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Fig. 1. We introduce TwinTex, a fully automatic method to produce a detailed texture map with high photometric and perceptual quality for a piece-wise
planar 3D proxy mode. Such a proxy (1,489 vertices, 739 faces, shown in the bottom-middle) is an abstracted version of a 3D dense model (656,571 vertices,
1,313,550 faces, shown at the top-middle), which is reconstructed from multi-view aerial images captured by a drone.

Coarse architectural models are often generated at scales ranging from
individual buildings to scenes for downstream applications such as Digital
Twin City, Metaverse, LODs, etc. Such piece-wise planar models can be
abstracted as twins from 3D dense reconstructions. However, these models
typically lack realistic texture relative to the real building or scene, making
them unsuitable for vivid display or direct reference. In this paper, we present
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TwinTex, the first automatic texture mapping framework to generate a photo-
realistic texture for a piece-wise planar proxy. Our method addresses most
challenges occurring in such twin texture generation. Specifically, for each
primitive plane, we first select a small set of photos with greedy heuristics
considering photometric quality, perspective quality and facade texture
completeness. Then, different levels of line features (LoLs) are extracted from
the set of selected photos to generate guidance for later steps. With LoLs, we
employ optimization algorithms to align texture with geometry from local to
global. Finally, we fine-tune a diffusionmodel with amulti-mask initialization
component and a new dataset to inpaint the missing region. Experimental
results on many buildings, indoor scenes and man-made objects of varying
complexity demonstrate the generalization ability of our algorithm. Our
approach surpasses state-of-the-art texture mapping methods in terms of
high-fidelity quality and reaches a human-expert production level with much
less effort.
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1 INTRODUCTION
With the advances in active sensors (e.g., LiDAR), fully automated
Multiple View Stereo (MVS) and aerial-based photogrammetry sens-
ing technology, many mature algorithms have been developed to
generate complete and high-fidelity 3D dense reconstruction [Mu-
sialski et al. 2013; Smith et al. 2018; Zhou et al. 2020] with tex-
tures [Waechter et al. 2014]. Architectural models with simplified
topology and twin shapes of such dense models can be generated
from procedural modeling, approximated from dense reconstruc-
tion, or created manually by artists and architects. These abstracted
twin models are tractable in plenty of downstream applications due
to their sharper features, much lower needs on storage, and more
suitable for transmission and real-time rendering, as shown in Fig. 2.

However, the texture information contained in the original dense
reconstruction is often not maintained after abstraction. Thus, with
all the calibrated RGB images, how to texture the twin proxy for the
level of realism then becomes a challenging problem. An intuitive
way is to employ image-based texture generation methods [Lempit-
sky and Ivanov 2007; Waechter et al. 2014; Zhou and Koltun 2014].
However, these approaches would produce distorted and misaligned
artifacts as illustrated in Fig. 3. Although patch-based optimization
method [Bi et al. 2017] can reduce such artifacts to some extent by
synthesizing photometrically-consistent aligned images to correct
misalignments, it would possibly deliver blurring textures or miss-
ing regions. These issues are mainly caused by: i) the inaccurate
camera parameters, ii) the significant geometric differences between
the twin mesh and ground-truth models brought by the abstraction
process, and iii) the large difference among viewing angles. The com-
bination of these cases makes our problem even more challenging
and complicated. The urban proxy models often exhibit large-scale
planar structures. In practice, the modeling artists often manually
create high-quality textures plane-by-plane. This is an extremely
tedious, time-consuming, and labor-intensive process. It took quite
a few days for a professional modeler to texture an abstracted model
such as the Polytech shown in Fig. 1 with real photos. Texturing a
model with a higher level of detail would take much longer.

In this paper, we propose a plane-based methodology and fully au-
tomated algorithms to generate high-quality texture maps for piece-
wise planar architectural models given a large set of unordered RGB
photos. Our method addresses most challenges occurring in such
twin texture generation: the large number and high resolution of
input images, their drastically varying properties such as photomet-
ric quality, perspective quality (large variation of viewing angles),
heavy occludes (e.g., trees and buildings), and texture-geometry mis-
alignment (introduced by incorrect camera parameters and model
abstraction process). Given a coarse model, our algorithm decom-
poses it into a set of planar polygonal shapes, for each of which we
aim at generating a high-quality and complete texture map. We first
present a plane-oriented view selection approach to select views that
best cover each planar shape with high photometric and perspective
consistency. Based on the line segments extracted from each view, a
line-guided texture stitching is introduced to create a single texture
map to preserve geometric features. Finally, we perform texture

V: 105,936
F: 186,374
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Camera Distribution

Fig. 2. Left: Aerial distribution of the drone that collected the input photos
(559 images). Top right: 3D dense reconstruction of a Headquarter. Bottom
right: An abstracted twin model with a much smoother appearance and
smaller storage needs.

Fig. 3. Illustration of several typical issues occurred in texturing architec-
tural proxies.

optimization to improve the illumination consistency and fill the
missing regions in the texture map. Experiments are performed to
show the effectiveness and robustness of our method. In summary,
our work makes the following contributions:

• A fully automatic TwinTex, which produces high-quality
and geometry-aware texture for a simplified proxy model.

• A view selection algorithm that can select a small number of
candidate photos for each primitive plane considering texture
completeness, perspective and photometric quality.

• A plane-based texture mapping methodology via geometry-
aware image stitching guided by LoLs.
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• An architectural dataset including various scenes and building
components. We utilize this dataset and fine-tune a diffusion
probabilistic model with a novel multi-mask initialization
component to complete the texture maps.

2 RELATED WORK

2.1 Image-based Texture Mapping
Texture mapping is an important approach for authoring photo-
realistic 3D objects without increasing their geometric complex-
ity [Yuksel et al. 2019]. View-dependent texture mapping works [De-
bevec et al. 1998, 1996] composite multiple views of a scene by as-
suming the existence of a global mesh and storing all appearance
variation in textures. Although they also use a view selection pro-
cedure to project a single image onto the model and then merge
several image projections, they only determine for each polygon
in the model in which photos it is visible. Instead, we present a
novel view selection algorithm that considers texture completeness,
perspective quality, and photometric quality.

To generate a single consistent texture map, early works on image-
based texture mapping usually select multiple images for each face
and blend them into textures by using different weighting strate-
gies [Bernardini et al. 2001; Callieri et al. 2008]. However, such
methods could generate blurry and ghosting results due to cam-
era calibration errors and inaccurate geometry. To reduce those
artifacts caused by multi-image blending, later approaches choose
to select only one view per face, then conduct seam optimization
to create a texture patch and to avoid visible seams between adja-
cent patches [Fu et al. 2020, 2018; Gal et al. 2010; Lempitsky and
Ivanov 2007; Waechter et al. 2014; Wang et al. 2018]. They typically
solve a discrete labeling problem by using different data terms and
smoothness terms to construct the Markov random field to select
an optimal texture image for each face. Whereas, these approaches
still suffer from misaligned seams in challenging cases. Another cat-
egory of warping-based methods jointly rectifies the camera poses
and geometric errors. Zhou and Koltun [2014] use local image warp-
ing to optimize camera poses in tandem with non-rigid correction
functions for all images. This approach is then extended by [Bi et al.
2017] to propose a patch-based optimization that handles larger
geometry inaccuracies by correctly aligning the input images. This
method estimates the bidirectional similarity of different images,
which suffers from high computational costs.

