
JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Blending Surface Segmentation and Editing for
3D Models

Long Zhang, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan

Abstract—Recognizing and fitting shape primitives from underlying 3D models are key components of many computer graphics and
computer vision applications. Although a vast number of structural recovery methods are available, they usually fail to identify blending
surfaces, which corresponds to small transitional regions among relatively large primary patches. To address this issue, we present a
novel approach for automatic segmentation and surface fitting with accurate geometric parameters from 3D models, especially
mechanical parts. Overall, we formulate the structural segmentation as a Markov random field (MRF) labeling problem. In contrast to
existing techniques, we first propose a new clustering algorithm to build superfacets by incorporating 3D local geometric information.
This algorithm extracts the general quadric and rolling-ball blending regions, and improves the robustness of further segmentation.
Next, we apply a specially designed MRF framework to efficiently partition the original model into different meaningful patches of
known surface types by defining the multilabel energy function on the superfacets. Furthermore, we present an iterative optimization
algorithm based on skeleton extraction to fit rolling-ball blending patches by recovering the parameters of the rolling center trajectories
and ball radius. Experiments on different complex models demonstrate the effectiveness and robustness of the proposed method, and
the superiority of our method is also verified through comparisons with state-of-the-art approaches. We further apply our algorithm in
applications such as mesh editing by changing the radius of the rolling balls.

Index Terms—Mesh segmentation, Structure recovery, Superfacets, Rolling-ball blending surface, Markov random field.

F

1 INTRODUCTION

The acquisition of 3D geometry with high resolution and
complexity is simplified through advances in 3D scanning
and multiview reconstruction techniques. Although the ob-
tained geometric models are usually represented by raw
3D data (e.g., point clouds or triangular meshes), accurately
segmenting these models and recovering the inherent struc-
tures are vital to the success of better shape understanding
and high-level model processing, such as geometry com-
pression [1], hybrid shape representations [2], and reverse
engineering [3], [4]. Conducting such a procedure for model
reconstruction is also inevitable [5], [6], [7].

Many mesh segmentation and shape recovery meth-
ods have been proposed to find a concise and accurate
approximation of a given model. Existing approaches can
be divided into several types according to the theories
they employ. Greedy approaches use heuristics based on
local cues to obtain several clusters until convergence is
reached [8], [9], whereas variational approaches [1], [10]
use interleaving segmentation and approximation to obtain
optimal geometric proxies for the input surface. In addition,
another popular set of approaches [2], [11], [12], [13] intro-
duce energy functions to label the surface elements, thereby

• L. Zhang, J. Xiao are with the School of Artificial Intelligence, University
of Chinese Academy of Sciences, Beijing 100049, China.
E-mail: zzlzlzl001@gmail.com, xiaojun@ucas.ac.cn.
(Long Zhang and Jianwei Guo are joint first authors with equal contribu-
tion. Jun Xiao is the corresponding author.)

• J. Guo, X. Zhang, D.-M. Yan are with NLPR, Institute of Automa-
tion, Chinese Academy of Sciences, Beijing 100190, China, and the
School of Artificial Intelligence, University of Chinese Academy of
Sciences, Beijing 100049, China. E-mail: jianwei.guo@nlpr.ia.ac.cn, Xi-
aopeng.Zhang@ia.ac.cn, yandongming@gmail.com.

Fig. 1. Illustration of the rolling-ball blending surface: (a) a 3D mesh
model with the rolling-ball blending surfaces highlighted in dark orange.
(b) The rolling-balls and their moving trajectories to construct the blend-
ing surfaces.

greatly accelerating the surface approximation procedure.
Although previous approaches can address segmenta-

tion in models that contain simple primitives (e.g., plane,
cylinder, sphere, or quadric surfaces), they cannot produce
satisfactory results in models that contain blending sur-
faces. Here, blending is an operation of creating a smooth
and continuous transition between adjacent primary sur-
faces. Blending appears frequently in Computer-aided de-
sign (CAD) systems for aesthetic, functional improvement,
stress-concentration reduction and manufacturability [14],
[15] reasons. Although there are different methods to create
blends via various mathematical forms [16], the rolling-ball
method, where blends are generated by sweeping a rolling
ball moving in contact with two neighboring surfaces, is the
most common method for creating blends due to its simplic-
ity and intuitive behavior [17], [18], [19]. Fig. 1 illustrates an
example of rolling-ball blending surfaces. Recovering con-
stant radius rolling-ball blends is a very important reverse

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Fig. 2. Our segmentation result on the ”Church” model, shown in different views: up (left), front (middle), and left (right). Different patches with
known surface types are coded using random colors.

engineering problem.
Few prior works recover the constant radius of rolling-

ball blends from 3D point data [20] and mesh surfaces [10].
These approaches are based on two basic steps, namely,
radius estimation and spine/rolling-trajectory reconstruc-
tion. Radius estimation uses the average principal curva-
ture to estimate the blending radius and initial spine posi-
tion. Subsequently, the spine curve is updated iteratively.
Unfortunately, the curvature estimation step is slow and
inaccurate, thereby resulting in large calculation errors in
later steps. In addition, curvature estimations cannot handle
complex blending surface shapes, such as the crossover re-
gion intersected by two rolling trajectories. Moreover, these
methods assume that the input has been pre-segmented and
the primary surfaces are already known.

In this study, we propose a more general Markov ran-
dom field (MRF)-based segmentation framework with em-
phasis on blending surface identification. We aim to seg-
ment the mesh-based models into consistent patches accord-
ing to their geometric attributes while precisely obtaining
the rolling-ball blending patches and the parameters of the
blending radius and rolling trajectory. Different from tra-
ditional labeling approaches, we first construct superfacets,
which refer to the clusters of triangular faces on the mesh.
Thus, we can preliminarily eliminate the small-scale noise
in the input mesh and greatly accelerate the segmentation
procedure. Then, each superfacet is given a label of a known
surface type by minimizing a multi-label energy function
that encodes probabilistic formulations. Fitting algorithms
are finally performed to reveal the structure of the input
model and are used for mesh blending. In summary, the
main contributions of this work include the following:

• A new MRF formulation for segmenting 3D models
into meaningful patches and finding a faithful ap-
proximating primitive for each patch, especially the
rolling-ball blending patches.

• An improved method to build mesh superfacets with
boundaries that are well aligned with the features
in the underlying surface. This method is tailored
for our MRF segmentation and reasonably robust to
noise in the input surface.

• An efficient optimization algorithm based on ro-
bust skeleton extraction to fit rolling-ball blending
patches by accurately recovering the parameters of
the rolling center trajectory and blending radius.
The algorithm is demonstrated by conducting mesh
smoothing and sharpening applications.

2 RELATED WORK

In this section, we present a brief overview of the key
mesh segmentation and surface fitting techniques for 3D
models presented in past years. For more comprehensive
discussions, we refer the reader to the survey papers [21],
[22], [23], [24].
Greedy segmentation. Greedy based approaches have been
widely used for mesh segmentation, where the object par-
tition is created by greedily clustered polygonal elements.
These traditional algorithms usually cluster geometric el-
ements with similar properties, such as region growing,
hierarchical clustering, and hierarchical decomposition. In
region growing methods [9], [25], a set of triangular faces
are first selected as seeds, then for each seed grows a
region based on some local properties until all the faces are
assigned to a region.

The hierarchical clustering method iteratively merges
two adjacent small patches according to the least merging
error to a larger patch. This merging process is repeated
until some stopping criteria are met. For example, Kim et
al. [26] proposed using a merging criteria based on element
orientations and merged over segmented regions in an
iterative process. Attene et al. [27] presented a hierarchical
segmentation framework that partitions a given shape into
connected regions approximated by primitives belonging
to a given set. Zhang et al. [28] introduced another novel
hierarchical shape segmentation method based on splats for
3D shapes. Yang and Jia [29] recognized simple primitives
by introducing a strategy for primitive priority and a new
scheme for boundary smoothness between adjacent clusters.
However, these methods show some weakness in segment-
ing blending regions because they lack good strategies for
dealing with the merging of two smooth surfaces during the
early stages.

In contrast, the hierarchical decomposition segment
meshes into meaningful components from the top to bot-
tom hierarchically. The method presented by Mangan and
Whitaker [30] generalized the morphological watersheds
to 3D surfaces. Katz and Tal [31] proposed to compute a
decomposition which generally refers to segmentation at
regions of deep concavities, and avoids jaggy boundaries
between the components. Lai et al. [32] worked on feature-
sensitive isotropic remeshing to generate a mesh hierarchy
especially suitable for the segmentation of large models
with regions at multiple scales. This kind of approaches
easily over-segment some meaningful parts because of its
tendency to segment surfaces at concave regions.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

plane

rolling-ball
blending surface

cone

sphere

cylinder

(a) (e)(d)(c)(b)

Fig. 3. The pipeline of our segmentation framework: (a) the input mesh model of ”elk”; (b) construction of mesh superfacets; (c) segmentation by
labeling each superfacet using MRF-based function while partitioning the rolling-ball blending surfaces correctly (purple color for planes, lawngreen
for cylinders, dark brown for spheres, pink for cones and cyan for rolling-ball blending patches); (d) final result by segmenting each kind of surfaces
into different instances, where the color of each instance is randomly generated for visualization purpose; (e) zoom-in view of the rolling-ball blending
patches.

