result curve is flatter, which indicates
that our method is more robust to different deformations. These
results consistently indicate the superiority of our method.

6.3 Ablation Studies
In the following, we conduct ablation studies to analyze the effective-
ness of our constructed dataset, layout-aware assists, and different
merging strategies. We also perform an ablation experiment on the
backbones of the network, and the results are available in supple-
mentary materials. For the DocUNet benchmark, all OCR results are
obtained on the 60 pairs of images selected by [Feng et al. 2021a].

Simulated paper. To demonstrate the contribution of more di-
verse 3D paper shapes produced by our simulation method, we
perform an ablation study on our synthetic dataset. Specifically,
we train the UV network separately on the Doc3D dataset and our
synthesized dataset. Tab. 6 shows that training with our synthetic
paper dataset leads to better corrections than training with the Doc
3D dataset, which we attribute to the more diverse paper shapes
in the synthetic dataset. In addition, the correction effect is further
improved when training our network with both datasets.
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Table 6. Ablation study on the extended training dataset with simulated paper shapes. Bold numbers represent the best, and the underlined setting means our
final adoption. We use the same notations in Tab. 7 and Tab. 8

Training Dataset DocUNet Benchmark Our Evaluation Dataset
Setting Doc3D Simulated Paper MS-SSIM↑ LD↓ ED↓ CER↓ MPD↓ MS-SSIM↑ LD↓ ED↓ CER↓
(a) ✓ ✗ 0.5013 7.238 482.5 0.182 3.512 0.6640 4.101 449.0 0.171
(b) ✗ ✓ 0.5082 6.980 415.0 0.168 3.646 0.6693 3.738 392.5 0.146
(c) ✓ ✓ 0.5256 6.719 391.9 0.153 3.496 0.6772 3.643 365.4 0.135

Table 7. Ablation study on the layout network branch and the layout-ware loss term. In the layout column, the numbers in place of the check marks represent
the prediction accuracies of the enabled layout networks.

Network Branch Loss Term DocUNet Benchmark Our Evaluation Dataset
Setting UV Layout +Llayout MS-SSIM↑ LD↓ ED↓ CER↓ MPD↓ MS-SSIM↑ LD↓ ED↓ CER↓
(a) ✓ ✗ ✗ 0.4886 7.898 466.1 0.173 4.581 0.6223 4.054 437.5 0.165
(b) ✓ ✗ ✓ 0.4913 7.532 452.6 0.167 3.842 0.6397 3.748 399.6 0.150
(c) ✓ 0.879 ✗ 0.4968 7.367 448.7 0.159 3.783 0.6360 3.881 374.9 0.140
(d) ✓ 0.924 ✗ 0.5080 7.272 436.8 0.158 3.663 0.6442 3.765 373.3 0.140
(e) ✓ 0.963 ✗ 0.5099 7.185 414.2 0.155 3.502 0.6559 3.713 366.6 0.137
(f) ✓ 0.963 ✓ 0.5256 6.719 391.9 0.153 3.496 0.6772 3.643 365.4 0.135

Table 8. Ablation study on different merging strategies.

Merging Target Merging Method DocUNet Benchmark Our Evaluation Dataset
Setting UV BM Linear Poisson MS-SSIM↑ LD↓ ED↓ CER↓ MPD↓ MS-SSIM↑ LD↓ ED↓ CER↓
(a) ✓ ✗ ✓ ✗ 0.5169 7.3934 408.6 0.156 3.498 0.6654 3.752 390.1 0.141
(b) ✓ ✗ ✗ ✓ 0.5256 6.7193 391.9 0.153 3.496 0.6772 3.643 365.4 0.135
(c) ✗ ✓ ✓ ✗ 0.4811 7.3701 465.6 0.157 3.575 0.5379 4.064 461.4 0.172
(d) ✗ ✓ ✗ ✓ 0.5193 7.1169 466.4 0.165 4.220 0.5786 4.091 413.3 0.150