Although high-quality texture maps can be generated from the
above methods, the resultant quality of texture mapping still greatly
depends on the quality of reconstruction and accuracy of camera
calibration. None of them can be naively applied to generate the
realistic texture of a large-scale structured building or scene. Firstly,
the abstracted proxy model has significant structural differences
from the original dense mesh. Moreover, constrained by the compli-
cated environment, the collected aerial data often has highly uneven
camera distribution, large camera calibration errors and large varia-
tions in viewing angles. Current methods still cannot handle these
problems well, resulting in obvious artifacts. Instead, we choose to
generate texture in a plane-based manner that is more intuitive and
human alike.

2.2 Structure-aware Scene Reconstruction and Texturing
Creating structured models from noisy raw data has become an
ever-increasing demand in urban digitization. Ceylan et al. [2012,
2014] propose image-based 3D urban building reconstruction frame-
works by exploiting the presence of linear and symmetric features
(e.g., lines, repeated elements) in facade for image registration and
3D reconstruction. To generate simplified meshes, a popular way
is to first reconstruct a 3D dense mesh and then simplify it using
geometry simplification [Garland and Heckbert 1997] or piece-wise
planar structure approximation methods [Cohen-Steiner et al. 2004;
Salinas et al. 2015; Verdie et al. 2015]. Another way is to directly
detect a set of planar primitives from the point clouds, then explore
the arrangements of primitives to provide a compact polygonal
mesh [Bauchet and Lafarge 2020; Bouzas et al. 2020; Fang and La-
farge 2020; Guo et al. 2022; Monszpart et al. 2015; Nan and Wonka
2017; Pan et al. 2022]. In practice, such proxy models are usually
generated manually or by procedural modeling [Sinha et al. 2008]
with arbitrary topology (e.g., manifolds or non-manifolds).

However, texturing such abstracted building models has drawn
less attention. Several methods take into account the generation of
texture maps while conducting a lightweight geometric reconstruc-
tion [Garcia-Dorado et al. 2013; Huang et al. 2017; Maier et al. 2017;
Sinha et al. 2008; Wang and Guo 2018]. For example, Garcia-Dorado
et al. [2013] computes a per-building volumetric proxy, then uses a
surface graph-cut method to stitch aerial images and yield a visually
coherent texture map. However, their reconstruction results are
2.5D which can only restore textures under limited perspectives,
losing important structures. Recently, deep learning approaches
based on image-image translation networks have been proposed to
synthesize texture details for coarse meshes of urban areas [Geor-
giou et al. 2021; Kelly et al. 2018]. Although data-driven methods are
able to generate various styles of textures, they require extensive
training sets, and the synthesized textures lack realism comparing
to the original real scenes. The technique of NeRF [Müller et al.
2022] shows great ability to generate high-quality 3D shapes and
textures [Baatz et al. 2022; Metzer et al. 2022]. However, remember
that we aim at very high-resolution input and output images which
require extremely large memory, employing a small set of input
images is not enough for NeRF-based methods to generate satisfying
results, which makes them less applicable in our scenario.

2.3 Image Stitching and Completion
Image stitching is to combine multiple images with overlapping sec-
tions to produce a single panoramic or high-resolution image [Mehta
and Bhirud 2011; Szeliski et al. 2007]. Early methods estimate an
optimal global transformation for each input image [Brown and
Lowe 2007]. However, they only work well for scenes near planar or
with slight view disparity, and usually generate ghosting artifacts or
projective distortion for general scenes. For more accurate stitching,
many approaches adopt spatially-varying warps to process different
regions of an image, including smoothly varying affine transfor-
mation [Lin et al. 2011], dual or quasi homographies [Gao et al.
2011; Li et al. 2017], shape-preserving half-projective warps [Chang
et al. 2014; Lin et al. 2015], and smoothly varying homography
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Fig. 4. Overview of our algorithm on the Hitech building. Taking an abstracted model and the UAV images as input, our framework detects the proxy polygons
in the mesh and generates one stitched texture map for each proxy polygon. Firstly, a small subset of views is selected from all the visible views for each proxy
polygon. Then, all the selected views are stitched together to form an enlarged texture map. Note that important geometric primitives such as line segments
contained in the original images are well preserved after the image stitching. Finally, the texture map is optimized by performing global consistency across all
the visible regions and inpainting the incomplete region of the underlying planar shape.

field [Zaragoza et al. 2013], etc. Aiming at building facades, Mu-
sialski et al. [2010] present a system for generating approximately
orthographic facade textures from a set of perspective photographs.
They perform multi-view image stitching over planar proxies by
using a gradient-domain stitching to avoid visible seams.
However, they are usually time-consuming and unsuitable for

scenes with large parallax and view disparity. Several methods are
then proposed to obtain better alignment with less distortion, es-
pecially for large parallax [Lee and Sim 2020; Zhang et al. 2016],
but linear structures in the image are not well maintained. After
that, instead of just using point feature matching, line features are
introduced to preserve both linear structures [Jia et al. 2021; Li et al.
2015; Liao and Li 2019; Xiang et al. 2018]. All these methods apply
a uniform grid to warp the images, which are not flexible enough
to align the regions with dense geometric features. Unlike them,
we propose to use an adaptive grid to locally warp the images and
better align the large-scale line features.
Image completion, also known as image inpainting, is the pro-

cess of restoring missing or damaged areas in an image. Extensive
research has been conducted on image completion, and existing
methods can be classified into three types: 1) diffusion-based meth-
ods, 2) patch-based methods and 3) deep learning methods based on
generative models. A detailed review is out of the scope of this paper,
and we refer the reader to recent works [Dhariwal and Nichol 2021;
Lugmayr et al. 2022] and surveys [Elharrouss et al. 2020; Guillemot
and Meur 2014; Jam et al. 2021; Rojas et al. 2020].

3 PROBLEM STATEMENT AND OVERVIEW
The objective of our approach is to automatically generate realistic
and geometry-aware texture maps for a piece-wise planar model,
i.e., urban building or scene. Our algorithm takes a set of calibrated
camera views {I} and an abstracted modelM as input, and outputs
high-quality texture maps. The proxy modelM is a polygonal mesh
consisting of a set of planar polygonal shapes P𝑖 , each of which is
referred to as a proxy polygon.

Proxy Planar Structure Extraction

Fig. 5. The input mesh M is first segmented into a set of planar regions
represented with proxy polygons {P𝑖 }. The shape of each proxy polygon is
then extracted as proxy boundary B𝑖 (visualized with red border lines).