Variational segmentation. Different from greedy ap-
proaches, variational methods treat segmentation as an
energy minimization problem. It shows powerful approx-
imation ability and achieves better segmentation quality.
Based on Lloyd’s clustering algorithm [33], Cohen-Steiner
et al. [1] cast shape approximation as a variational geometric
partitioning problem. In this method, mesh partition and
surface fitting are repeated mutually to minimize a global
approximation error until convergence. After that, Wu and
Kobbelt [10] extended this method by introducing planes,
spheres, cylinders, and rolling-ball blending patches as
primitive proxies. But this variant tends to over-segment the
regions between patches. Yan et al. [34] further used general
quadratic primitives to represent the geometric proxy of
a surface region. Sander et al. [35] use Lloyd’s clustering
algorithm [33] to partition the model into charts to obtain
the flexibility needed to parametrize meshes of arbitrary
complexity, high genus, and multiple components with less
distortion. In addition, Simari and Singh [36] addressed the
restructuring of dense polygon meshes using a number of
ellipsoidal regions. Julius et al. [37] introduced a novel met-
ric of surface developability, then based on this metric they
presented an algorithm named D-charts to segment meshes
into (near-)developable charts. Le and Duan [38] presented a
new geometric proxies method that can be easily extendable
to surfaces of revolution. However, these approaches have a
problem in correctly partitioning blending patches.
CVT-based segmentation. Centroidal Voronoi tessellation
(CVT) can also be applied to mesh segmentation because
of its nature of space partition. The theory and compu-
tation of CVT have been extensively studied in previous
works [39] [40]. Then, Liu et al. [41] proposed a numerical
framework for CVT computation based on quasi-Newton
methods with higher efficiency. Edwards et al. [42] proposed
the κCVT to achieve topological correctness in all flat re-
gions while sparsely sampling. Rong et al. [43] and Fei et
al. [44] implement L-BFGS methods on the GPU to obtain
faster speeds for computing CVT. In general, these methods
cluster point sets according to their spatial distribution, so
their segmentation results are not accurate on the geomet-
ric boundary, and cannot identify the blending surface, as
compared in Sec. 5.1.
Data-driven segmentation. Data-driven methods, which
have advantages in discovering the geometric, structural,
and semantic relationships of 3D shapes, are suitable for

object segmentation. Kalogerakis et al. [45] first used a Con-
ditional random field-based objective function for part seg-
mentation. Xu et al. [46] and Rodrigues et al. [47] conducted
in-depth research on this method. Furthermore, Qi et al.
successively proposed PointNet [48] and PointNet++ [49] to
directly conduct the semantic segmentation of a point cloud.
Yu et al. [50] hierarchically divided 3D shapes into finer
structural parts using PartNet. Hu et al. [51] proposed a mul-
tiscale framework for the semantic segmentation of the 3D
point clouds of indoor scenes. Wang et al. [52] proposed the
DGCNN that applies a new ”EdgeConv” module to solve
the tasks of point cloud segmentation and classification.
Hanocka et al. [53] proposed a new neural network, called
MeshCNN, that operates directly on triangular meshes,
where the convolution and pooling operations are tailored
to irregular and non-uniform structures. However, these
methods mostly focus on high-level semantic segmentation
and lack the accurate perception of geometric boundaries.
Some other methods sought to learn the geometric features
of CAD datasets. For example, Li et al. [54] introduced
the Supervised Primitive Fitting Network (SPFN) to detect
primitives at different scales. Sharma et al. [55] proposed
the ParSeNet to decompose 3D point clouds into basic
geometric primitives and B-spline patches. However, these
methods cannot detect and fit a blending surface, which is
the focus of our method.

Surface fitting. Surface fitting for 3D models has been
an active area of reverse engineering and structure recon-
struction. There are also many approaches that directly
perform the primitive type recognition and primitive fitting
of cloud point data [56], [57], [58], [59], [60], [61], which
are out of the scope of this paper. We shall focus on the
extraction of quadric surfaces from triangular meshes [62].
Chen and Liu [63] presented a surface extraction method
based on the genetic algorithm, which can extract all types
of quadric surfaces with a single surface representation. Kós
et al. [20] recovered constant radius rolling-ball blends from
a triangular mesh, but they assumed that the input has been
preprocessed and segmented, making this problem much
easier than that we want to solve. Ahn et al. [64] presented
an algorithm that fits implicit surfaces and plane curves by
minimizing the square sum of the orthogonal error distances
between the model feature and the given data points. Kanai
et al. [65] described an efficient method for the hierarchical
approximation of implicit surfaces from polygonal meshes

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

using an error function. Lafarge et al. [11] proposed an origi-
nal hybrid modeling process of urban scenes that represents
3D models as a combination of mesh-based surfaces and
geometric 3D primitives, later this method is extended to
be hierarchical in [2]. Li et al. [5] considered the problem
of approximating an arbitrary generic surface with a given
set of simple surface primitives. Wang et al. [3] presented
a reconstruction method that has potential applications to
a spectrum of engineering problems with impacts on rapid
design and prototyping, shape analysis, and virtual reality.
Based on primitive fitting, Du et al. [4] presented a pipeline
that generates constructive solid geometry (CSG) trees from
noisy input mesh models.

3 OVERVIEW

In this work, we propose segmenting and reconstructing 3D
manufactured models via an MRF framework. The input to
our algorithm is a two-manifold boundary mesh with trian-
gular faces, M = (V,E, F), where V = {vi|i = 1, ..., n},
E and F are the sets of vertices, edges and triangular
faces, respectively. We aim to segment the input mesh into a
collection of patches, {Pi}ni=1, and find the surface that best
fits each patch, especially focusing on the type of rolling-ball
blending surface.

As shown in Fig. 3, our algorithm consists of three main
stages. First, to improve the robustness of the segmentation,
we introduce a new clustering algorithm to build mesh
superfacets, which decrease the number of elements to be
labeled from hundreds of thousands or even more to just a
few hundred/thousand. The algorithm also eliminates the
effects of noises, which usually lead to some undesirable
segmentation results in previous approaches. Next, we ap-
ply a specially designed MRF segmentation method, which
includes an energy function that consists of probability
analysis based on a data term and continuity analysis based
on a smooth term, to the mesh superfacets. Each superfacet,
including the rolling-ball blending surface, is assigned a
label that corresponds to its surface type by optimizing this
energy function. Finally, we use an existing method [34]
to fit the usual quadric surfaces, such as planes, spheres
and cylinders. However, it is still challenging to recover
the geometric parameters of rolling-ball blending surfaces.
Therefore, we propose a new method that uses a mesh
contraction method [66] to estimate the initial trajectory and
initial radius of the rolling ball. Then, we iteratively update
the trajectory and the rolling ball’s radius by introducing a
trajectory estimation equation.

4 METHODOLOGY

4.1 Mesh Superfacets
The 3D meshes reconstructed from scanned or multi-view
stereo recovered point clouds always incorporate undesir-
able small-scale oscillation. The presence of such oscillation
severely degrades the local properties of the mesh, thus
having a negative effect on the mesh segmentation and
reconstruction accuracy. To overcome this problem, we in-
tegrate the concept of mesh superfacets in the segmentation
process to avoid the disturbance of noises contained in
the input model. In addition, the elements that should be

(a) (b)

(c) (d)

dfdf

Fig. 4. Illustration of building mesh superfacets: (a) the initial MRF
partitioning result of the input mesh; (b) the zoom-in view of (a); (c) the
mesh superfacets; (d) the zoom-in view of the same regions with (b).

labeled during segmentation can decrease from hundreds
of thousands or even more to just a few hundred/thousand,
thereby greatly accelerating the remaining segmentation
processes. Inspired by image superpixels, some approaches
for building mesh superfacets, such as [67], [68], have al-
ready been presented. Unfortunately, these methods are not
suitable for our problem because they usually generate blur
and imprecise clusters on the boundaries between quadric
surfaces and rolling-ball blending surfaces.

In this work, we adopt a framework similar to that
in [67], but we make important modifications to the key
components to make the framework more appropriate for
our problem. We formulate the mesh superfacet construc-
tion as shortest path clustering that operates on the face
graph of the mesh. Here, the face graph takes the triangular
faces as nodes and adds an edge between two nodes if they
are adjacent (i.e., they share a common mesh edge) in the
input mesh. As is standard with k-means style algorithms,
our approach involves the following steps.

4.1.1 Initialization

Instead of directly sampling random seeds as initial cluster
centers [67], we first use an MRF formulation to roughly
partition the input mesh into three kinds of regions with
labels L = {1, 2, 3}, as shown in Fig. 4 (top). Our motivation
is that we want to place sufficient seeds in the rolling-ball
blending regions and generate anisotropic-like clusters that
will better align with the boundaries. We denote k1 and k2 as
the maximum and minimum principal curvatures defined
on a triangle (the local curvature is computed using the
method of [69]), respectively. Then, each triangle fi can be
assigned to a surface type label by considering the curvature

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

distributions:

Pr
(
li | k(i)1 , k

(i)
2

)

=

Gσ1

(
k1

(i)
)
Gσ1

(
k2

(i)
)

if li = 1

Gσ1

(
1− k1(i)

)
Gσ1

(
k2

(i)
)

if li = 2

Gσ1

(
1− k1(i)

)
Gσ1

(
1− k2(i)

)
if li = 3

(1)

where Pr expresses the probability of each label at the tri-
angle, and Gσ1

(k) = exp(−k2/2σ12) is the non-normalized
centered Gaussian distributions with a standard deviation
σ1. The regions with a label of 1 do not bend too much
in both principal directions. Thus, they are more likely to
be quadric surfaces. The regions with a label of 2 bend a
considerable amount only in one principal direction and are
usually considered the rolling-ball blending surfaces. The
last type of regions bend a lot in both directions and are con-
sidered irregular elements with local noises or small-scale
oscillation. The labeling process is performed by minimizing
the following multilabel energy function:

U (l) =
∑
i∈F

Di (li) + β1
∑
{i,j}∈E

Vij (li, lj) , (2)

where Di (li) is the consistency term, which measures the
coherence of the label li at the triangle fi:

Di (li) = 1− Pr
(
li | k(i)1 , k

(i)
2

)
. (3)

Vij (li, lj) is the topological smoothness constraints bal-
anced by a parameter β1, and we will describe this term
in detail in Subsection 4.2.2.

