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Single-Image Specular Highlight Removal via
Real-World Dataset Construction

Zhongqi Wu, Chuanqing Zhuang, Jian Shi, Jianwei Guo, Jun Xiao, Xiaopeng Zhang, Dong-Ming Yan

Abstract—Specular reflections pose great challenges on various
multimedia and computer vision tasks, e.g., image segmentation,
detection and matching. In this paper, we build a large-scale
Paired Specular-Diffuse (PSD) image dataset, where the images
are carefully captured by using real-world objects and the
ground-truth specular-free diffuse images are provided. To the
best of our knowledge, this is the first real-world benchmark
dataset for specular highlight removal task, which is useful for
evaluating and encouraging new deep learning-based approaches.
Given this dataset, we present a novel Generative Adversarial
Network (GAN) for specular highlight removal from a single
image by introducing the detection of specular reflection infor-
mation as a guidance. Our network also makes full use of the
attention mechanism and is able to directly model the mapping
relation between the diffuse area and the specular highlight area
without any explicit estimation of the illumination. Experimental
results demonstrate that the proposed network is more effective
to remove specular reflection components with the guidance of
specular highlight detection than recent state-of-the-art methods.

Index Terms—Specular highlight removal, PSD-Dataset, Deep
learning.

I. INTRODUCTION

SPECULAR highlight, as the reflection of the light source
on shiny surfaces when illuminated, often creates unde-

sired discontinuities in the object diffuse part and reduces
the image contrast in a local window. Therefore, removing
specular highlight in color images plays an important role
to facilitate many multimedia and computer vision tasks,
such as image segmentation [3], [52], [37], intrinsic image
decomposition [48], [7], object detection [20], illumination
estimation [65], [19], [12] and text detection [59], [40], [11],
etc.

An effective specular highlight removal technique is widely
required. Traditional model-based methods can be classified
into two categories: multiple-image and single-image ap-
proaches. A common strategy for multiple-image highlight
removal is to use the viewpoint dependence to find matching
specular and diffuse pixels from several images [25], [33],
[34]. While achieving good results, these methods are time
consuming. Single-image specular highlight removal is more
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Fig. 1. Specular highlight removal results on real-world images. (a) Input
specular highlight images, (b) removal results by our proposed method.

challenging, where some prior knowledge (e.g., the Dichro-
matic Reflection Model [44]) is often used. However, their
performances highly depend on the quality of the estimated
geometry, illumination, reflectance and material properties.
Essentially, existing traditional algorithms cannot semantically
disambiguate highlights and pure white from complex real-
world scenarios.

Recent deep-learning-based approaches [18], [32], [36] rely
heavily on training data to learn a robust model. However, so
far there is no public real-world dataset aiming for learning
based specularity removal (an artificially rendered synthetic
dataset is presented in [32]). In particular, when the training
data is insufficient, the color distortion, the highlight residual
or other problems are often present in the final results. The
lack of a large real-world dataset also hinders the development
of new specular highlight removal techniques. In this work, we
built a large-scale dataset for the first time to promote deep
specular highlight removal for real-world images. Our dataset
includes 13,380 images, which are captured on a wide variety
of scenes and materials, each with corresponding ground-
truth diffuse images. It contains many daily shiny materials,
such as plastic, organic material, leather, and wood, on which
specular highlight often appears. Based on our dataset, we
have also proposed a novel deep-learning-based specular high-
light removal method. Different from existing approaches, we
consider the highlight detection task and present an iterative
two-branch network, which can detect and remove the specular
highlight from single image at the same time. To sum up, the
contributions of this work are presented include:
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• We present a first large-scale Specular-Diffuse benchmark
dataset with real-world images for specular highlight
removal task, in which each specular highlight image is
paired with the ground-truth specular-free diffuse image.

• We propose a new two-branch neural network that cap-
tures the channel-wise global context information by
using a distribution-based channel attention module. We
also introduce the mask of the detected highlight area as
guidance to achieve state-of-the-art performance.