To produce a texture map for each proxy polygon P𝑖 , the first step
should be to select one or multiple images as candidate maps for P𝑖 .
However, unlike previous texturing problems dealing with dense
models (small triangles), it is usual that none of the given images
can cover such large proxy polygons in abstracted versions. Hence,
we employ the latter scheme and select multiple images for each
polygon shape. However, there are still several challenges that exist
in our scenario: i) Photometric issue. There are seams, illumination
resolution inconsistency between adjacent patches. For large scale
scenes, the frequent ghosting effect is mainly introduced by the
dynamic instances, such as cars and tower crane. ii) Perspective
issue. Even with photometric consistent patches, it would still be
apparent that the stitched texture comes from several images with
largely varied viewing angles. iii) Image-to-image and image-to-
geometry misalignment. This is introduced by both the inaccuracy
of camera parameters and the simplification process. iv) Facade
incompleteness. In the absence of semantic guidance, how to fill a
largely empty regionwith geometrically and semantically consistent
content remains a problem.
To address the above problems, we propose a plane-based and

geometry-aware texture mapping methodology, as shown in Fig. 4.
First, we extract high-quality views and visible regions for each
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Iteration 0Input Proxy Polygon Iteration 1 Iteration 2
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Fig. 6. The view selection process of a proxy polygon P𝑖 . The red polygons
denote the observed regions, while the grey ones denote the unobserved
regions. The polygon with blue outline denotes the incremental region 𝐴

𝑗

𝑖

of selected image R 𝑗 in the current iteration.

proxy polygon P𝑖 . An effective greedy heuristic method is proposed
to select a small set of views {I}𝑖 that best cover each P𝑖 with
high photometric and perspective consistency (Sec. 4). Next, in
Sec. 5.1, the rich line features contained in the selected images {I}𝑖
are detected and organized into Level of Lines (LoLs). After that,
all the selected images are sequentially warped to their relative
proxy boundary based on LoLs and stitched into a single texture
map. Sec. 5.2 provides details. Then, each texture map is optimized
by a series of operators to reveal illumination consistency. Finally,
we provide an architectural image dataset and train a multi-mask
Diffusion Model to inpaint the missing regions in texture maps,
see Sec. 5.3. Our algorithm has been implemented as a customized
plug-in of a widely used graphics engine called Houdini1.

4 PLANE-ORIENTED VIEW SELECTION
Proxy polygon extraction. The input proxy M = (E, F ) can be

createdmanually, generated procedurally, or abstracted from a dense
reconstruction.M is a polygonal mesh where each basic element
of E is an edge and F is either a polygonal or triangular facet, as
shown in Fig. 5. We first segment M into a set of planar polygonal
shapes, each of which is represented as a proxy polygon P𝑖 . We input
P𝑖 by utilizing a region-growing algorithm based on face normal.
We then detect the corresponding proxy boundary B𝑖 by choosing
and sorting the boundary edges of P𝑖 . Fig. 5 shows the result of this
step on the scene of Hitech.
View selection. Given a large set of input calibrated photos,

the goal of this step is to select a small set of camera views {I}𝑖 as
candidate feature maps to best cover each proxy polygonP𝑖 . We first
apply frustum-culling and visibility detection to filter out the views
and pixels which are invisible, far away from P𝑖 , or have extremely
inclined viewing angles. The filtered images are then projected onto
P𝑖 , and the projected regions {R} covering the proxy polygon are
extracted as candidate images, as shown in Fig. 4.

Next, we propose an iterative view selection algorithm to select a
smaller set of candidate views from the projected images covering
P𝑖 (see Fig. 6). Starting from an empty set {I}0

𝑖
= ∅, we select the

best projected image R 𝑗 with the highest quality (denoted by 𝑄 𝑗 )
in each iteration 𝑘 to create {I}𝑘

𝑖
= {I}𝑘−1

𝑖
∪ 𝑅 𝑗 . This process

converges when there is no projected image left to examine, or the
{I}𝑘

𝑖
can fully cover P𝑖 , i.e., the area of unobserved regions in P𝑖

is smaller than a given threshold 𝜏 . We measure the quality 𝑄 𝑗 of
each R 𝑗 by its incremental coverage ratio of the proxy polygon, its

1https://www.sidefx.com/

photometric and perspective quality and consistency with {I}𝑘−1
𝑖

.
The score 𝑄 𝑗 is calculated as the weighted sum of two terms:

𝑄 𝑗 = 𝑄𝑝ℎ𝑜𝑡𝑜 + 𝜆𝑝𝑄𝑝𝑒𝑟𝑠𝑝 , (1)

where𝑄𝑝ℎ𝑜𝑡𝑜 and𝑄𝑝𝑒𝑟𝑠𝑝 represent the photometric and perspective
quality, respectively. 𝜆𝑝 is the weight of 𝑄𝑝𝑒𝑟𝑠𝑝 .

Photometric quality. This term favors R 𝑗 with large incremental
projection region, high resolution, and high photometric similarity
to all the projected images and previously selected images. In detail,
the coverage ratio of R 𝑗 against proxy polygon P𝑖 at iteration 𝑘 is
calculated as𝐴 𝑗

𝑖
/𝐴𝑖

𝑘 . It is determined by the area of the incremental
region 𝐴

𝑗
𝑖
normalized with the unobserved area 𝐴𝑖

𝑘 . Second, we
measure the resolution of R 𝑗 as 𝐺 (R 𝑗 ) by computing the average
of the gradient magnitude over all pixels within the projection
region [Gal et al. 2010]. The photometric similarity, 𝐶 (R 𝑗 , {R}), is
defined by checking the photo-consistency of R 𝑗 against all the
other projected images. It is computed by a multi-variate Gaussian
function [Waechter et al. 2014]. Furthermore, we introduce a new
smoothness term to give a more confident value to a projected image
R 𝑗 when R 𝑗 is consistent with the current set of selected images
{I}𝑘−1

𝑖
. The final photometric quality term is organized as:

𝑄𝑝ℎ𝑜𝑡𝑜 = [𝜆𝑔𝐺 (R 𝑗 ) + 𝜆𝑐𝐶 (R 𝑗 , {R})]
𝐴
𝑗
𝑖

𝐴𝑖
𝑘
+ 𝜆𝑠𝑄𝑠𝑚𝑜𝑜𝑡ℎ, (2)

𝑄𝑠𝑚𝑜𝑜𝑡ℎ = 1 − 𝐷𝑐 (R 𝑗 , {I}𝑘−1𝑖 ), (3)

where 𝜆𝑔 and 𝜆𝑐 are the respective weight of𝐺 (R 𝑗 ) and𝐶 (R 𝑗 , {R}),
𝜆𝑠 is the weight of𝑄𝑠𝑚𝑜𝑜𝑡ℎ .𝐷𝑐 (R 𝑗 , {I}𝑘−1𝑖

) represents the mean of
pixel-wise color difference between the overlapping pixels of image
R 𝑗 and all the images in {I}𝑘−1

𝑖
after normalization.𝑄𝑠𝑚𝑜𝑜𝑡ℎ = 1 if

iteration 𝑘 is zero or there exists no overlapping regions. The quality
term 𝑄𝑝ℎ𝑜𝑡𝑜 tends to select a set of projected images with the maxi-
mum photometric and content consistency, which helps reducing
the ghosting effect. Note that both photometric and smoothness
terms consider overlap regions. 𝐶 (·) directly uses the whole pro-
jected regions (including overlap regions) of all the projected images
𝑅. Meanwhile, the smoothness term only considers the overlap re-
gion compared to the candidate projected image 𝐼 .