Finally, to obtain the initial superfacets, we use the
iterative farthest point optimization strategy [67], [70] to
generate random seeds among these three kinds of regions.
Specifically, for each triangle in the input mesh, we define
the shortest geodesic distance from it to its nearest seed
and assign the corresponding seed label to it. Initially, the
distance and label are set to +∞ and ’undefined’, respec-
tively, because no seed is generated thus far. We first select a
random triangle as a seed in each region. Then, for each tri-
angle in the rs-radius neighborhood of each seed, we update
its shortest geodesic distance and the corresponding label.
Next, from the remaining triangles with the largest geodesic
distance in each region, we select a random triangle as the
new seed and update the information of the triangles in
its rs-radius neighborhood. This step continues until the
necessary number of seed points is generated.

4.1.2 Iterative clustering

Next, we alternately repeat the following two steps: up-
date the superfacets’ centers and reclassify triangles. In the
former, we compute a new center for each superfacet by
computing the Euclidean area-weighted mean of all triangle
centroids that belong to that superfacet. In the classification
step, we adopt Dijkstra’s algorithm to compute the shortest
path distance along the face graph of the mesh by taking
each superfacet’s center as a source. Then, the cluster ID
of each triangle is updated according to its nearest super-
facet’s center. To compute the edge weight among adjacent
triangles, the original paper [67] combines the approximate

geodesic and angular terms using a weighted sum. In our
approach, we define a new face graph weight as:

w(fi, fj) =
geo(fi, fj) + α · ang(fi, fj)

d
+ ε1(fi, fj), (4)

where geo(fi, fj) is the geodesic distance between any two
triangles, ang(fi, fj) measures the angular weight, α is a
balance parameter (α = 100 in our all experiments), and d is
the bounding box diagonal of the input mesh. More detailed
explanations of these two items can be found in [67]. How-
ever, if we only use these two items, then the classification
is unstable (the triangle labels flip-flop) near the boundaries
between quadric surfaces and the rolling-ball blending sur-
faces, thereby resulting in the non-convergence of the clus-
tering. To solve this problem, we define a new penalty term
ε1(fi, fj) to preserve the boundaries. In particular, if two
adjacent triangles, namely, fi and fj have the same label,
then ε1 is set to a smaller value (ε1(fi, fj) = 0.2 ∗ geo(fi,fj)d
in our all experiments), otherwise it should be set as a
relatively larger value (ε1(fi, fj) = 1.2 ∗ geo(fi,fj)d).

Fig. 4 (c) shows an example of our mesh superfacets,
where adjacent triangles with the same color are grouped
into one superfacet. Given the high similarity in the geo-
metric properties of the triangles that belong to the same
superfacet, each superfacet can be used as an individual
elementary unit in the next segmentation step. In addition,
the biggest advantage of our approach is that the boundaries
we achieved accurately separate the regions that belong to
quadric surfaces or rolling-ball blending surfaces, which is
still an unsolved issue in other superfacet algorithms. Fig. 4
(d) demonstrates that our approach yields a good partition
between rolling-ball blending patches and quadric surface
patches in the black box while keeping the boundaries of
adjacent superfacets clean.

4.2 Mesh Segmentation
After building mesh superfacets, we define a new face graph
G = {C,E′}whose nodesC are the collection of superfacets
and edges E

′
represent the adjacent-relationships between

the nodes. We consider two superfacets to be adjacent if
they share at least one triangle edge. In this section, we aim
to segment the original meshM into meaningful patches to
conform to geometric shape constraints by performing MRF
labeling on the new face graph G.

4.2.1 Geometric properties of superfacets
To adopt the MRF framework, we first assign the geometric
properties based on curvature analysis to each superfacet. It
should be noted that a superfacet may contain triangles with
different labels that indicate their surface types, as described
in Sec. 4.1.1. To disambiguate the noisy local cues, we
collect triangles (denoted as a set T) that belong to the class
with the maximum number of triangles. Then, we denote
the geometric properties of this superfacet as the mean of
the geometric properties of these triangles. Specifically, we
compute the average maximum and minimum principal
curvatures K1 and K2, respectively, and their associated
average direction vectors W 1 and W 2, respectively. In
addition, we also compute K3, which is the variance of k1
over all triangles in T ; and K4 = K1 −K2, which measures

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

the difference of two principal curvatures among the same
superfacet.

4.2.2 MRF refined segmentation on superfacets
As mentioned above, we have partitioned the mesh into
three kinds of regions: quadric, rolling-ball blending, and
irregular patches. To further identify the specific type of
quadric surfaces for each superfacet, the curvature property
is used to label each superfacet according to the four types
of shapes that are common in most mechanical objects and
urban landscapes. First, a developable surface (K1K2 = 0)
can be easily distinguished from a non-developable sur-
face (K1K2 6= 0) according to the Gaussian curvature.
Among the developable surfaces, a plane is identified if
K1 = K2 = 0 but differs from a cylinders and cones. To
distinguish a cylinder from a cone, we need to examine
the extent of the changes of K1 in a local neighborhood.
If the extent is small, then this superfacet should be part of
a cylinder; otherwise, it should be a part of a cone. For a
non-developable surface, we consider two cases: a sphere
(K1 = K2 > 0) and other quadric surfaces (e.g., two-radius-
alike paraboloid or hyperboloid).

Now we define the label set L
′
= {1, 2, 3, 4, 5}, in which

the elements correspond to planes, spheres, cylinders, other
quadric surfaces, and cones, respectively. The probability of
a superfacet ci is assigned a label li can be expressed as a
combination of the curvature distributions:

Pr
(
li | K(i)

1 ,K
(i)
3 ,K

(i)
4

)
=

Gσ
(
K1

(i)
)
Gσ
(
K3

(i)
)
Gσ
(
K4

(i)
)

if li = 1

Gσ
(
1−K1

(i)
)
Gσ
(
K3

(i)
)
Gσ
(
K4

(i)
)

if li = 2

Gσ
(
1−K1

(i)
)
Gσ
(
K3

(i)
)
Gσ
(
1−K4

(i)
)

if li = 3

Gσ
(
1−K1

(i)
)
Gσ
(
1−K3

(i)
)
Gσ
(
K4

(i)
)

if li = 4

Gσ
(
1−K1

(i)
)
Gσ
(
1−K3

(i)
)
Gσ
(
1−K4

(i)
)

if li = 5

(5)

Again, we formulate the MRF labeling as the following
energy function to predict the most probable label:

U
′
(l) =

∑
i∈C

D
′

i (li) + β
∑

{i,j}∈E′

V
′

ij (li, lj) , (6)

where the complete consistency term Di (li) is defined as:

D
′

i (li) = 1− Pr
(
li | K(i)

1 ,K
(i)
3 ,K

(i)
4

)
. (7)

Here, our consistency term is considered complete because
the probability space of the five labels is complete, that is,∑5
i=1 Pr(li) = 1. This is also the reason why we introduce

the category of other quadric surfaces, which are unusual in
mechanical objects.

To prevent the sudden change in the label in a small
area that may cause noisy patches to the greatest extent, a
topological smoothness constraint V

′

ij (li, lj) is proposed as:

V
′

ij (li, lj) =

{
1, if {li 6= lj}

min
(
1, ξ ‖W i −W j‖2

)
, otherwise

(8)
For each W , it is given by:

W =

(
K1 ·W1

K2 ·W2

)
, (9)

(a)

(f)(e)(d)

(c)(b)

Fig. 5. Segmentation examples by our labeling approach. For each
model we show its respective partitioning (please refer to Fig. 3 for the
interpretation of the color).

where ξ > 0 is a parameter proportional to the average edge
length of the meshM. By designing V

′

ij (li, lj), we provide
each pair of adjacent elements that correspond constraints
according to two different label cases (li 6= lj or li = lj). To
make the labels in a local area as similar as possible, we need
to give a stronger penalty when li 6= lj . In another case, for
adjacent elements that are judged to have li = lj by the con-
sistency term, if their geometry properties (e.g., combination
of K1, K2, W 1 and W 2) differ greatly, we also penalize
them. Therefore, this constraint will preserve the evident
boundaries among different patches. Fig. 5 shows our final
labeling results after energy minimization. Benefitting from
the superfacets and topological smoothness constraints in
our MRF formulation, we can eliminate the noisy patches
that would often occur if we directly apply MRF labeling to
the input mesh. Furthermore, given that we have an initial
segmentation in Sec. 4.1, a strong smoothness concern is not
needed in the current step, so the balanced parameter β can
be set to a small value (0.8 by default) that could preserve
more details.