II. RELATED WORK

A. Model-based methods

Multiple-image approaches. A number of studies attempted
to separate reflection components by using multiple input
images. Based on the dichromatic reflection model [44], Sato
et al. [43] separated the specular and diffuse reflection com-
ponents at each pixel from a sequence of color images. They
captured multiple images under a moving light source. Lin et
al. [34] presented a method based on the neutral interface
reflection model for separating two reflection components
with two photometric images. Lee et al. [30] presented a
model for specular highlight region detection. They used
multiple color images from different viewing directions. Lin
et al. [33] presented a method based on color analysis that
simultaneously estimates the separation of specular reflections.
They speckled out pixels in the specular area as outliers and
matched the remaining diffuse portions on other views. Guo
et al. [22] proposed a method to separate these two layers
from multiple images, which exploits the correlation of the
transmitted layer across multiple images. Although multiple-
image approaches can achieve better results, this method is less
practical, because it requires multiple images and increases
algorithm complexity.
Single-image approaches. Additional priors are required to
solve the single-image specular highlight removal problem in
traditional color segmentation methods [44], [29], [6]. Shen
et al. [46] separated the specular highlight reflections in a
color image based on the error analysis of chromaticity and
the appropriate selection of body color for each pixel. Shen and
Cai [45] further extended this work to improve the robustness
of the algorithm. For natural images, specular highlight can
be effectively removed based on the dichromatic reflection
model [47], [61], [62]. Yang et al. [61], [62] proposed to
separate diffuse and specular reflection components in the
HSI color space, which is suitable for real-time applications.
Shen and Zheng [47] considered color space to analyse the
distribution of the diffuse and specular components and used
this information for separation. Tan et al. [39] presented an
interactive method by introducing specular highlight removal
as an inpainting process. Akashi and Okatani [1] presented a
modified version of sparse non-negative matrix factorization
(NMF) without spatial prior.

Besides, the illumination estimation methods can coarsely
remove highlights [9], [14], [42]. There are two approaches
for estimating illumination color, one is to analyze the surface
color based on the color constant of the a prior model [15],
[23], [27] and the other approach is to estimate illumination

color from specular reflections [24], [50]. Tan et al. [49],
[51] separated specular illumination using the concept of
inverse intensity space. Xia et al. [58] formulated specular
highlight removal problem as an energy minimization, which
can simultaneously estimate diffuse and specular highlight
images. However, these methods tend to be vulnerable to
complex chromatic aberrations. Several recent methods at-
tempt to utilize intrinsic image decomposition [48], [7], [2] to
handle specular highlight removal. Although existing specular
highlight methods have achieved remarkable progress, they
fail to produce satisfactory results for real-world images with
complex ambient light and different scene content. For more
details, please refer to the recent survey [4].

B. Deep-learning-based methods

Recently, there is an emerging interest in applying deep
learning for single image specular highlight removal such
that the handcrafted priors can be replaced by data-driven
learning [18], [32], [36], [57]. Funke et al. [18] presented a
GAN-base method for automatic specular highlight removal
from a single endoscopic image. To train this network, small
image patches with specular highlights and patches without
highlights are extracted from endoscopic videos. Lin et al. [32]
presented a novel learning approach, in the form of a fully
convolutional neural network (CNN), which automatically and
consistently removes specular highlights from a single image
by generating its diffuse component. They also rendered a
synthetic dataset to help the network generalize well. Later,
Muhammad et al. [36] presented the Spec-Net and Spec-
CGAN for removing high intensity specularity from low
chromaticity facial images. Wu et al. [57] presented a new
data-driven approach for automatic specular highlight removal
from a single image. However, these methods rely heavily on
the training data to learn a robust model. Due to the lack of a
general real dataset, the performance of these methods on real
images is far beyond satisfactory. So a challenging problem
which arises in this domain is to build a large scale real-world
dataset.

Specular highlight removal is also highly related to re-
flection removal and intrinsic image decomposition. Wan et
al. [54], [55] presented a novel deep learning based framework
to effectively remove reflection using the first captured single-
image reflection removal dataset [53]. Zhang et al. [66] created
a dataset of real-world images with reflection and correspond-
ing ground-truth transmission layers. Then, they proposed to
use a deep neural network with perceptual losses for single
image reflection separation.

C. Dataset for specularity removal and detection

Shi et al. [48] developed a new rendering-based object-
centric intrinsics dataset with specular reflection based on
ShapeNet [10]. They picked 31,072 models from several
common categories: car, chair, bus, sofa, airplane, etc. Yi et
al. [63] constructed a multi-view dataset, which consists of
228 products with 10–520 photos for each product. In total, the
dataset consists of 9,472 images. Beigpour et al. [7] created
a real dataset with precise ground-truth for intrinsic image
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research. However, the number of specular-diffuse images are
too small to support network training. Lin et al. [32] built
20,000 rendering training dataset using Blender and the Cycles
engine. In the process of making the dataset, they considered
the influence of colored lights, objects texture, white objects
and environment maps. However, they did not make their
synthetic data public accessible. Fu et al. [16] presented a
large-scale dataset for specular highlight detection of real-
world images. This dataset includes 4,310 images featuring
a wide variety of scenes and materials, each with a labeled
ground truth highlight mask. However, this dataset does not
have a corresponding diffuse image, so it cannot be used for
specular highlight removal.