Pespective quality. However, only considering the photometric
quality will possibly cause significant perspective inconsistency
among selected regions/patches. An example is shown at the bot-
tom left in Fig. 3, where the partial region is from the left viewing
angles and the other regions come from the right viewing angles.
One solution is to evaluate one patch at a time and choose patches
with viewing directions as close to the normal of the current proxy
polygon as possible [Wang et al. 2018]. However, the set of candi-
date photos usually has a large variation in viewing direction and
extremely uneven distribution, especially for those proxy polygons
with large planes. Strong front-parallel constraint could introduce
missing regions while loose constraint could cause significant per-
spective differences. To address this issue, we present a novel quality
measurement to select a set of perspective consistent images, while
satisfying the front-parallel constraint as much as possible.
The perspective quality term tends to select the next candidate

image with a viewing direction similar to selected images in {I}𝑘−1
𝑖

,
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Fig. 7. Simply stitching selected images and projecting to proxy polygon
produces obvious geometric inconsistency. Left: global texture-to-geometry
misalignment, where the magenta textural feature lines should match the
proxy geometric boundary (visualized in dark red). Right: local texture-to-
texture misalignment, where the blue feature lines should be connected and
collinear.

and with a viewing angle perpendicular to P𝑖 as much as possible.
Hence, the perspective property is measured with front-parallel
constraint and viewing angle consistency against selected photos.
Unlike previous methods that only consider the viewing angle of a
single candidate at a time [Wang et al. 2018], we propose to select a
set of candidate images with high viewing angle consistency and
as many front-parallel properties. Photo collections usually have a
large variety of viewing angles. In practice, it is difficult to find a set
of 𝑁 photos from the input all with a high level of front-parallelism
covering a large plane. Compared to focusing on front-parallelism,
we hope to stress more on viewing direction consistency as 𝑁 gets
larger. Hence, we introduce the inverse facade normal as the first
selected viewing direction. We define the perspective quality as:

𝑄𝑝𝑒𝑟𝑠𝑝 = 1 − 1
𝑁 + 1

[𝐷𝑛 (v𝑗 ,−n𝑖 ) +
∑︁
𝑛

𝐷𝜃 (v𝑗 , v𝑛)], (4)

where 𝑁 is the number of selected images in {I}𝑘−1
𝑖

, ni is the plane
normal of P𝑖 , v𝑗 is the viewing direction of 𝑅 𝑗 , v𝑛 is the viewing
direction of the 𝑛-th image in {I}𝑘−1

𝑖
. 𝐷𝑛 (v, n) = 2

𝜋 cos−1 (v · n)
calculates the normalized angular distance between facet normal v
and plane normal n. 𝐷𝜃 (u1, u2) = 1

𝜋 cos−1 (u1 · u2) calculates the
normalized angular distance between facet normal u1 and u2.

5 LINE-GUIDED TEXTURE MAPPING
After determining a set of high-quality images {I}𝑖 for each proxy
polygon P𝑖 , our next goal is to generate a realistic and geometry-
aware texture map for P𝑖 . Urban buildings usually exhibit rich
structural information, such as local/global line features (e.g., win-
dow border/windows layout) in facades, and structural line features
of the overall building (e.g., facade border). Different from most
existing texturing methods that are dealing with overall smooth
models, the proxy model in our case is only 𝐶0 continuous with
obvious sharp structural features. It makes our texture mapping
a challenging problem. Even tiny texture-to-texture or texture-to-
geometry misalignments will draw great visual attention, which
can be observed in Fig. 7.
Instead of relying on semantic label masks to synthesize tex-

tures [Sinha et al. 2008], we make full use of the rich line features
extracted from candidate views and the proxy boundary extracted
from the planar polygon to guide the texture mapping. Our algo-
rithm begins by extracting three levels of line features (LoLs) from

Fig. 8. Three levels of the line features extracted from a facade image from
local to global (left to right). The respective proxy boundary is visualized in
red. Some refinement operations i)-iv) on 𝐿𝑜𝐿1 are pointed with arrows.

selected candidate images. A line-guided texture stitching approach
is then proposed to improve the visual effects based on LoLs. Fi-
nally, we perform a texture optimization step to further improve
the illumination consistency and texture completeness. To further
eliminate the seams across patches, we employ graph-cut image
synthesis [Boykov et al. 2001; Kwatra et al. 2003] and Poisson-Image-
Editing [Pérez et al. 2003] to obtain one single enlarged texture for
each proxy polygon.

5.1 Levels of Line Features
To generate proper line guidance at different scales we extract and
optimize line segments from the level of local to global and finally
define three levels of line features (LoLs).

𝐿𝑜𝐿0. We first employ the ELSED algorithm [Suárez et al. 2022]
to detect rich but discrete line segments from the projected images
R as local features at the finest scale. Then we organize these line
segments into a set of global lines defined as 𝐿𝑜𝐿0, in which each
basic element encodes a meaningful primitive, e.g., facade boundary,
window boundary. The 𝐿𝑜𝐿0 is employed for rigid registration (the
details will be described in Sec. 5.2). The registered images are then
fed to later steps for generating 𝐿𝑜𝐿1 and 𝐿𝑜𝐿2.

𝐿𝑜𝐿1. After registering imageI𝑛 via rigid alignment, we obtain its
𝐿𝑜𝐿1 which has higher accuracy than 𝐿𝑜𝐿0. However, the registered
line segments still cannot well represent the polygon boundary. Our
next step is to obtain 𝐿𝑜𝐿1 which can maximally match B𝑖 .
We first measure the partial matching relationship of a line seg-

ment 𝐿 ∈ 𝐿𝑜𝐿1 compared to a boundary edge 𝑏𝑚 ∈ B𝑖 considering:
a) 𝜃 (𝐿,𝑏𝑚), the angle between two
lines. b) 𝐷𝑙 (𝐿,𝑏𝑚), the maximum
point-to-line distance from end-points
to another line. Moreover, it is useful
in matching line segments with sim-
ilar slopes and spatial distance, but
large variances in length. c) 𝑁 (𝐿,𝑏𝑚),
the level of non-overlap between 𝐿

and 𝑏𝑚 . To compute it, 𝐿 is first pro-
jected to 𝑏𝑚 to get 𝐿

′
. We compute

𝑁 (𝐿,𝑏𝑚) based on four types of re-
lationship between 𝐿

′
and 𝑏𝑚 after

line projection, see the inset figure.
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In case 1 and 2, we assign infinity to 𝑁 (𝐿,𝑏𝑚). In case 3, 𝑁 (𝐿,𝑏𝑚)
is set to zero. A point projected on 𝑏𝑚 with end-points 𝑝1 and 𝑝2
can be denoted as 𝑝1 +𝑤 (𝑝2 −𝑝1). In the last case, for the end-point
of 𝐿

′
locating outside 𝑏𝑚 (𝑤 < 0 or𝑤 > 1), we calculate its distance

to the end-points of 𝑏𝑚 and assign the minimum value to 𝑁 (𝐿,𝑏𝑚).
𝐿 with value of a)-c) smaller than given thresholds will be denoted
as a boundary matching line �̂�.

The set of lines of 𝐿𝑜𝐿1 are further refined by: i) eliminating tiny
noisy �̂� matching any 𝑏𝑚 , ii) merging the set of lines �̂� matching
the same 𝑏𝑚 into one single line segment, iii) extending 𝐿1 and 𝐿2
until they share a same end-point, if the matching boundary 𝑏𝑝 and
𝑏𝑞 of 𝐿1 and 𝐿2 are neighbors, and iv) connecting 𝐿1 and 𝐿2 whose
matching boundary are 𝑏𝑝 and 𝑏𝑞 respectively, if the inserted 𝐿 can
match 𝑏𝑜 whose neighbors are 𝑏𝑝 and 𝑏𝑞 . The above operations are
illustrated in Fig. 8 and the refined �̂� are visualized in purple. The
𝐿𝑜𝐿1 can serve as a guidance for texture stitching in Sec. 5.2.