It should be noted that after the aforementioned segmen-
tation, different patch instances with the same label (i.e., they
belong to the same surface type) may be connected. For
example, the cylinder patches encoded by the lawngreen
color in Fig. 3 (c) should be separated into different cylinder
instances, as shown in Fig. 3 (e). In our approach, we use
the connectivity information, dihedral angles and curvature
difference between the superfacets to separate different
quadric patch instances. Finally, due to mesh discretization,
patch boundaries are usually not smooth (jagged edges are
observed on boundaries). As a postprocessing step, we use
a boundary curve smoothing method presented by [71] to
smooth the boundaries.

4.3 Geometric Surface Fitting
To conduct surface structure recovery, we provide a corre-
sponding geometric primitive for each segmented patch. For
the quadric surface type, each patch will be compared with a
set of 3D primitives composed of planes, spheres, cylinders
and cones. To detect such shapes, we apply the fitting

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a)(a) (b) (c)

(d) (e) (f)

Fig. 6. Surface fitting: (a) our segmentation result with the rolling-ball
blending patches colored in pink; (b) examples of quadric surfaces
fitting; (c) the segmented rolling-ball blending patches; (d) the curve
skeleton extracted by [66]; (e) recovered rolling center trajectories with
accurate ball radii; (f) the fitted rolling-ball blending surfaces are overlaid
on the input model.

algorithm introduced by [34], which proposes a general
variational mesh segmentation framework by fitting quadric
surfaces. In Fig. 6 (b), we could recover the quadric surface
structures precisely. Unfortunately, this variational method
can not obtain good performance on rolling-ball blending
patches. In this section, we present a new method based
on skeleton extraction to fit rolling-ball blending patches by
rebuilding the rolling center trajectories and recovering the
ball radius.

4.3.1 Rolling-ball blending surface fitting

We denote a rolling-ball blending patch as P = (c(t), r),
where c(t) is the trajectory of the rolling ball’s center and r
is the ball’s radius. However, fitting a rolling-ball blending
patch is quite complicated; and to the best of our knowl-
edge, no closed-form solution is available. To fit such a
blending patch, we present an iterative optimization algo-
rithm that consists of three steps: 1) trajectory initialization,
2) update the ball radius, and 3) update the trajectory. Here,
steps 2) and 3) are alternately repeated until convergence is
achieved.
Trajectory initialization. Obtaining a good initial position
for trajectory would accelerate the overall fitting process. In
3D shape analysis, a skeleton is a thin centered structure
that provides a compact and intuitive abstraction to capture
the topology and the geometry of a shape. Inspired by
this observation, we take the 3D skeleton as our initial
trajectory. For stability purposes, we use the mesh contrac-
tion method [66] to extract the curve skeletons from the
triangles of the patch. The curve skeleton is represented as
c(t) = (U ,B) with skeleton nodes U and skeleton edges B.
We separate the trajectory c(t) into different sub-trajectories
{cj(t)} by checking the deviation of the angle between each
pair of connected edges in B because a big change is usually
found on the trajectory when the ball radius changes. Next,
by finding the nearest skeleton edge for each triangle of the
patch P , we also partition the rolling-ball blending patch
into a set of sub-patches {Pj}.

Update the ball radius. After building the correspondence
between cj(t) and Pj , we compute the Euclidean distance
(denoted as triangle-trajectory distance) between each trian-
gle of Pj and the related edge in cj(t). We set the radius rj
of the ball that rolls over cj(t) to the mean of these distances.
Then, we check if this new ball radius is different from
the previous one. If no radius is changed, then the fitting
process terminates; otherwise, we will continue to update
the trajectories.
Update the trajectory. For each trajectory cj(t), we optimize
the position of its nodes to make each triangle-trajectory
distance of Pj as close as possible to the ball radius obtained
in the aforementioned step. To control the smoothness of the
trajectory, our energy function is formulated using a data
term and a smoothness constraint:

Ej =

mj−2∑
i=0

nj−1∑
k=0

∣∣∣∣√Aik2 +Bik
2 + Cik

2 − rj
∣∣∣∣

+ β2

mj−2∑
i=1

√
Di

2 + Ei
2 + Fi

2,

(10)

where mj is the number of nodes in cj(t), nj is the number
of triangles in Pj and β2 is a balance parameter (β2 = 0.4
in default). In this function, the first term calculates the
sum of the errors between the triangle-trajectory distances
and current ball radius rj , whereas the second smoothness
constraint calculates the sum of the distances from each
node in Uj to the midpoint of the line between its preceding
and successive nodes. The explanation for other variables is
described as follows:

Aik = ak − pi
pi(ak − xi) + qi(bk − yi) + wi(ck − zi)

p2i + q2i + w2
i

− xi,

Bik = bk − qi
pi(ak − xi) + qi(bk − yi) + wi(ck − zi)

p2i + q2i + w2
i

− yi,

Cik = ck − wi
pi(ak − xi) + qi(bk − yi) + wi(ck − zi)

p2i + q2i + w2
i

− zi,

Di = xi − (xi+1 + xi−1)/2,

Ei = yi − (yi+1 + yi−1)/2,

Fi = zi − (zi+1 + zi−1)/2,

pi = xi+1 − xi,
qi = yi+1 − yi,
wi = zi+1 − zi,

(11)

where (xi, yi, zi) is the coordinate of a node in cj(t),
(ak, bk, ck) is the coordinate of a triangle centroid in Pj .
Once the energy is below a pre-defined threshold, cj(t) is
updated.

Finally, we fit a B-spline curve to the nodes in cj(t) to
obtain a smoother trajectory and set the final radius of the
blend patch to the last ball radius rj . Here, we use the
nodes in the sub-trajectory as control points and obtain a
cubic B-spline curve through interpolation. Figs. 6 (c) to (f)
show an example of fitting rolling-ball blending patches that
comprise four rolling trajectories. Note we cannot guarantee
that the mesh contraction [66] could provide a good starting
point, as well as the iterative optimization steps could
converge. However, since each rolling-ball blending patch

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

is on the same side of the ball’s rolling direction and it has a
roughly constant width with a similar bending degree, the
mesh contraction can easily extract the skeleton that sits off
the patch close to the center of the rolling ball. Therefore,
it is effective to use the mesh contraction to provide the
trajectory initialization. In practice, our proposed approach
works well for all of the examples shown in the experiments.

5 EXPERIMENTAL RESULTS

Our approach was tested on a number of 3D mesh models
with different complexities, including CAD components and
architectural models. Some of the models were downloaded
from the Shape Repository of Digital Shape Workbench 1

and the Thingi10K dataset [72]. We evaluated our algorithm
qualitatively and quantitatively through visually inspecting
our results and conducted a complete comparison with
state-of-the-art approaches. We also show an application
where our method was used for mesh blending by fitting
the rolling-ball blending surfaces. Our algorithm is imple-
mented in C++ and relies on the CGAL Library [73] to
compute the geometric attributes. All results presented in
this study are obtained on a desktop computer equipped
with an Intel i7-7700k processor clocked at 4.2GHz Ghz and
16 GB of RAM.

5.1 Evaluation
To demonstrate the effectiveness of the proposed approach,
we first conducted experiments on several technical CAD
models. Fig. 7 shows the segmentation results, where the
zoom-in views indicate the detailed parts we are most
interested in. For all of the five CAD mesh models, our
method can segment the quadric surface patches accurately,
whereas the rolling-ball blending patches are partitioned
into new classes. In addition, undesirable noises or small-
scale oscillations are avoided in the results, and the geomet-
ric details of the surface structure could be preserved.
Ablation study. Next, we perform an ablation study to
evaluate the effects of the number of superfacets on seg-
mentation results. Let N be the number of triangles of the
input mesh, the number of superfacets is approximately
set to s ≈ N

λ , where λ is called down-sampling scale.
Fig. 8 compares the segmentation results by using different
down-sampling scale values in building mesh superfacets.
In Fig. 8 (a) we directly perform segmentation on the input
mesh without superfacets. We see that the segmentation
is fuzzy, and many fragmentary patches exist because the
presence of geometric noises degrades the local attributes
of the triangles, thereby causing difficulty in recovering
the correct label. Figs. 8 (c) to (e) illustrate the segmen-
tation results where λ is set to 50, 100, 150, respectively.
As the number of superfacets increases, more details are
identified correctly because more elements represent the mi-
crostructure. However, the computation time needed in this
clustering step also increases. Moreover, the segmentation
accuracy is not always positively correlated to the number
of mesh superfacets. In Fig. 8 (b), when we use a smaller
down-sampling scale (λ = 20), the segmentation has a
worse boundary adherence than Fig. 8 (c). According to our

1. http://visionair.ge.imati.cnr.it/ontologies/shapes/

(a)

(b)

(e)

(d)

(c)

Fig. 7. A gallery of examples generated by our framework. For each
model, we show the input CAD geometry, segmentation result, and
zoom-in views.

extensive experiments, we recommend λ = 100 as an ap-
propriate value for achieving a good trade-off between the
segmentation accuracy, detail recovery, and computational
cost. All examples presented in this paper are obtained with
λ = 100.