Atkinson et al. [5] studied the underlying physics of polar-
ization by reflection, based on the Fresnel equations. Then
[31], [35], [67] mentioned the basic principles related to
polarized light, and used polarized and unpolarized images to
solve the problems of reflection removal or depth estimation.
Nayar et al. [38] proposed to separate reflection components
from color images by placing a polarization filter in front of
the imaging sensor. Inspired by these works, we also used the
polarizer to capture the diffuse images according to the Fresnel
equations.

III. DATASET

In this section, we first introduce the mechanism of ob-
taining the specular-free images, then describe the setup and
capturing details of our dataset.

A. Theoretical background

As the Fresnel reflection [8] indicates, when the incident
light is linearly polarized along any direction, the reflected
light and refracted light are still linearly polarized light (we
provide the detailed formula derivation in the supplemental
materials). In the real world, the common lighting source is
natural light which is a unpolarized light. Fortunately, under
controlled experimental conditions, we can convert the lighting
source into a polarized light by adding a line polarizer in front
of the source. In such case, specular reflection at a smooth
surface interface is still linearly polarized. In contrast, the
diffuse reflection tends to be more or less unpolarized due
to the random nature of the diffuse scattering process [38].

Next, we describe how to remove the linearly polarized
specular reflection. From the Malus’s law1, we know that when
a perfect polarizer is placed in a polarized beam of light, the
irradiance, Iφ of the light that passes through is given by

Iφ = I0cos
2φ, (1)

where I0 is the initial intensity and φ is the angle between
the polarization direction of reflected light and the axis of the
polarizer. Therefore, by using a polarizer in front of the camera
with a special angle (i.e., π/2 rotation) with respect to the po-
larization direction of the linearly polarized specular reflection,
the specular reflection component is entirely blocked out to
produce an image with just the diffuse reflection component.

1https://en.wikipedia.org/wiki/Polarizer

TABLE I
DETAILED STATISTICS OF OUR PSD DATASET.

Statistics Object’ classification

Image resolution 6960*4640 Fruits and vegetables 163

Total dataset 13380 Toys 71

Training set 9481 Packages 405

Testing set 2526 Flowers 44

Validation set 1373 Office supplies 48

Total scenes 2210 Daily items 56

Similarly, this effect can be achieved by fixing the Circular
Polarizing Filter (CPL) in front of the camera and rotating the
polarizing film in front of the light source, so that the angle
between the specular reflection and the polarizer in front of
the lens is π/2.

B. Paired Specular-Diffuse Image Dataset

Although some synthetic datasets are presented [48], [32],
creating a large scale real-world dataset is still missing for
the task of specularity removal. To build such a dataset, we
establish a studio with controlled lighting for photography. We
place three light sources that can adjust the color temperature
and brightness. A rotatable device with a linear polarizer
is fabricated and placed in front of each light source. In
addition, a rotating circular polarizer (CPL) is placed in front
of a Canon EOS 90D camera. By rotating the two polarizers
separately, when the angle φ between the polarization direction
of reflected light and the axis of the CPL is π/2, the specular-
free diffuse image of the object can be obtained.

We collect a total of 13,380 images captured on 2,210
different scenes. We use different objects and backgrounds to
build our dataset. Table I reports the detailed statistics of the
dataset. There is no overlap of objects and tablecloths between
the training and testing set. We also carefully control the
experimental conditions such as the number of lights, lighting
intensity, and object size in each scene to ensure they have
similar distributions across the training and the testing set. We
separate the PSD dataset into training set 9,481 images, testing
set 2,526 images, and validation set 1,373 images. A detailed
statistical analysis on our proposed dataset is summarized
below:
Diversity of objects. Our dataset contains a rich variety of
objects, including 163 fruits and vegetables, 71 toys, 105
packages, 44 flowers, 48 office supplies, and 56 daily items.
Fig. 2 shows some examples of objects used in our dataset.
Diversity of ambient light in the scene. The change of am-
bient light source will have an effect on the surface highlight
of the object. To simulate the real environments, we randomly
adjust the number, color temperature, brightness, and positions
of the lights.
Diversity of highlights. The number and morphological distri-
bution of highlights pose challenges to the specularity removal
algorithms. Our dataset contains a variety of scenes with
different degrees of difficulties. As shown in Fig. 2, the number
of objects in a simple scene is small, while a complex scene
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Fig. 2. Examples of specular highlight images in our dataset.