𝐿𝑜𝐿2. Finally, we cluster all the line segments in 𝐿𝑜𝐿1 to extract
structural lines with a dynamic K-means algorithm, according to
the slope and the distance from the image center to the line segment.
After that, we can obtain 𝐿𝑜𝐿2 to represent the structural layouts of
facade components and to serve as a reference for later inpainting
in Sec. 5.3. Until now, for each selected image, we obtain LoLs for
different operators. Fig. 8 illustrates the LoLs from a facade image
of Hitech.

5.2 Line-guided Texture Stitching
For each proxy polygon P𝑖 , we have obtained a subset of views {I}𝑖
along with their LoLs in previous steps. For simplicity, we denote
the first selected image I1 in {I}𝑖 as a reference image I𝑟𝑒 𝑓 and
the others as target images I𝑡𝑎𝑟 . To generate an enlarged texture
map, we need to find the matching relationship between two images
to stitch them together. Based on extracted LoLs, one solution is
to find the correspondence between the lines (e.g., using LBD de-
scriptor [Zhang and Koch 2013]) by considering both image and
geometry features. However, there exists plenty of repetitive pat-
terns whichmake such pixel-based methods less effective. Therefore,
we develop an algorithm for matching line segments by utilizing
geometric information.

Due to the camera and geometry inaccuracy, there exists obvious
texture-to-geometry displacement which increases the difficulty in
accurate image local matching and stitching. We start by globally
registering I𝑟𝑒 𝑓 towards B𝑖 with a rigid transformation and several
warping operators. Next, following the order of their insertion into
{I}𝑖 , all the I𝑡𝑎𝑟 are sequentially deformed to match B𝑖 globally,
then locally stitched to I𝑟𝑒 𝑓 . The 𝑛-th inserted image is denoted
as I𝑛 . The stitching process is done in three steps: rigid alignment,
line matching and texture warping.

Rigid alignment. To reduce the large texture-to-geometry mis-
alignment, each imageI𝑛 is transformed toward the proxy boundary
B𝑖 . Firstly, we extend each image with a margin of 𝑁 pixels and
extract complete 𝐿𝑜𝐿0 from the extended version. We compute the
bounding box of B𝑖 and set 𝑁 to 5% of the length of its diagonal.
This can be observed in Fig. 8. Next, we convert all the endpoints
of 𝐿𝑜𝐿0 in I𝑛 into a source point cloud C𝑛 . We then convert the

endpoints of B𝑖 into a target point cloud C𝑖 . A rigid transformation
is calculated via ICP [Besl and McKay 1992] to align C𝑛 toward C𝑖 .
This rigid transformation is employed to transform and update I𝑛 .

Line segment matching. We denote 𝐿𝑜𝐿1 of I𝑡𝑎𝑟 as L𝑡𝑎𝑟 and
I𝑟𝑒 𝑓 as L𝑟𝑒 𝑓 . For each line segment 𝐿𝑡𝑎𝑟 ∈ L𝑡𝑎𝑟 , it can be reg-
istered to line segment 𝐿𝑟𝑒 𝑓 ∈ L𝑟𝑒 𝑓 if satisfying: i) the angular
distance 𝜃 (𝐿𝑡𝑎𝑟 , 𝐿𝑟𝑒 𝑓 ) is smaller than 5◦, ii) the point-to-line dis-
tance 𝐷𝑙 (𝐿𝑡𝑎𝑟 , 𝐿𝑟𝑒 𝑓 ) is closer than 10 pixels, and iii) the level of
non-overlap 𝑁 (𝐿𝑡𝑎𝑟 , 𝐿𝑟𝑒 𝑓 ) is smaller than 100 pixels if 𝐿𝑟𝑒 𝑓 ∈ B𝑖 .
We denoteL as the set of all pairs of matched line segments between
L𝑡𝑎𝑟 and L𝑟𝑒 𝑓 .

Texture warping. With the matched lines in 𝐿𝑜𝐿1, we can warp
I𝑡𝑎𝑟 to I𝑟𝑒 𝑓 while preserving the matched line segments. The
warping of I𝑛 to B𝑖 shares the same process. Previous work [Jia
et al. 2021] converts the transformation into a global line-guided
mesh deformation problem. They rely on deforming the vertices of
a grid-mesh uniformly sampled in the target image to maintain line
structures by solving a global least-square energy function.

However, the global optimal deformationmethodmay not guaran-
tee the strict straightness of colinear line features in facade images.
In this work, we employ an adaptive-mesh
data structure to explicitly maintain the line
segments after warping. First, we construct a
constrained Delaunay triangulation𝑀𝑡𝑎𝑟 =

(𝑉 𝑡𝑎𝑟 , 𝐸𝑡𝑎𝑟 , 𝐹 𝑡𝑎𝑟 ) based on 𝐿𝑜𝐿1, keeping all
the inserted segments as constraint edges, as
shown in the right wrapped figure. Unlike
uniformly sampling grid-mesh data struc-
ture, every basic element in our adaptive
mesh encodes a meaningful geometric primitive in the target im-
age, i.e., a corner point or a line segment. Based on this, all the
vertices 𝑉 𝑡𝑎𝑟 are deformed to new positions 𝑉 𝑡𝑎𝑟 while satisfying
the following two constraints:

• The matched line segment pairs in L are well aligned after the
mesh deformation.

• All the line segments in L𝑡𝑎𝑟 preserve straightness after the mesh
deformation.

We search for the optimal deformation offset Δ𝑉 = 𝑉 𝑡𝑎𝑟 −𝑉 𝑡𝑎𝑟

by embedding these two constraints and a normalization term into
an energy minimization formulation:

𝐸 (Δ𝑉 ) = 𝜆𝑎𝐸𝑎 (Δ𝑉 ) + 𝜆𝑙𝐸𝑙 (Δ𝑉 ) + 𝜆𝑟𝐸𝑟 (Δ𝑉 ). (5)

𝐸𝑎 (Δ𝑉 ) represents the line-alignment term, which guarantees
the alignment between all pairs of matched line segments in L after
deforming vertices by Δ𝑉 in the form of

𝐸𝑎 (Δ𝑉 ) =
| L |∑︁
𝑡=1

𝑑 (𝑉 𝑡𝑎𝑟
𝑡1 + Δ𝑉𝑡1, 𝑙

𝑟𝑒 𝑓
𝑡 ) + 𝑑 (𝑉 𝑡𝑎𝑟

𝑡2 + Δ𝑉𝑡2, 𝑙
𝑟𝑒 𝑓
𝑡 ), (6)

where 𝑙𝑟𝑒 𝑓𝑡 is the 𝑡-thmatched line segment inL𝑟𝑒 𝑓 , and (𝑉 𝑡𝑎𝑟
𝑡1 ,𝑉 𝑡𝑎𝑟

𝑡2 )
are end points of 𝑡-th matched line segment in L𝑡𝑎𝑟 . Moreover, the
line-preserving term denoted as 𝐸𝑙 (Δ𝑉 ) ensures the straightness of
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each line segment in L𝑡𝑎𝑟 after mesh deformation by