We also compared our superfacet construction method
with the CVT-driven approach [41]. In Fig. 9, we generated
different numbers of CVT superfacets and fed them into our
geometric surface segmentation stage. It can be seen that
as the number of CVT clusters increases, more details are
provided in the segmentation results. However, because the
shape and size of CVT superfacets are very uniform, the
boundary of each cluster cannot match the boundary of the
blending surface. This leads to the serious destruction of the
boundary of the blending surface in the segmentation.

Evaluation on noisy models. We further evaluated our
method by using two noisy models. The segmentation re-
sults are shown in Fig. 10, in which we randomly added
Gaussian noise to mesh vertices with a standard deviation
of 0.03%, 0.06%, and 0.1% (see Fig. 10 (a), (b) and (c))
of the length of the bounding box diagonal. Compared to
the approach without using superfacets, we have good ro-
bustness to noise since some small bumps and depressions
are eliminated after constructing the superfacets. It should
be noted that overcoming the noise influences the global
constraints; thus, the patch boundaries may be insufficiently
segmented.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(a) (e)(d)(c)(b)

Fig. 8. Comparison of the segmentation results (bottom) by using different settings of the down-sampling scale (λ) when building mesh superfacets
(top). From left to right: segmentation without superfacets which generates 678 patches (a), segmentation using λ = 20 which generates 135
patches (b), λ = 50 which generates 121 patches (c), λ = 100 which generates 116 patches (d), λ = 150 which generates 96 patches (e).

(a) (b) (c)

Fig. 9. Segmentation results (bottom) by using different settings of the
down-sampling scale (λ) when computing the number of CVT seed
points (top). From left to right: λ = 150 (a), λ = 100 (b), λ = 50 (c).

5.2 Comparisons

We now compare our approach with three representative
quadric-fitting-based segmentation methods: a variational
shape approximation (VSA) approach [1], a quadric surface
extraction (QSE) approach [34], and an MRF-based hybrid
model (Hybrid) [2].

Fig. 11 shows a complete visual comparison of exper-
iments on five models, including two CAD mechanical
components, a furniture model, and two buildings. We
also display the detailed comparison by using zoom-in
views. The VSA approach [1] utilizes the Lloyd algorithm
to segment the model by minimizing a total approximation
error iteratively. However, considering that VSA only fits
planar proxies, it’s structure recovery capability is limited,
thereby resulting in unfavorable results on the curved sur-
face regions(11). Evidently, VSA also cannot partition the
blending regions. As an extension of VSA, QSE [34] employs
general quadric surface fitting for segmenting the models. It
can partition quadric regions correctly by approximating all
kinds of primitives (e.g., plane, sphere, cylinder, cone, etc.).
However, the segmentation quality is heavily dependent on
the seeds’ initialization, and the results are not satisfactory
as the number of proxies declines. In addition, it cannot seg-
ment rolling-ball patches. Even worse, when encountering
a model with blending regions, the error accumulation also
affects the segmentation accuracy of other quadric patches.

(a)

(b)

(c)

Fig. 10. Comparison of segmentation results on two noisy models (left)
without using (middle) and using (right) superfacets. The noisy level in
each model is 0.03% (a), 0.06% (b), and 0.1% (c), respectively.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

VSA OursHybridQSE

(a)

(b)

(c)

(d)

(e)

Fig. 11. Comparison with previous methods on different models. From left to right are results of VSA [1], QSE [34], Hybrid [2], and our approach.
We also provide their zoom-in views.

The Hybrid approach [2] proposes a hierarchical framework
in which the framework first performs a pre-segmentation
on each layer using the MRF energy function. Then a ten-
tative surface fitting is performed based on the previous
segmentations. The result of each pre-segmentation can
guide the sequence of the subsequent surface fitting directly.
Fig. 11 shows that the pre-segmentation using MRF enables
the algorithm to segment non-developable patches, but due
to the lack of special consideration, it still cannot segment
all of the blending regions accurately. In addition, some
over/under-fitting phenomena occur for the segmentation
of the quadric regions because of the limitation of initial-
ization and error thresholding in the fitting process. As a
comparison, we could obtain a cleaner and more accurate
partition of the model, especially focusing on the extraction
of the blending regions, by building the mesh superfacets
and designing the segmentation process carefully. Although
Wu and Kobbelt [10] introduced a heuristic approach to
segment and fit rolling-ball blending patches, this approach
is non-trivial and often requires user intervention to obtain
the optimal result. In addition, finding the blend regions
is difficult for complex models and the blend patch fit-
ting procedure is also quite slow. In Fig. 12, we visually
compare our approach with [10] on the rocker arm model.
Reference [10] approximated the model with 30 surface
proxies, whereas our segmentation automatically divides it
into 37 surface proxies. Our method extracts the rolling-ball
blending surfaces more accurately, as well as retain more
details for the segmentation of other quadric surfaces.

We also report numerical statistics about the fitting er-
ror and running time for each method in Table 1. It is

TABLE 1
Numeric statistics comparison of different methods. | f | is the number

of triangles in each model, ”Blend” indicates the ability to segment
rolling-ball blending regions, | P | is the number of segmented patches,
and |E| is the hybrid distance between the fitting surfaces and the input

mesh, and T is the running time, respectively .

Model |f | Alg. Blend |P | |E| T

Fig. 11 (a) 241K

VSA No 86 0.2923 8.609
QSE No 82 0.2068 23.860
Hybrid No 133 0.1945 18.032
Ours Yes 116 0.1164 15.845

Fig. 11 (b) 100K

VSA No 44 0.1879 15.709
QSE No 35 0.1493 44.876
Hybrid No 59 0.2670 37.633
Ours Yes 37 0.1169 29.518

Fig. 11 (c) 159K

VSA No 42 0.2107 15.213
QSE No 42 0.1695 43.344
Hybrid No 112 0.1563 36.673
Our Yes 91 0.0834 22.795

Fig. 11 (d) 393K

VSA No 126 0.4777 18.735
QSE No 133 0.2939 46.998
Hybrid No 399 0.2407 40.441
Ours Yes 473 0.1701 33.113

Fig. 11 (e) 388K

VSA No 110 0.3072 15.394
QSE No 104 0.3178 43.681
Hybrid No 671 0.3083 37.235
Ours Yes 848 0.2250 28.921

worth mentioning that we extended the definition of hybrid
distance presented by [34], and introduced the calculation
of the distance between the rolling-ball blending surfaces
and the input mesh. The quantitative results show that our
segmentation results are significantly improved in terms
of accuracy compared with other methods. The computa-

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

Fig. 12. Segmentation of Wu and Kobbelt [10] (left) and ours (right).

tion time of our method is faster than QSE and Hybrid
but slower than VSA. However, the VSA segmentation
has the worst segmentation and approximation capabilities.
Therefore, our approach is the best in terms of the overall
segmentation quality and computational cost. At the same
time, because specifying the number of seed points in the
fitting procedure is not needed, more accurate results are
obtained in terms of the patch number.

Finally, we compare with four latest learning-based
segmentation methods: DGCNN [52], MeshCNN [53],
SPFN [54], and ParSeNet [55]. Among them, MeshCNN
operates directly on triangular mesh edges, while other
methods adopt point clouds as input. As suggested in their
papers, we used the processed ANSI 3D dataset [54] to
retrain SPFN and used the ABC dataset [74] to retrain
DGCNN and ParSeNet. Besides, due to the introduction
of labeling errors on patch boundary edges at the training
dataset construction stage, we used the pre-trained model
of MeshCNN to segment our models instead of re-training
MeshCNN using the ABC dataset. Finally, since the output
labels of these methods are corresponding to point clouds or
mesh edges, we mapped their segmentation results back to
the input mesh. As shown in Fig. 13 (a), the comparison
result indicates that these methods cannot get effective
segmentation results even for simple data, especially in
the blending areas. The reason might be the lacking of
a sufficient number of rolling-ball blending surfaces with
appropriate labels in the training data. Additionally, these
networks’ ability to classify points is greatly affected by
the complex model containing multiple patches, and their
segmentation results are not as good as ours, as shown in
Fig. 13 (b) and (c). Compared with these approaches, our
method not only obtains more satisfactory segmentation
results but also obtains accurate blending surface patches.

5.3 Applications
Based on our segmentation and fitting method for the
rolling-ball blending patches, we propose an application to
control the blending result by specifying different blend-
ing radii. In particular, for a rolling-ball blending surface
P = (c(t), r), we assign a user-specified r

′
to the ball rolling

on the trajectory c(t) = (U ,B) by optimizing the position
of nodes in U while maintaining the tangency between the
ball and its two adjacent quadric surfaces. Thus we could
obtain a new rolling-ball blending surface P

′
= (c

′
(t), r

′
).

To optimize the position of the nodes in U , we apply an
iterative optimization method where the energy function is
given by:

E
′

blending =
m∑
i=0

(
∣∣∣d(ui, S1)− r

′
∣∣∣+ ∣∣∣d(ui, S2)− r

′
∣∣∣), (12)

(a) (b) (c)

ParSeNET

Ours

DGCNN

SPFN

MeshCNN

Fig. 13. Comparison with deep learning methods on different mod-
els. From top to bottom are results of DGCNN [52], MeshCNN [53],
SPFN [54], ParSeNet [55] and our approach.

where m is the number of nodes ui in U , and S1 and S2

are two quadric surfaces that are connected by the rolling-
ball blending surface. We take P = (c(t), r) as the initial
position of the new trajectory P

′
. For all node ui on P , we

calculate the sum of the shortest distance di to their two
adjacent surfaces S1 and S2. Our energy function E

′

blending

accumulates all the errors between each di and the radius
r
′
. By minimizing the energy E

′

blending , the ball is always
tangent to S1 and S2 on the new nodes U

′
.

