
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. XX, 2021 1

Single-Image Specular Highlight Removal via
Real-World Dataset Construction

Zhongqi Wu, Chuanqing Zhuang, Jian Shi, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan

This supplementary material provides additional results of
our method. In Section I, we describe the detailed formula
derivation for obtaining specular-free images, and also give
more analysis of the dataset. In Section II, additional compar-
ison with representative state-of-the-art methods are presented.

I. DATASET

A. Theoretical background

The specular reflection is governed by the well-known
Fresnel equation [2] that describes the reflection and trans-
mission of light (or electromagnetic radiation in general) when
incident on an interface between different optical media. It is
assumed that the incident wave shoots from the medium with
a refractive index of n1 to the medium with a refractive index
of n2. The incident angle is θ1, the refraction angle is θ2,
the electric vector is E1, and the wave vector is k1 (see Fig.
1). The electric vector and wave vector of reflected wave and
refracted wave are denoted as E2, k2, E3 and k3, respectively.
The direction of the polarized light (vibration vector) with its
electric field along the plane of incidence is denoted as p-
polarized, while light whose electric field is normal to the
plane of incidence is called s-polarized.

Specifically, at the incident point, the relationship between
the reflected instantaneous electric vector and the incident
electric vector can be expressed by the following Fresnel
equation (regardless of refraction):

Es2

Es1
=
n1 cos θ1 − n2 cos θ2
n1 cos θ1 + n2 cos θ2

= − sin(θ1 − θ2)

sin(θ1 + θ2)
, (1)

Ep2

Ep1
=
n2 cos θ1 − n1 cos θ2
n2 cos θ1 + n1 cos θ2

=
tan(θ1 − θ2)

tan(θ1 + θ2)
. (2)

When the incident light is linearly polarized along any di-
rection, the angles between p-polarization and the polarization
direction of the incident light (see Fig. 2), reflected light and
refracted light are α1, α2 and α3, respectively. We get:

tanα1 =
Es1

Ep1
; tanα2 =

Es2

Ep2
; tanα3 =

Es3

Ep3
. (3)
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Fig. 1. Decomposition of light vector.

Fig. 2. Schematic of polarization of light.

From the law of reflection,

n1 sin θ1 = n2 sin θ2. (4)

Regardless of the total reflection, then

cos θ2 =

√
1− sin2 θ2 =

√
n22 − n21 sin θ1. (5)

Combining Eqs (3), (4) with (5) and using the Fresnel equa-
tion, we obtain:

tanα2 =
cos θ1

√
n22 − n21 sin θ1 + n1 sin

2 θ1

cos θ1
√
n22 − n21 sin θ1 − n1 sin

2 θ1
tanα1, (6)

tanα3 = [cos θ1

√
n22 − n21 sin

2 θ1 + n1 sin
2 θ1] tanα1. (7)

It can be known from the above formula that both reflected
light and refracted light are linearly polarized light, and the
azimuth of vibration changes with the incident angle θ1.
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Fig. 3. A group of specular highlight images with 12 fixed polarization angles.

Fig. 4. Histograms of light intensity in local windows of specular highlight images with 12 fixed polarization angles. (a) and (b) show the information of
yellow and red local windows marked in Fig. 3, respectively.

B. Cross polarization for imaging

The polarization directions of the specular reflection are
related to the surface of the objects. However, these specular
reflections tend to travel in different directions because of the
various surface normal of objects. Consequently, according to
the law of light reflection, when the locations of the light
source, the objects and the camera are determined, the light
emitted from the light source and reflected by the object should
meet the reflection law to reach the camera, which limits the
camera to receive only a few specular reflections (i.e., specular
highlights in the image) generated on the object surface, and
their polarization directions are basically same in this case.
In practice, when we captured the ground truth, the positions
of the light source, the objects and the camera are fixed, and

when one or more of them are adjusted, we will change the
polarization angle of the polarizer fixed in front of the camera
to remove the specular highlights and get the ground truth.
Thus, although we cannot find a fixed polarization angle for
all specular highlights, we could almost find a good angle by
rotating the polarizer for a specific specular highlight.