𝐸𝑙 (Δ𝑉 ) =
| L𝑡𝑎𝑟 |∑︁
𝑗=1

[(𝑉 𝑡𝑎𝑟
𝑗1 + Δ𝑉𝑗1) − (𝑉 𝑡𝑎𝑟

𝑗2 + Δ𝑉𝑗2)]𝑇 · −→𝑛 𝑡𝑎𝑟
𝑗 , (7)

where (𝑉 𝑡𝑎𝑟
𝑗1 ,𝑉 𝑡𝑎𝑟

𝑗2 ) are end points of 𝑗-th line segment 𝑙𝑡𝑎𝑟
𝑗

in L𝑡𝑎𝑟

and −→𝑛 𝑡𝑎𝑟
𝑗

is the normal vector of 𝑙𝑡𝑎𝑟
𝑗

. The normalization term to pre-

vent exaggerate deformation is defined as 𝐸𝑟 (Δ𝑉 ) = ∑ | L |
𝑡=1 | |Δ𝑉 | |2.

𝜆𝑎 , 𝜆𝑙 , and 𝜆𝑟 in Eq. 5 is set to 0.5, 0.5, and 0.025 in all experiments.
Instead of optimizing the vertex position via LSQM [Jia et al.

2021], we calculate the vertex offset by applying the conjugate
gradient algorithm which is more stable and efficient. Unlike using
the calculated vertex position to update enclosing grid vertices with
bilinear interpolation [Jia et al. 2021], each line segment represents
a linear feature of a facade component in our case. We directly
apply the optimal vertex offsets to the end-points of lines for the
preservation of linear features. There can appear topological issues
of the updated mesh after that. Hence, we introduce a refinement
step to address the topological issues such as line crossing and non-
manifolds. Finally, with an affine transformation constructed by the
refined vertices of adaptive mesh facet 𝑓 ∈ 𝐹 𝑡𝑎𝑟 , each pixel 𝑝𝑡𝑎𝑟
inside the 𝑓 is warped to the new position 𝑝𝑡𝑎𝑟 . With the alignment
and warping operators, all the visible regions are globally warped to
B𝑖 and locally warped to I𝑟𝑒 𝑓 forming an enlarged texture image
for each proxy polygon P𝑖 .

5.3 Texture Optimization
Illumination adjustment. Previous steps enable us to generate a

texture map I𝑖 for each proxy polygon P𝑖 . Since I𝑖 is composed of
patches extracted from various viewing directions, the brightness
may be inconsistent across neighbouring patches. Assuming that
the brightness distribution over the whole texture map should hold
a specific pattern, we perform a histogram specification operation
to improve the illumination consistency of I𝑖 in HSV color space. To
be precise, we first calculate a distribution histogram of the channel
𝑉 on the non-overlapping region of I𝑡𝑎𝑟 and overlapping region
of I𝑟𝑒 𝑓 , respectively. Next, we match these two histograms and
transfer the brightness of the overlapping region on I𝑟𝑒 𝑓 to the
non-overlapping region on I𝑡𝑎𝑟 .

Texture inpainting. In practice, some regions in P𝑖 may not be
observed by any of the selected views or covered with high-quality
patches, leading to holes in the generated texture map. To reduce
this visual artifacts, we need to fill the missing regions (referred to as
masks) to generate a complete texture map. However, the arbitrary
sizes and irregular shapes of the mask pose great challenges to
previous inpainting methods (e.g., patch-based approaches [Barnes
et al. 2009; Huang et al. 2014]). Inspired by the strong capability of
diffusion model in generating semantic and geometric harmonious
results, we employ a denoising diffusion probabilistic model called
RePaint [Lugmayr et al. 2022] for free-form inpainting.
However, RePaint is still not robust enough to generate struc-

turally consistent results for a large missing region. To alleviate
this issue, we further introduce a line-guided version of RePaint
called Multi-Mask RePaint model (MMRP) to preserve the geometric
consistency. As shown in Fig. 9, the input of MMRP contains the
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Fig. 9. Overview of our proposed texture inpainting approach, MMRP.

mask, 𝐿𝑜𝐿2, and the texture to be completed. We then propose a
multi-mask noise initialization (MMNI) component. Firstly, we com-
pute the principal directions of the lines in 𝐿𝑜𝐿2 by using principal
component analysis (PCA). Our MMNI divides the unobserved re-
gion into several parts following the second max principal direction.
As mentioned by Croitoru et al. [2023], the results will show better
Frechet Inception Distance values and faster convergence with a
mixture of Gaussian noises. Inspired by this observation, unlike the
original RePaint that initializes the entire unobserved region with a
single random Gaussian noise, we randomly initialize each divided
part with a random Gaussian noise 𝑁 (𝜇, 𝜎), where 𝜇 ranges from [0,
10], 𝜎 ranges from [1, 50]. The ranges are chosen from experimental
results that deliver good performance.
After that, the parts initialized with multiple noises along with

observed content are merged into one image, 𝑥𝑡 , which will be har-
monized together into a new inpainting. With MMNI, our MMRP
can increase the possibility of generating result that is more consis-
tent with the observed region.
We find that the quality of training data is crucial for diffusion

model to generate feasible results for a specific scenario, such as the
architecture in our case. To adapt RePaint to our task, we create a
TwinTex dataset and fine-tune Repaint which was originally trained
on ImageNet [Russakovsky et al. 2015]. Starting from 44𝑘 high-
resolution images collected with aerial drone covering 17 outdoor
architectural scenes, we first project each image to all its visible P𝑖

and extract the pixels inside the bounding box of visible regions.
Each extracted image is then cropped to a set of images with the size
of 512×512. Next, we remove the images with heavy blurring issues
or containing a large portion of non-architectural contents (e.g., veg-
etation, human, scaffolds, etc) [Zhao et al. 2017]. Our final TwinTex
dataset (TwinTexSet) contains 46𝑘 images of various scene compo-
nents and building categories (school, office building, etc). Note that
all the image regions with heavy blurring issue and extreme inclined
angles have been removed from our data set. Note that there are
some overlaps between the training and testing scenes. However,
the TwinTex dataset contains the processed photos of 17 outdoor
scenes, where we have rectified the photos, removed blurring re-
gions and large non-architectural objects. After these processes, the
training images and the test texture maps have no overlap. The
missing regions in test images come from frustum-culling, visibility
detection, or are not included in input photos. Therefore, the regions
to be infilled never appear in the training images, thus never seen
by the trained model in our tasks.

ACM Trans. Graph., Vol. 42, No. 6, Article . Publication date: December 2023.



TwinTex: Geometry-aware Texture Generation for Abstracted 3D Architectural Models • 9

We make use of our TwinTex dataset to fine-tune the pre-trained
RePaint model. The total training time is about 9 hours. We only
need to pay the time cost for training once. For an image with high
resolution, we will resize it to 512 × 512. And for an image with
large missing area, we choose to scale it according to the largest
dimension while preserving the image ratio. The resized image will
be fed into MMRP to receive a semantic and geometric consistent
inpainting. Finally, we upsample the resultant inpainting to the
original size with a bi-linear interpolation operation. Please refer to
the supplemental for more details and experimental results.