To illustrate the optimization process remarkably, we
provide three simple representative examples in Fig. 14,
where the 2D cross-sectional views are presented. In Fig. 14
(a), the rolling-ball blending surface connects an approxi-
mate plane S1 and an approximate S2 curved surface (e.g.,
cylinder, cone, or sphere). If we make the ball radius larger
which means r = R1, r

′
= R2, then di =

∑m
i=0(2R

i
1 + Ri3).

Fig. 14 (b) shows the rolling-ball blending patches that
connect two approximate planes. Similarly, if we increase
the ball radius, then di =

∑m
i=0(2R

i
1). Finally, in Fig. 14

(c), S1 and S2 are two approximate curved surfaces, and
we compute dij =

∑m
i=0(2R

i
1 + Ri3 + Ri4) to obtain a larger

radius. For all these three cases, as the energy gradually
decreases, the center of the ball moves along the red line

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) (c)(b)

r
r

r

Fig. 14. 2D illustrations for changing the blending radii from B1 to B2:
(a) S1 is an approximate plane and S2 is an approximate curved surface
(cylinder/cone/sphere); (b) S1 and S2 are both approximate planes; (c)
S1 and S2 are both approximate curved surfaces.

(a) (b) (c)

Fig. 15. Mesh editing by constructing smoother rolling-ball blending
surfaces. (a) the original rolling-trajectories; (b) constructing the rolling-
ball blending surfaces with two times larger blending radius, and they
are overlaid on the input mesh (c).

from O1 to O2, that is, the green circle moves toward the
blue circle. Fig. 15 shows a 3D case in which the ball radius
has been doubled. Based on the new trajectory c

′
(t), we can

flexibly add more complicated intermediate blending sur-
faces into the input model by using the approach presented
by Liu et al. [19].

To generate the final mesh model, we use the idea of [10]
to sample a point cloud from the fitting surfaces and then
generate a new mesh based on it, and we call the points
in this point cloud ”key points”. Specifically, for planes and
other general quadric surfaces, we directly project the corre-
sponding mesh vertices to them to obtain key points. For the
rolling-ball blending surface and the two primary surfaces
adjacent to it, we designed a new method to generate or
remove key points. For example, in the case that the radius
of the rolling-ball changes from large to small (Fig. 16 (a)),
we first remove the points on the original blending surface
B1 and sample along the direction in which the blend-

ing radius decreases (rt = r −
t
(
r−r

′)
10 , t = 0, 1, ..., 9, 10,

where the number of sampling steps is set to 10) to obtain
the connecting points (key points) between the rolling-ball
blending surface and the primary surfaces. Then, we sample
the specified new rolling-ball blending surface B2 to obtain
the corresponding key points. Similarly, if the radius of the
rolling-ball changes from small to large (Fig. 16 (b)), we re-
move the points on the original rolling-ball blending surface
B1, and some key points on the primary surfaces along the
direction of the blending radius increase (by searching the
neighboring points of the points connecting primary sur-

r
add

r

remove

add
remove

(a) (b)

Fig. 16. 2D illustrations for key points extraction on the rolling-ball blend-
ing area: (a) generate key points on the rolling-ball blending surface and
its adjacent primary surfaces; (b) generate key points on the rolling-ball
blending surface while removing some key points on its adjacent primary
surfaces.

faces and the potential rolling-ball blending surface). Then,
we sample the key points on the new rolling-ball blending
surface B2. Finally, we use the point cloud composed of the
key points to generate the new mesh model. Next, we com-
pare our method to an approach called Sharpen&Bend [75],
which can also modify the transition regions. In [75], an
EdgeSharpener filter recovers the sharp features by dividing
the chamfered edges and restoring a piecewise linear ap-
proximation of the sharp edges. A Bender filter is proposed
to smooth the surface and preserve the sharpness of the
features while bending their polyline approximations into
smooth curves. Fig. 17 shows the comparison result. The
Bender in [75] can make the rolling-ball blending regions
smoother, but the rolling-ball radius cannot be determined
and modified. Furthermore, to obtain the sharp edges from
blended regions (similar to the sharpening effect of our
method), the EdgeSharpener requires a preprocessing step
using the marching-intersections algorithm [76] to first re-
construct a simplified mesh. Thus, it cannot handle high-
resolution meshes. By contrast, our method can change the
rolling-ball blending surface by using a unified framework
to modify the rolling-ball radius.

In Fig. 18, we verified the effectiveness of our approach
by considering more complex models. For each model, we
show the original mesh, smoothing result, and sharpening
result, as well as the zoom-in view details. To perform the
smoothing operation, we set the blending radii in the model
(a) twice that of the original rolling-ball blending patch
and set the radius of the inner rolling-ball in the model
(b) to be reduced by 0.8 times, and set the radius of the
inner rolling-ball in the model (c) to be increased by 1.8
times. By sharpening, we perform the opposite operation to
smoothing, where the rounded features can be sharpened by
setting the new rolling-ball radius r

′
= 0. The experimental

results in Fig. 18 demonstrate our ability to control the
blending shape.

Fig. 19 shows another mesh modeling application where
we can create blending surfaces on sharp models or change
blending surfaces with varying radii. By extending the
energy function in Eq. 12, we define a new energy E

′′

blending

as:

E
′′

blending =
m∑
i=0

(
∣∣∣d(ui, S1)− r

′

ui

∣∣∣+ ∣∣∣d(ui, S2)− r
′

ui

∣∣∣), (13)

where r
′

ui
means the desired local ball radius at each node

ui in U . Take the input sharp model (the top row of Fig. 19

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

(a) (b) (c) (d) (e)

Fig. 17. Comparison to Sharpen&Bend [75]. From left to right are the input model (a), smoothing result using [75] (b), our smoothing result via
adopting 2 times (top) and 1.5 times (bottom) larger radius (c), sharpening result using [76] and [75] (d), our sharpening result (e).

(a)

(b)

(c)

Fig. 18. Mesh blending application. From left to right: original meshes,
smoothing and sharpening results.

(a)) as an example, we first extract feature curves as shown
in Fig. 19 (b) and use them as the initial trajectories for next

optimization steps. We then construct a rolling-ball blending
surface with constant radius (r

′

ui
= 0.04) as shown in Fig. 19

(c) and (d). Finally, in Fig. 19 (e) and (f), we set varying
radii for two trajectories while the other trajectories have
constant radii (r

′

ui
= 0.04). For the yellow trajectory, we

set r
′

ui
= 0.008 + i∗0.032

m in the first half of its loop and
r
′

ui
= 0.008+(0.064− i∗0.032

m) in the second half of this loop.
Similarly, we set r

′

ui
= 0.015 + i∗0.025

m and r
′

ui
= 0.015 +

(0.05− i∗0.025
m), respectively, for nodes of the gray trajectory.

5.4 Limitations
We successfully applied our method for the mesh segmenta-
tion and structure recovery of various 3D models. However,
considering that we set a constant down-sampling scale
value when building mesh superfacets, the method is not
self-adaptive to different detail richness. In the top row of
Fig. 20, we show an example of unsatisfactory segmenta-
tion where a very dense superfacet is needed on the long
and narrow feature regions. Besides, although our method
works well for extracting and fitting the usual quadric
surfaces, we cannot guarantee satisfactory segmentation re-
sults on organic models (such as human bodies or animals)
because they are usually composed of freeform shapes, as
shown in the bottom of Fig. 20.

In addition, because the time cost of building superfacets
is sensitive to the number of faces of the input mesh, our
framework cannot handle large-scale urban scenes that may
contain millions of triangle faces. Moreover, our segmenta-
tion approach only depends on low-level geometric proper-
ties, hence, it may not produce satisfying results when some
high-level or semantic structure information is needed.

6 CONCLUSION

We have presented a new framework to segment 3D models
and reveal the surface structures of the underlying shapes,

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

(a) (b) (c) (d) (e) (f)

Fig. 19. In the first and second rows, we create rolling-ball blending surfaces on sharp models. In the bottom two rows, we change blending surfaces
with varying radii. For each row, from left to right: (a) the input, (b) extracted feature curves or blending surfaces, (c) constructed constant-radius
trajectories, (d) constant-radius blending surfaces, (e) constructed varying-radii trajectories, (f) varying-radii blending surfaces.

Fig. 20. We cannot produce satisfactory segmentation results on the
long and narrow feature regions (top), as well as organic models con-
taining irregular shapes (bottom).

especially for the rolling-ball blending surfaces. Robustness
has been emphasized through the construction of mesh
superfacets. Subsequently, an efficient MRF-based labeling
strategy is applied to the superfacets. After segmentation,
an iterative optimization algorithm is proposed to fit the
rolling-ball blending patches by accurately recovering the

blending parameters. We demonstrated the advantages of
our method by conducting experiments on CAD mechanical
objects, furniture and complex building models. We also
propose an application to control the blending result by
specifying different blending radii.

In future work, we would first like to extend our algo-
rithm to handle point cloud data. Additionally, although
CNN-based deep learning approaches are currently being
widely used to solve 3D mesh or point cloud segmenta-
tion tasks, we are not aware of any approach that could
segment blending surfaces. The reason may be that these
approaches mainly segment objects or scenes semantically,
and the needed training dataset can not be collected easily.
Therefore, we are interested in collecting or generating a
large number of 3D models with ground-truth blending
surface segmentation and exploring deep neural networks
to identify other surface types of engineering objects.