Fig. 3. A group of specular highlight images with 12 fixed polarization angles.

contains more objects, more light sources and different shape
forms of the highlights.
Diversity of polarization angles. The dataset can be divided
into two different polarization conditions. One consists of
1010 groups of images photographed with fixed polarization
angles, and the other one consists of 1200 pairs of images
photographed with random polarization angles. For the former,
each group contains 12 images photographed with 12 fixed
polarization angles. As shown in Fig. 3, the first row is the
polarization angle for the interval [0, π], and the second row
is the polarization angle for the interval [π, 2π]. For the
latter, each pair of images is photographed with a random
polarization angles ranging from [0, 2π].

There will be image misalignment in the captured image
pairs. We deal with this problem in three aspects. First, during
the image capturing, we only rotate the polarizer in front of the
light source and keep the camera still. Then we filter out image
pairs with visible offset. Finally, in our neural network, we use
the perceptual loss, i.e., VGG loss, which has a certain degree
of translation invariance in the feature extraction process.

IV. SPECULARITY REMOVAL NETWORK

In this section, we propose an end-to-end neural network
structure to remove the specular highlights in the given single
image. Our network follows the GAN framework with a
generator G and a discriminator D (see Fig. 4). One of the key
contributions is a novel distribution-based channel attention

method, and the other is that we introduce the highlights detec-
tion result as a guidance for highlights removal. Specifically,
given an image I with specular highlight, the generator G
produces an output image I ′ without highlight as well as a
probability map P of the detected highlight area, then the
discriminator D determines whether I ′ is a real specular-free
diffuse image.

A. The Generator

We follow the encoder-decoder framework to build our
generator, which is an iterative two-branch network. As shown
in Fig. 4, given an input image I , the generator extracts feature
maps with an encoder-decoder framework. Then the coarse
detection block Dc estimates the coarse highlight probability
map Pc, and the coarse removal block Rc produces the coarse
diffuse image I ′c with the guidance of Pc. In some cases,
the highlight locates in large area with strong intensity and
can not be fully removed in a single step, so we use the
refined detection block Dr and the refined removal block Rr
to iteratively refine the coarse results.

More specifically, in order to remove the specular highlight
in larger area, we use the dilation layer to expand the receptive
field. It consists of dilated convolutions and residual connec-
tions. Since we detect the specular highlights as the guidance
to remove that, we introduce the gated convolution [64] into
our network with the guidance of highlight mask. Besides, we
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Fig. 4. The architecture of the proposed network. Every convolution layer is followed by an ELU activation function, except the output layer in highlight
detection blocks where we use sigmoid activation function instead. Each convolution block has three convolution layers, and the DCA layer means our
distribution-based channel attention method. The number of output channels of Dc and Dr is 1 and the number of output channels of Rc and Rr is 3.

also improve the existing channel attention module to better
utilize the global context information.
Gated convolution. The process of specular highlight removal
is similar to image inpainting, since the original color of
the object is completely covered in areas of strong specular
highlight. Yu et al. [64] explain why vanilla convolution leads
to visual artifacts, and proposes an element-wise attention-
based method, called gated convolution. Given the input
feature maps Fi, the output feature maps Fo can be expressed
as

Fo = σ(Wg ⊗ Fi)� ϕ(Wf ⊗ Fi) (2)

where σ is a sigmoid function and ϕ can be any activation
function. The symbols ⊗ and � are convolution operator
and element-wise product operator, while Wg and Wf are
convolution kernels. Different from vanilla convolution, gated
convolution assigns different weights to each feature element,
which avoids the pollution of features from highlight areas.
Distribution-based channel attention. We propose a
distribution-based channel attention method to introduce the
global contextual information across channels to feature maps
in the network. Denoting the feature maps with the number
of channels C as F , we calculate the mean values, standard
deviations and maximum values in each channel of F to get
three descriptor vectors:

mean = [mean1, ...,meanC ], (3)
std = [std1, ..., stdC ], (4)
max = [max1, ...,maxC ]. (5)

Then we use a MLP with a sigmoid activation function σ(·)
to predict the attention scores S ∈ RC for each channel of F ,
which is represented as:

S = σ(MLP (mean⊕ std⊕max)), (6)

where ⊕ indicates the concatenation operator. The new fea-
ture map is calculated as F ′ = F · S. Different from the

descriptor given by simply applying global average pooling to
each feature map as in [56], our distribution-based descriptor
vectors preserve more information about the distribution mode
of feature maps, which is important to process images in
different scenarios.