6 RESULTS
To validate the proposed algorithm, we conduct a series of experi-
ments on real-world scenes with varying building styles and func-
tions. We first demonstrate the robustness of our approach and the
effectiveness of each main ingredient through a stress test. Then,
we evaluate our approach by comparing it against state-of-the-art
texture mapping methods. Ablation studies are performed as well to
show the effectiveness of our main technical ingredients (please re-
fer to the supplemental material for the details). Texturing results by
our method and manual work on proxy models at different levels of
detail are also provided in the supplemental material to demonstrate
the high quality of our generated texture maps. Our algorithm is im-
plemented in C++ and also well-organized as a customized plug-in
for Houdini. All the presented experimental results are obtained on
a desktop computer equipped with an Intel i9-10900k processor with
3.0 GHz and 128 GB RAM. Note that the time cost for fine-tuning
the RePaint model are not included in the statistics.

Dataset. For the performance evaluation and comparisons, we
carry out experiments on 18 real-world scenes, including 15 out-
door buildings, two indoor rooms and a man-made object. These
scenes come from public sources (i.e., Library [Zhang et al. 2021],
Hitech [Zhou et al. 2020], Polytech and ArtSci [Lin et al. 2022]), a
handheld device (i.e., Machine Room, Lab, Cabinet), or are captured
by a single-camera drone (i.e., Highrise, School, Center, CSSE, Sun-
shine Plaza, Hall, Center, Factory, Hisense, Bank, Apartment). Please
refer to the supplemental material for detailed statistics on the photo
collections and models. Then we use the commercial software Real-
ityCapture2 (RC) to reconstruct the 3D high-precision models from
the captured images. All the abstracted versions are either the 2.5D
models for path planning [Zhou et al. 2020], or created by in-field
modelers. All of the dense reconstructions and proxy models are
utilized to demonstrate the performance of our algorithm.

6.1 Stress Test
We first evaluate the robustness of our approach on a complicated
Hall example with 519 input views. This stress test is performed
via randomly removing partial photos from the original photo set
and feeding the rest views into our TwinTex. The textured proxies
of Hall example generated with three different sets of remaining
views are shown in Fig. 10. We also show the intermediate texture
maps after each step, e.g., view selection, image stitching along with
blending and texture inpainting.

2https://www.capturingreality.com/

Original Input

Remaining Input

#I: 259 (50%)

#I: 519 (100%)

#I: 129 (25%)

#I: 77 (5%)

View Selection
Image 

Stitching & Blending Inpainting

Fig. 10. Stress test of our methodology on Hall example via randomly re-
moving a certain percentage of photos from original input. In each row we
visualize: the camera distribution of the remaining input, the textured proxy
based in remaining input after view selection, image stitching with blending,
and inpainting. #𝐼 denotes the number of photos. The value in the bracket
denotes the percentage of the remaining photos related to original input.

We randomly removed 50%, 75% and 95% photos from the origi-
nal set and made use of the remaining views to texture this proxy
model. The textured proxies after view selection are generated by
simply overlapping the projection of selected images following the
reverse order of selection. As the number of photos in the remaining
input decreased, our selection algorithm can still select high-quality
photos from the input to maximally cover the proxy, as illustrated in
the second column of Fig. 10. From the third column, we can see the
texture maps after performing our stitching step and illumination
adjustment exhibit higher geometric and photometric consistency.
However, there appears larger missing regions as the number of
remaining views decrease. We only use 77 images to texture Hall
example with 225 facades (each plane has about 6 photos to select
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Fig. 11. Visual comparison against RC, LTBC and ours on two examples. The detailed comparisons are shown in the zoomed-in insets. Due to the page limit,
we only show the overall views of our textured proxy models, which are shown on the left to the zoomed-in insets.

from). All the missing regions are visualized with black pixels, as
marked by the red boxes in the figure. The final texture maps visu-
alized in the last column of Fig. 10 demonstrate the ability of our
inpainting framework for creating geometrically and semantically
consistent contents under very limited resource.

6.2 Comparison with Texturing Methods
In this subsection, we evaluate the quality of our generated texture
maps by comparing them against RC and two competitive textur-
ing generation frameworks, let there be color (LTBC) [Waechter
et al. 2014] and patch based optimization (PBO) [Bi et al. 2017]. We
adopt the evaluation scheme proposed by Waechter et al. [2017]
to compare the rendered image with the corresponding real im-
age following a specific view from the input cameras. We select
the ground truth photos for evaluation from the input excluding
the photos for texturing. Two visual similarity metrics, namely the
structural similarity index measure (SSIM) and learned perceptual
image patch similarity (LPIPS) [Kastryulin et al. 2022], are adopted
for quantitative evaluation.
Comparison with LTBC. We first compare our method with

RC and LTBC on two examples. Note that LTBC selects the most
suitable view for each facet by solving a Markov Random Field for-
mulation and adjusting the pixel values along the boundary edges of
adjacent patches to alleviate the seams. This strategy fails to texture
large facets when there is no camera view observing the whole
region of the facet. Thus, we subdivide the simplified coarse model
and perform LTBC to generate texture maps for the corresponding
subdivided mesh for a reasonable comparison.
Fig. 11 shows the qualitative results on two abstracted models

with sharp textures and structural features. First, we can observe
that LTBC and RC are not able to produce satisfactory results for
large-scale planar structures which are invisible for the input photos
or with only low-quality pixels. In these cases, their texture maps
show blurring and ghosting artifacts. By contrast, our method can
fill large unobserved regions with geometrically and semantically
consistent pixels.
Second, without the constraints on perspective consistency in

view selection, LTBC failed in selecting photos with both consistent
and front-parallel viewing directions, creating "stretching" alike

Table 1. Quantitative comparison on the texturing results in Fig. 11.

Scene Method 𝑆𝑆𝐼𝑀 ↑ 𝐿𝑃𝐼𝑃𝑆 ↓ Time (min)

Center
RC 0.350 0.831 287.0

LTBC 0.354 0.836 4.4
Ours 0.358 0.831 167.4

Artsci
RC 0.346 0.883 320.9

LTBC 0.331 0.873 6.0
Ours 0.348 0.877 256.1

Table 2. Quantitative comparison on the performance of texturing results
on the third and fourth examples in Fig. 12. Numbers in the bracket denote
the quality value of the three zoomed-in views of each example from top to
bottom. All the times are in minutes.