ACKNOWLEDGMENTS

We thank anonymous reviewer for their valuable comments.
This work is partially funded by the National Key R&D
Program (2018YFB2100602), the National Natural Science
Foundation of China (61802406, 61772523, U2003109), Bei-
jing Natural Science Foundation (L182059), the Key Re-
search Program of Frontier Sciences CAS (QYZDY-SSW-
SYS004), the Strategic Priority Research Program of CAS

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

(XDA23090304), the Youth Innovation Promotion Associ-
ation of CAS (Y201935), Open Project Program of State
Key Laboratory of Virtual Reality Technology and Systems
Beihang University (VRLAB2019B02), the Alibaba Group
through Alibaba Innovative Research Program, and the
Fundamental Research Funds for the Central Universities.

REFERENCES

[1] D. Cohen-Steiner, P. Alliez, and M. Desbrun, “Variational shape
approximation,” ACM Trans. on Graphics, vol. 23, no. 3, pp. 905–
914, 2004.

[2] F. Lafarge, R. Keriven, and M. Bredif, “Insertion of 3-d-primitives
in mesh-based representations: Towards compact models preserv-
ing the details,” IEEE Trans. on Image Processing, vol. 19, no. 7, pp.
1683–1694, 2010.

[3] J. Wang, D. Gu, Z. Yu, C. Tan, and L. Zhou, “A framework for
3d model reconstruction in reverse engineering,” Computers &
Industrial Engineering, vol. 63, no. 4, pp. 1189–1200, 2012.

[4] T. Du, J. P. Inala, Y. Pu, A. Spielberg, A. Schulz, D. Rus, A. Solar-
Lezama, and W. Matusik, “Inversecsg: Automatic conversion of
3d models to csg trees,” ACM Trans. on Graphics (Proc. SIGGRAPH
Asia), p. 213, 2018.

[5] B. Li, R. Schnabel, S. Jin, and R. Klein, “Variational surface approx-
imation and model selection,” Comp. Graph. Forum, vol. 28, no. 7,
pp. 1985–1994, 2009.

[6] H. Fang, F. Lafarge, and M. Desbrun, “Planar shape detection at
structural scales,” in IEEE Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 2965–2973.

[7] Y. Verdie, F. Lafarge, and P. Alliez, “LOD Generation for Urban
Scenes,” ACM Trans. on Graphics, vol. 34, no. 3, 2015.

[8] G. Papaioannou, E. A. Karabassi, and T. Theoharis, “Segmentation
and surface characterization of arbitrary 3d meshes for object re-
construction and recognition,” in International Conference on Pattern
Recognition, vol. 1, 2000, pp. 734–737.

[9] G. Lavoué, F. Dupont, and A. Baskurt, “A new {CAD} mesh seg-
mentation method, based on curvature tensor analysis,” Computer-
Aided Design, vol. 37, no. 10, pp. 975 – 987, 2005.

[10] J. Wu and L. Kobbelt, “Structure recovery via hybrid variational
surface approximation,” Comp. Graph. Forum (Proc. EUROGRAPH-
ICS), vol. 24, no. 3, pp. 277–284, 2005.

[11] F. Lafarge, R. Keriven, and M. Brédif, “Combining meshes and
geometric primitives for accurate and semantic modeling,” in Proc.
BMVC, 2009, pp. 38.1–38.11.

[12] J. Liu, J. Wang, T. Fang, C.-L. Tai, and L. Quan, “Higher-order
crf structural segmentation of 3d reconstructed surfaces,” in IEEE
International Conference on Computer Vision, 2015, pp. 2093–2101.

[13] H. Fang, F. Lafarge, and M. Desbrun, “Planar Shape Detection at
Structural Scales,” in IEEE Computer Vision and Pattern Recognition
(CVPR), Salt Lake City, US, 2018.

[14] J. Rossignac and A. Requicha, “Constant-radius blending in solid
modelling,” in Proc. Computers in Mechanical Engineering, 1984, pp.
65–73.

[15] T. Várady, J. Vida, and R. R. Martin, “Parametric blending in a
boundary representation solid modeller,” in Proc. IMA Conference
on the Mathematics of Surfaces. Clarendon Press, 1988, pp. 171–197.

[16] J. Vida, R. R. Martin, and T. Varady, “A survey of blending
methods that use parametric surfaces,” Computer-Aided Design,
vol. 26, no. 5, pp. 341–365, 1994.

[17] B. K. Choi and S. Ju, “Constant-radius blending in surface mod-
elling,” Computer-Aided Design, vol. 21, no. 4, pp. 213–220, 1989.

[18] H. Ling, H. Songbo, Z. Xindong, and L. Yi, “Construction of
blending surfaces,” COMPUTER AIDED DRAFTING, DESIGN
AND MANUFCTURING, no. 1, p. 3, 2000.

[19] Y.-S. Liu, H. Zhang, J.-H. Yong, P.-Q. Yu, and J.-G. Sun, “Mesh
blending,” The Visual Computer, vol. 21, no. 11, pp. 915–927, 2005.

[20] G. Kós, R. R. Martin, and T. Várady, “Methods to recover constant
radius rolling ball blends in reverse engineering,” Comp. Aided
Geom. Design, vol. 17, no. 2, pp. 127–160, 2000.

[21] A. Shamir, “A survey on mesh segmentation techniques,” Comp.
Graph. Forum, vol. 27, no. 6, pp. 1539–1556, 2008.

[22] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3d
mesh segmentation,” ACM Trans. on Graphics, vol. 28, no. 3, pp.
73:1–73:12, 2009.

[23] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and
A. Tal, “Mesh segmentation - A comparative study,” in Shape
Modeling International – SMI, 2006, pp. 14–25.

[24] P. Theologou, I. Pratikakis, and T. Theoharis, “A comprehensive
overview of methodologies and performance evaluation frame-
works in 3d mesh segmentation,” Computer Vision and Image
Understanding, vol. 135, pp. 49–82, 2015.

[25] A. Jagannathan and E. L. Miller, “Three-dimensional surface mesh
segmentation using curvedness-based region growing approach,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 12, pp. 2195–
2204, 2007.

[26] D. Hwan Kim, I. Dong Yun, and S. Uk Lee, “Boundary-trimmed
3d triangular mesh segmentation based on iterative merging strat-
egy,” Pattern Recognition, vol. 39, no. 5, pp. 827–838, 2006.

[27] M. Attene, B. Falcidieno, and M. Spagnuolo, “Hierarchical mesh
segmentation based on fitting primitives,” The Visual Computer,
vol. 22, no. 3, pp. 181–193, 2006.

[28] H. Zhang, C. Li, L. Gao, S. Li, and G. Wang, “Shape segmentation
by hierarchical splat clustering,” Computers & Graphics, vol. 51, pp.
136–145, 2015.

[29] X. Yang and X. Jia, “Simple primitive recognition via hierarchical
face clustering,” Computational Visual Media, pp. 1–13, 2020.

[30] A. P. Mangan and R. T. Whitaker, “Partitioning 3d surface meshes
using watershed segmentation,” IEEE Trans. on Vis. and Comp.
Graphics, vol. 5, no. 4, pp. 308–321, 1999.

[31] S. Katz and A. Tal, “Hierarchical mesh decomposition using fuzzy
clustering and cuts,” ACM Trans. on Graphics, vol. 22, no. 3, pp.
954–961, 2003.

[32] Y.-K. Lai, Q.-Y. Zhou, S.-M. Hu, and R. R. Martin, “Feature sensi-
tive mesh segmentation,” in Proc. Symposium on Solid and Physical
Modeling, 2006, pp. 17–25.

[33] S. Lloyd, “Least squares quantization in pcm,” IEEE Trans. on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[34] D.-M. Yan, W. Wang, Y. Liu, and Z. Yang, “Variational mesh
segmentation via quadric surface fitting,” Computer-Aided Design,
vol. 44, no. 11, pp. 1072–1082, 2012.

[35] P. V. Sander, Z. J. Wood, S. Gortler, J. Snyder, and H. Hoppe,
“Multi-chart geometry images,” in Proc. of Symp. of Geometry
Processing, 2003, p. 146–155.

[36] P. D. Simari and K. Singh, “Extraction and remeshing of ellipsoidal
representations from mesh data,” in Proceedings of Graphics Inter-
face, 2005, pp. 161–168.

[37] D. Julius, V. Kraevoy, and A. Sheffer, “D-Charts: Quasi-
Developable Mesh Segmentation,” Comp. Graph. Forum, vol. 24,
no. 3, pp. 981–90, 2005.

[38] T. Le and Y. Duan, “A primitive-based 3d segmentation algorithm
for mechanical cad models,” Comp. Aided Geom. Design, vol. 52, pp.
231–246, 2017.

[39] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessel-
lations: Applications and algorithms,” SIAM review, vol. 41, no. 4,
pp. 637–676, 1999.

[40] Q. Du, M. Gunzburger, and L. Ju, “Advances in studies and appli-
cations of centroidal voronoi tessellations,” Numerical Mathematics:
Theory, Methods and Applications, vol. 3, no. 2, pp. 119–142, 2010.