According to the discussion above, the highlights are lin-
early polarized and their polarization directions are basically
same. Therefore, when the angle φ between the polarization
direction of reflected light and the axis of the CPL is π/2, the
specularity of the reflected light can be removed.

In order to be closer to the actual situation, we took
photos under natural light for testing. Our network processes
images in linear space. Although natural light is not polarized
light, it can be regarded as the superposition of polarized
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TABLE I
QUANTITATIVE COMPARISON ON OUR DATASET (SEE FIG. 5). THE BEST

RESULT OF EACH MEASUREMENT IS MARKED IN BOLD FONT.

Scenes Methods MSE/1e−2↓ SSIM ↑ PSNR ↑
Ours 0.10 0.9876 28.4635

Multi-class GAN [4] 0.16 0.9728 26.3812
Spec-CGAN[3] 0.14 0.9315 26.7707

Chocolate Shen et al. 2008 [6] 0.15 0.8251 25.2515
Shen et al. 2009 [5] 0.30 0.9758 23.8261

Akashi et al. 2014 [1] 0.62 0.8009 20.7315
Yamamoto et al. 2017 [7] 15.45 0.3599 6.9627

Ours 0.03 0.9946 32.7073
Multi-class GAN [4] 0.08 0.9833 28.9527

Spec-CGAN[3] 0.08 0.9771 27.8457
Balls Shen et al. 2008 [6] 0.12 0.9032 24.8676

Shen et al. 2009 [5] 0.13 0.9797 26.9133
Akashi et al. 2014 [1] 1.51 0.8877 16.7794

Yamamoto et al. 2017 [7] 7.30 0.7531 11.3651
Ours 0.15 0.9849 26.5272

Multi-class GAN [4] 0.16 0.9801 26.1796
Spec-CGAN[3] 0.31 0.9559 22.8340

Toys Shen et al. 2008 [6] 0.55 0.8679 19.3007
Shen et al. 2009 [5] 0.40 0.9731 22.4474

Akashi et al. 2014 [1] 0.86 0.9381 22.6288
Yamamoto et al. 2017 [7] 3.28 0.8358 14.8415

Ours 0.07 0.9850 29.6032
Multi-class GAN [4] 0.23 0.9636 24.4730

Spec-CGAN[3] 0.19 0.9467 24.3184
Beans Shen et al. 2008 [6] 0.21 0.8816 21.2695

Shen et al. 2009 [5] 0.70 0.9095 20.2650
Akashi et al. 2014 [1] 0.42 0.9469 21.1798

Yamamoto et al. 2017 [7] 0.85 0.9028 19.4611
Ours 0.10 0.9730 27.9719

Multi-class GAN [4] 0.29 0.9290 22.8184
Spec-CGAN[3] 0.26 0.9104 22.9580

Fruits Shen et al. 2008 [6] 1.20 0.9032 16.6899
Shen et al. 2009 [5] 1.28 0.8121 17.2048

Akashi et al. 2014 [1] 2.14 0.6640 15.8418
Yamamoto et al. 2017 [7] 12.14 0.5488 7.8656

Ours 0.14 0.9916 30.4694
Multi-class GAN [4] 0.50 0.8550 23.5240

Spec-CGAN[3] 0.36 0.9172 25.7082
All test set Shen et al. 2008 [6] 4.01 0.7462 18.3307

Shen et al. 2009 [5] 1.07 0.8826 20.6226
Akashi et al. 2014 [1] 3.13 0.6697 15.6855

Yamamoto et al. 2017[7] 8.46 0.6264 11.8587

light. When the linearly polarized light is used as the light,
the diffuse reflection is still close to natural light due to
the random diffuse scattering process, and its intensity just
becomes weaker. According to our results on natural images
in the wild, networks trained on our data would not lead
overfitting.

C. Dataset analysis

We use different objects and backgrounds to build our
dataset. There is no overlap of objects and tablecloths be-
tween the training and test set. We also carefully control the
experimental conditions such as the number of lights, light
intensity and object size in each scene to ensure they have
similar distributions across the training and the testing set.
About fixed polarization angles. Fig. 3 shows 12 images
photographed with 12 fixed polarization angles in the same
scene. To further display the diversity of polarization angles,
we convert the original color images to grayscale images and
draw the histogram information in two local windows, as
shown in Fig. 4, where the local windows are marked with

TABLE II
QUANTITATIVE COMPARISON ON OUR DATASET (SEE FIG. 6). THE BEST

RESULT OF EACH MEASUREMENT IS MARKED IN BOLD FONT.