Scene Method 𝑆𝑆𝐼𝑀 ↑ 𝐿𝑃𝐼𝑃𝑆 ↓ Time

Library

RC { 0.28, 0.28, 0.32 } { 0.53, 0.60, 0.68 } 383.6
LTBC { 0.29, 0.29, 0.34 } { 0.54, 0.68, 0.68 } 4.8
PBO { 0.63, 0.45, 0.38 } { 0.63, 0.67, 0.69 } 810.7
Ours { 0.46, 0.38, 0.36 } { 0.28, 0.52, 0.66 } 200.4

Bank

RC { 0.25, 0.62, 0.26 } { 0.43, 0.23, 0.54 } 198.3
LTBC { 0.20, 0.52, 0.33 } { 0.51, 0.37, 0.53 } 6.4
PBO { 0.25, 0.70, 0.27 } { 0.43, 0.31, 0.57 } 672.1
Ours { 0.26, 0.63, 0.28 } { 0.27, 0.18, 0.52 } 174.5

artifact and perspective inconsistency in the generated textures.
The "stretching" problem can be observed in the inset of the ArtSci
building in Fig. 11 (first row, second column), which was caused by
merging photos with large viewing angle variance. The perspective
inconsistency can be observed in the insets of the Center example
in Fig. 11 (first and third rows, second column). Unlike LTBC, our
view selection strategy can pick out a very small set of perspective
consistent and front-parallel photos as possible. Moreover, we in-
troduced a smooth term considering the pixel-wise distance of each
image pair. This helps select a set of photos with a higher level of
photometric and content consistency, especially for filtering out
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Fig. 12. Visual comparison against RC, LTBC, PBO and ours on four examples. The detailed comparisons are shown in the zoomed-in insets.

occluders or dynamic instances (e.g., cars). The significant improve-
ment can be observed in the Center example in Fig. 11 (second row)
and ArtSci example in Fig. 11 (third row).
Furthermore, due to the lack of explicit constraints on the lin-

ear features of buildings, the texture generated by LTBC destroys
geometric structures, making them suffer from serious seams and
distortion effects. Our image stitching mechanism succeeds in pre-
serving the straightness and completeness of the line segments by
constructing an adaptive mesh taking the original geometric primi-
tives as constraints. Next, large and duplicate texture patterns are
also well maintained in our results. This is mainly because we select

a suitable small subset of camera views for each planar shape instead
of each facet. This strategy guarantees that each selected view is
used to texture the current plane as much as possible.

The quantitative comparison results are given in Table 1. In most
of the cases, the rendered views of our textured model can deliver
better SSIM and LPIPS scores. Please refer to the supplemental
material for the overall views of the above two examples.
Comparison with PBO. Next, we perform comparison with

PBO3 and report SSIM and LPIPS as well on four more architec-
tural scenes. We first tried to globally compare the similarity of
3https://github.com/yanqingan/EAGLE-TextureMapping
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Fig. 13. Visual comparison of two challenging cases against RC, LTBC and ours. The detailed comparisons are shown as zoomed-in insets.

rendering views on the entire building with real photos. However,
PBO requires an extremely large amount of time/storage given just
several high-resolution images as input. Remember that our tar-
get is to retain the quality of the inputs, one way to address the
issues is to decrease the number of input photos. This can produce
other problems such as missing contents since no pixels can cover
some of the regions. It is crucial to provide key views with high
quality to the PBO in this scenario. Hence, we locally perform the
comparison to PBO using three planes per example. To this end,
we fed PBO with the set of views selected by our algorithm for the
planar polygons involved in the comparison. Considering the nature
of patch-based optimization, for a fair qualitative comparison, we
use the subdivided mesh prepared for LTBC as the input to PBO
as well. Fig. 12 shows the texturing results of RC, LTBC, PBO and
ours. The comparison shows that given the same set of selected
views, PBO can generate a texture with good quality in most cases
which also proves the effectiveness of our view selection algorithm.
However, the results of PBO have obvious blurring issue and line
distortion artifact compared to the real photos. There are also some
optimization failures of PBO which cause missing textures for the
subdivided triangles. In comparison, our stitching and optimization
frameworks can preserve clear line features and retain the original
structure while we are able to inpaint missing regions.

Quantitative results are listed in Table 2. Since SSIM is by nature
less sensitive to blurring issues and possibly gives higher scores to
images with such artifacts [Zhang et al. 2018], the texture with the
regional blurring problem could have higher scores. This phenome-
non can be observed in some views per each example. Meanwhile,
LPIPS is designed to match human perception and yield better scores
for images with higher level of coherence. Note that the recorded
time cost for PBO does not include view selection or is not for
texturing the entire proxy although it is relatively long.

6.3 Analysis of Generalization Ability
In this subsection, we discuss the results of our method applied
to more diverse scenes. First, we conduct experiments on several
challenging urban scenes that contain curve surfaces, facades with

Fig. 14. Visual comparison against RC, LTBC and ours on two indoor scenes
and a cabinet.

non-linear features, and facades with a lot of reflection, as shown in
Fig. 13. Then we present the texturing results on two indoor scenes
and one man-made object in Fig. 14, which are different scenarios
from buildings. Note there exists only one fire extinguisher in the
Lab scene. Although it has been moved during the photos collection
process, our method still perfectly keeps its location where it has
been placed in most photos.

To better understand the superiority of our TwinTex, we conduct
comparisons with previous methods as well. From the figures we
can see that our approach can still generate high-fidelity textures for
the challenging buildings, and can be naturally extended to texture
coarse piece-wise planar models in other scenarios. The visual com-
parisons further suggest that the textures generated by our approach
have several significant advantages over previous methods: i) closer
to real photos with perspective consistency and harmonic illumina-
tion, ii) contain rarely border misalignment, distortion, blurring and
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Alignment

Input Result1 Result2Input Result1 Result2

Inpainting

Fig. 15. Failure examples: inter-planar misalignment among two adjacent
facades (left), and inpainting results of a reflective facade with large glass
panels (right).

seaming artifacts resulting from inaccurate camera parameters, iii)
contain rarely ghosting effects resulting from dynamic instances,
iv) preserve geometric details better, and v) fill the missing regions
with geometrically and semantically consistent contents.

7 CONCLUSION AND FUTURE WORK
In this work, we proposed a plane-based and geometry-aware tex-
ture generation method. Our target is to produce high-resolution
texturemaps for piece-wise planar architectural proxymodels which
were abstracted from dense 3D reconstructions. Our main techni-
cal contributions consist in: i) A greedy algorithm to select a set
of views that are most suitable for texturing each planar shape;
Both perspective and photometric qualities are considered in this
algorithm. ii) An image stitching methodology that can stitch the
selected views to an enlarged texture map, preserving the local and
global linear geometric primitives based on an adaptive-mesh data
structure; iii) An improved diffusion probabilistic model that fine-
tuned with our created TwinTexSet to inpaint unobserved texture
region with semantically and geometrically coherent pixels; iv) A
customized texturing tool plugged in a widely used graphical en-
gine. Experimental results show that our algorithm outperforms
state-of-the-art facet-based texturing methods in the generation of
realistic and high-resolution texture maps in a reasonable time.

Limitations and future work. Our system still has several limi-
tations. First, although we significantly refined the extracted line
segments, the line-guided scheme still relies on the quality of the line
extraction algorithm. One possible solution is to consider camera
information as well or make use of reconstructed 3D lines. Second,
our plane-based texture generation method processes each planar
shape independently, which does not take their mutual relation-
ship into consideration. Fig. 15 (left) shows such an example where
global alignment of linear features between adjacent planes is not
achieved. Note we here choose a zoom-in view with the most obvi-
ous misalignment among given buildings to clearly show this issue.
The other examples may also exhibit tiny misalignments. Third, we
may fail to successfully perform inpainting for a reflected facade
which lacks of coherent structures and clear content, making it even
hard for a human to infer the missing region, see Fig. 15 (right).
Finally, the processing time can be further improved with parallel
processing. We will incorporate these issues in our future pipeline.
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