[41] Y. Liu, W. Wang, B. Lévy, F. Sun, D.-M. Yan, L. Lu, and C. Yang,
“On centroidal voronoi tessellation—energy smoothness and fast
computation,” ACM Trans. on Graphics, vol. 28, no. 4, pp. 1–17,
2009.

[42] J. Edwards, W. Wang, and C. Bajaj, “Surface segmentation for
improved remeshing,” in Proceedings of International Meshing
Roundtable. Springer, 2013, pp. 403–418.

[43] G. Rong, Y. Liu, W. Wang, X. Yin, D. Gu, and X. Guo, “Gpu-assisted
computation of centroidal voronoi tessellation,” IEEE Trans. on Vis.
and Comp. Graphics, vol. 17, no. 3, pp. 345–356, 2010.

[44] Y. Fei, G. Rong, B. Wang, and W. Wang, “Parallel l-bfgs-b algorithm
on gpu,” Computers & Graphics, vol. 40, pp. 1–9, 2014.

[45] E. Kalogerakis, A. Hertzmann, and K. Singh, “Learning 3d mesh
segmentation and labeling,” ACM Trans. on Graphics (Proc. SIG-
GRAPH), pp. 1–12, 2010.

[46] K. Xu, V. G. Kim, Q. Huang, N. Mitra, and E. Kalogerakis, “Data-
driven shape analysis and processing,” in SIGGRAPH ASIA 2016
Courses, 2016, pp. 1–38.

[47] R. S. Rodrigues, J. F. Morgado, and A. J. Gomes, “Part-based mesh
segmentation: a survey,” Comp. Graph. Forum, vol. 37, no. 6, pp.
235–274, 2018.

JOURNAL OF TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

[48] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in IEEE
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 652–660.

[49] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep
hierarchical feature learning on point sets in a metric space,”
in Proc. International Conference on Neural Information Processing
Systems (NIPS), 2017, p. 5105–5114.

[50] F. Yu, K. Liu, Y. Zhang, C. Zhu, and K. Xu, “Partnet: A recursive
part decomposition network for fine-grained and hierarchical
shape segmentation,” in IEEE Computer Vision and Pattern Recogni-
tion (CVPR), 2019, pp. 9491–9500.

[51] S. Hu, J. Cai, and Y. Lai, “Semantic labeling and instance segmenta-
tion of 3d point clouds using patch context analysis and multiscale
processing,” IEEE Trans. on Vis. and Comp. Graphics, vol. 26, no. 7,
pp. 2485–2498, 2020.

[52] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M.
Solomon, “Dynamic graph cnn for learning on point clouds,”
ACM Trans. on Graphics, vol. 38, no. 5, pp. 1–12, 2019.

[53] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and
D. Cohen-Or, “Meshcnn: a network with an edge,” ACM Trans.
on Graphics (Proc. SIGGRAPH), vol. 38, no. 4, pp. 1–12, 2019.

[54] L. Li, M. Sung, A. Dubrovina, L. Yi, and L. J. Guibas, “Supervised
fitting of geometric primitives to 3d point clouds,” in IEEE Com-
puter Vision and Pattern Recognition (CVPR), 2019, pp. 2652–2660.

[55] G. Sharma, D. Liu, E. Kalogerakis, S. Maji, S. Chaudhuri, and
R. Měch, “Parsenet: A parametric surface fitting network for 3d
point clouds,” in European Conference on Computer Vision (ECCV),
2020, pp. 261–276.

[56] R. Schnabel, R. Wahl, and R. Klein, “Efficient ransac for point-
cloud shape detection.” Comp. Graph. Forum, vol. 26, no. 2, pp.
214–226, 2007.

[57] M. Attene and G. Patanè, “Hierarchical structure recovery of
point-sampled surfaces,” Comp. Graph. Forum, vol. 29, no. 6, pp.
1905–1920, 2010.

[58] Y. Li, X. Wu, Y. Chrysathou, A. Sharf, D. Cohen-Or, and N. J. Mi-
tra, “Globfit: Consistently fitting primitives by discovering global
relations,” ACM Trans. on Graphics, vol. 30, no. 4, pp. 52:1–52:12,
2011.

[59] T.-T. Tran, V.-T. Cao, and D. Laurendeau, “Extraction of cylinders
and estimation of their parameters from point clouds,” Computers
& Graphics, vol. 46, pp. 345–357, 2015.

[60] S. Oesau, F. Lafarge, and P. Alliez, “Planar Shape Detection and
Regularization in Tandem,” Comp. Graph. Forum, vol. 35, no. 1,
2016.

[61] L. Li, M. Sung, A. Dubrovina, L. Yi, and L. Guibas, “Supervised
fitting of geometric primitives to 3d point clouds,” arXiv preprint
arXiv:1811.08988, 2018.

[62] S. Petitjean, “A survey of methods for recovering quadrics in
triangle meshes,” ACM Computing Surveys (CSUR), vol. 34, no. 2,
pp. 211–262, 2002.

[63] Y. Chen and C. Liu, “Quadric surface extraction using genetic
algorithms,” Computer-Aided Design, vol. 31, no. 2, pp. 101–110,
1999.

[64] S. J. Ahn, W. Rauh, H. S. Cho, and H.-J. Warnecke, “Orthogonal
distance fitting of implicit curves and surfaces,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 24, no. 5, pp. 620–638, 2002.

[65] T. Kanai, Y. Ohtake, and K. Kase, “Hierarchical error-driven ap-
proximation of implicit surfaces from polygonal meshes,” in Proc.
of Symp. of Geometry Processing, vol. 256, 2006, pp. 21–30.

[66] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee,
“Skeleton extraction by mesh contraction,” ACM Trans. on Graph-
ics, vol. 27, no. 3, p. 44, 2008.

[67] P. Simari, G. Picciau, and L. De Floriani, “Fast and scalable mesh
superfacets,” Comp. Graph. Forum, vol. 33, no. 7, pp. 181–190, 2014.

[68] X. Pan, Y. Zhou, F. Li, and C. Zhang, “Superpixels of rgb-d images
for indoor scenes based on weighted geodesic driven metric,”
IEEE Trans. on Vis. and Comp. Graphics, vol. 23, no. 10, pp. 2342–
2356, 2016.

[69] F. Cazals and M. Pouget, “Estimating differential quantities using
polynomial fitting of osculating jets,” Comp. Aided Geom. Design,
vol. 22, no. 2, pp. 121–146, 2005.

[70] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi, “The farthest
point strategy for progressive image sampling,” IEEE Trans. on
Image Processing, vol. 6, no. 9, pp. 1305–1315, 1997.

[71] Y. Zhuang, H. Dou, N. Carr, and T. Ju, “Feature-aligned segmen-
tation using correlation clustering,” Computational Visual Media,
vol. 3, no. 2, pp. 147–160, 2017.

[72] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-
printing models,” arXiv preprint arXiv:1605.04797, 2016.

[73] The CGAL Project, CGAL User and Reference Manual, 4.14.1 ed.,
2019.

[74] S. Koch, A. Matveev, Z. Jiang, F. Williams, A. Artemov, E. Burnaev,
M. Alexa, D. Zorin, and D. Panozzo, “Abc: A big cad model
dataset for geometric deep learning,” in IEEE Computer Vision and
Pattern Recognition (CVPR), June 2019.

[75] M. Attene, B. Falcidieno, J. Rossignac, and M. Spagnuolo,
“Sharpen&bend: Recovering curved sharp edges in triangle
meshes produced by feature-insensitive sampling,” IEEE Trans. on
Vis. and Comp. Graphics, vol. 11, no. 2, pp. 181–192, 2005.

[76] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi, and
R. Scopigno, “Marching intersections: an efficient resampling al-
gorithm for surface management,” in Proc. International Conference
on Shape Modeling and Applications, 2001, pp. 296–305.

Long Zhang is working toward the Ph.D. degree
in the School of Artificial Intelligence at Univer-
sity of Chinese Academy of Sciences, Beijing.
He obtained his bachelor degree from South-
west University in 2014. His research interests
include computer graphics, geometry processing
and 3D reconstruction.

Jianwei Guo is an associate professor in Na-
tional Laboratory of Pattern Recognition (NLPR),
Institute of Automation, Chinese Academy of
Sciences(CASIA). He received his Ph.D. degree
in computer science from CASIA in 2016, and
bachelor degree from Shandong University in
2011. His research interests include computer
graphics, geometry processing, and 3D shape
analysis.

Jun Xiao is a professor in University of Chinese
Academy of Sciences, Beijing. He obtained his
Ph.D. degree in communication and information
system from the Graduate University of Chinese
Academy of Sciences in 2008. His research in-
terests include computer graphics, computer vi-
sion, image processing and 3D reconstruction.

Xiaopeng Zhang is a professor in National Lab-
oratory of Pattern Recognition at Institute of Au-
tomation, Chinese Academic of Sciences (CAS).
He received his Ph.D. degree in Computer Sci-
ence from Institute of Software, CAS in 1999.
He received the National Scientific and Techno-
logical Progress Prize (second class) in 2004.
His main research interests include computer
graphics and image processing.

Dong-Ming Yan is a professor in National Lab-
oratory of Pattern Recognition (NLPR), Insti-
tute of Automation, Chinese Academy of Sci-
ences(CAS). He received his Ph.D. degree in
computer science from Hong Kong University in
2010, and his master and bachelor degrees in
computer science and technology from Tsinghua
University in 2005 and 2002, respectively. His
research interests include computer graphics,
geometric processing, and visualization.