Scenes Methods MSE/1e−2↓ SSIM ↑ PSNR ↑
Ours 0.12 0.9759 29.3924

Multi-class GAN [4] 0.18 0.9481 27.3460
Spec-CGAN[3] 0.30 0.9155 25.2466

Box Shen et al. 2008 [6] 0.73 0.7790 21.3683
Shen et al. 2009 [5] 0.68 0.9030 21.7034

Akashi et al. 2014 [1] 2.95 0.6052 15.3081
Yamamoto et al. 2017 [7] 13.56 0.4626 8.6771

Ours 0.59 0.9454 22.3244
Multi-class GAN [4] 0.26 0.9448 25.8046

Spec-CGAN[3] 0.60 0.9450 22.1832
Toys Shen et al. 2008 [6] 0.94 0.8251 20.2715

Shen et al. 2009 [5] 0.96 0.9148 20.1699
Akashi et al. 2014 [1] 3.63 0.8030 14.4067

Yamamoto et al. 2017 [7] 7.30 0.7531 11.3651
Ours 0.04 0.9948 34.0177

Multi-class GAN [4] 0.09 0.9747 30.6834
Spec-CGAN[3] 0.21 0.9530 26.8488

Vase Shen et al. 2008 [6] 0.35 0.8816 24.5772
Shen et al. 2009 [5] 0.27 0.9698 25.7602

Akashi et al. 2014 [1] 0.84 0.9167 20.7354
Yamamoto et al. 2017 [7] 3.28 0.8358 14.8415

Ours 0.15 0.9749 28.1471
Multi-class GAN [4] 0.27 0.9502 25.6594

Spec-CGAN[3] 0.45 0.9272 23.4736
Fruits Shen et al. 2008 [6] 2.19 0.6856 16.5862

Shen et al. 2009 [5] 2.65 0.7627 15.7736
Akashi et al. 2014 [1] 2.54 0.7771 15.9580

Yamamoto et al. 2017 [7] 10.49 0.6275 9.7919
Ours 0.08 0.9935 31.2307

Multi-class GAN [4] 0.10 0.9846 29.9598
Spec-CGAN[3] 0.27 0.9627 25.7242

Flowers Shen et al. 2008 [6] 0.74 0.8685 21.3289
Shen et al. 2009 [5] 0.29 0.9794 25.3812

Akashi et al. 2014 [1] 0.63 0.9513 22.0060
Yamamoto et al. 2017 [7] 0.45 0.9610 22.7072

bounding boxes in Fig. 3. The horizontal axis is the gray value,
and the vertical axis is the corresponding distribution density
in the local window.

II. ADDITIONAL EXPERIMENTAL RESULTS

We now give more comparisons against various highlight
removal competitors, including traditional approaches (i.e.,
Shen et al. 2008 [5], Shen et al. 2009 [5], Akashi et al.
2014 [1], Yamamoto et al. 2017 [7]) and state-of-the-art
learning-based approaches (i.e., Spec-CGAN[3] and Multi-
class GAN [4]).

In Fig. 5 we provide the complete comparison on the
testing set of our dataset used in the paper. Fig. 6 shows
more examples of our testing set. Tables I and II report
the corresponding quantitative comparisons. In Fig. 7 we
show more comparisons on natural images. These experiments
further demonstrate that our approach has significantly better
performance than previous methods.
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Fig. 5. Visual comparison on the testing set of our dataset. From top to bottom, the scenes we selected are chocolate, balls, toys, beans, and fruits. (a) Input,
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Fig. 6. Visual comparison on more testing set of our dataset. From top to bottom, the scenes we selected are box, toys, vase, beans, fruits, and flowers. (a)
Input, (b) ground-truth, (c) our results, (d)-(i) are the results of Multi-class GAN [4], Spec-CGAN [3], Shen et al. 2008 [5], Shen et al. 2009 [5], Akashi et
al. 2014 [1], Yamamoto et al. 2017 [7], respectively.
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