Layout-Awareness.We utilize the document layout in two as-
pects, namely, the Llayout loss term in the UV network and the
layout branch network. We remove these two layout-aware compo-
nents separately to verify their contribution to the overall correc-
tion effect. We also use three layout branch networks with different
prediction accuracies to verify the influence of layout prediction
accuracy on the final correction. Note that the layout loss only
works on the UV branch, aiming to make the UV branch predict
a more accurate forward flow. The layout branch further refines
the prediction of the UV branch based on the predicted forward
flow. Therefore, the layout loss and layout branch are independent
of each other, and they sequentially improve the correction results.
As shown by the results in Tab. 7, both components can bring

an improvement in document correction accuracy. Settings (c), (d),
and (e) show that the more accurate the layout prediction, the more
document correction may benefit from the assistance of the layout
branch network. When both loss term and the layout network are
enabled (see setting (f)), LD is reduced by 17% on the DocUNet
benchmark, and MPD is reduced by 24% on our evaluation dataset.
Merging Strategies. Finally, we evaluate the different merging

strategies in layout correction, and report the corresponding numeri-
cal results in Tab. 8.We use the linear and Poissonmerging strategies
on the forward UV (“UV” in Tab. 8) and reverse UV maps (“BM” in
Tab. 8), respectively. Two conclusions can be drawn from the results.

First, the performance of merging on UV is better compared with
merging on backward map. Second, using Poisson blending on the
UV map is the best merging strategy. In addition, we show a visual
comparison of different merging strategies in Fig. 17. The visual
results are also consistent with numerical results in Tab. 8.

6.4 Rectification Efficiency
In order to report the time spent by each module during infer-
ence, we run our method on a document image with a resolution of
2000 × 2000, containing five valid layout patches. Tab. 9 shows the
running time of each module and the corresponding proportion in
the total time. It can be seen that the non-neural Patch Selection and
Dewarping modules were the most time-consuming, accounting for
41.32% and 35.81% of the total time, respectively. In addition, the
local UV prediction also takes up 14.00% because it needs to be run
multiple times.

6.5 Limitations
Our method still has several limitations. Firstly, when the content of
the document does not have clear and distinct layout information,
our layout correction module will fail to bring improvement, and the
entire model will degenerate into global flattening. Secondly, since
we use document edges as important visual cues, our method may
fail when the outline of the document is incomplete or obscure (see
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Table 9. The time consumption of each module in the inference phase.

Module Time (s) Proportion (%)
Global UV 0.0598 2.88

Layout Segmentation 0.0588 2.83
Patch Selection 0.8597 41.32

Local UV 0.2912 14.00
Merging 0.0659 3.17

Dewarping 0.7450 35.81
Total 2.0805 100

(a) (b) (c)

Fig. 18. Several failure cases of our approach. Each column represents a case,
the top is the input, and the bottom is the output. Our method may pro-
duce inferior results when the input documents are incomplete (a), possess
ambiguous boundaries (b), or are severely wrinkled (c).

Input Layout Output

Fig. 19. Our method only segments the largest layout patches when encoun-
tering documents with hierarchical layouts. However, the final rectification
result remains satisfactory.

the left and middle columns of Fig. 18). Thirdly, our method only
performs geometric correction, so for documents that are severely
wrinkled, our rectified results still look bumpy due to uneven illumi-
nation (see the right column of Fig. 18). Finally, the proposed MPD
can only be applied to synthetic datasets that have forward-flow
ground truth.

7 CONCLUSION AND FUTURE WORK
We have proposed a layout-aware framework for rectifying a single
distorted document image. After applying the layout segmentation
network to predict the layout of the document, we employ the UV
regression network to estimate the UV maps of the entire image
and the layout patches. We then propose an effective fusion module
to merge the local and global predictions and obtain a robust and
complete UV map, which is leveraged for recovering the flat docu-
ment. Extensive results illustrate the superiority of our proposed
network. In addition, we adopt a fully automatic rendering method
for generating warped document images with diverse 3D shapes,
exact layout segmentation annotations, and paired deformed/flat
document images. Correspondingly, we introduce a novel metric
for measuring geometric correction performance. We will release
the code and dataset upon acceptance to facilitate future research.

In the future, we plan to explore how to utilize more low-level fea-
tures (e.g., text lines and straight lines) to assist deep learning-based
document rectification. Considering that all current neural-based
document correction methods rely on strong supervision, rectifica-
tion based on unsupervised learning or self-supervised learning is a
challenging but interesting research direction. In addition, for doc-
uments containing hierarchical layouts (see Fig. 19), our approach
only exploits the top-level layout patch and does not further seg-
ment the lower-level sub-layouts. This is because the segment labels
in our current training set only contain the largest ones. We can see
that our approach still reasonably rectifies such documents even
without the most fine-grained segmentation. In the future, we would
like to extend our dataset and explore the finer-grained utilization
of the hierarchical layout to handle more complex documents.
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