B. The Discriminator

Our discriminator includes ten convolution layers and two
FC layers. The number of channels in first convolution layer
is 64 and doubles every two convolution layers, and the stride
of convolution is 1 for every odd layer and 2 for every even
layer. Each convolution layer except the first one is followed
by a group normalization layer and a leaky ReLU activation
function, and the first FC layer is followed by a leaky ReLU
activation function.

C. Training Loss

Given the input image I with ground truth diffuse image I0
and highlight segmentation image T , the generator outputs
two highlight detection probability maps Pc, Pr and two
diffuse images I ′c, I

′
r, while the output of the discriminator

is defined as D(·). Our loss function consists of four parts.
In the following, I ′ represents diffuse image, P represents
probability map.
Adversarial loss. The relativistic average SGAN loss is pro-
posed in [26] to get a more realistic visual effect, which can
be expressed as:

LRaSGAN (I ′, I0) = 0.5 · (BCE(σ(D(I ′)−D(I0)), y
′)

+BCE(σ(D(I ′)−D(I0)), y)),
(7)

where (y′, y) are set as (1, 0) for generator and (0, 1) for
discriminator, respectively, and BCE measures the binary
cross entropy.
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Pixel loss. In order to restrain color and texture distortion, we
use the pixel loss introduced in [13]:

LPixel(I
′, I0) = α · ‖I ′ − I0‖22

+ β · (‖∇xI ′ −∇xI0‖1 + ‖∇yI ′ −∇yI0‖1),
(8)

where we set α = 0.2 and β = 0.4.
Feature loss. To improve the similarity between I ′ and I0 and
reduce the blur of I ′, we use the feature loss defined in [66],
[56] with a VGG-19 network pretrained on ImageNet [41],
which can be formulated as:

LV GG(I
′, I0) =

∑

l

λl · ‖φl(I ′)− φl(I0)‖1, (9)

where φl defines the output feature of l-th layer in
VGG-19 network, and {λl} are weighting factors.
We use the layers ’conv1 2’, ’conv2 2’, ’conv3 2’,
’conv4 2’, ’conv5 2’ in VGG-19 network and set {λl} as
{1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 1.0/0.15}.
Focal loss. We use the focal loss [21] to train the network
to detect the specular highlight area, which performs well
on tasks with foreground-background class imbalance encoun-
tered. The focal loss is defined as:

LFocal(Pi, Ti) =

{
−α(1− Pi)γ logPi Ti = 1

−(1− α)P γi log(1− Pi) Ti = 0,
(10)

where i is the element index in P and T , and we set α = 0.25
and γ = 2.

Finally, our loss function is defined as:

L = ω1LPixel(I
′
c, I0) + ω2LPixel(I

′
r, I0)

+ ω3LV GG(I
′
r, I0) + ω4LFocal(Pc, T )

+ ω5LFocal(Pr, T ) + ω6LRaSGAN (I ′r, I0).

(11)

In all our experiments, we set ω1 = 1.0, ω2 = 0.5, ω3 = 0.01,
ω4 = 1.0, ω5 = 1.0 and ω6 = 0.01.

V. EXPERIMENTAL RESULTS

In this section, we first demonstrate the effectiveness of
the proposed framework and compare to state-of-the-art ap-
proaches with qualitative and quantitative evaluations. Then
we conduct various ablation studies to verify the validity of the
specularity removal network and our new dataset, respectively.

A. Training Details

Our network is implemented in PyTorch on an NVIDIA
Tesla V100 graphics card. We compress the captured PSD
dataset, and each input image into the network is resized to
512 × 768. We train the network on our training set for 50
epochs with Adam optimizer [28]. The initial learning rate
is set to 10−4 and reduced with attenuation coefficient of 0.8
every 5 epochs until 10−5. In the first 10 epochs, the generator
is trained without adversarial loss. In our implementations,
we also augment our dataset by randomly mirror-flipping
the images and adding noise. Besides, in order to train the
highlight detection parts of the network, we get the highlight
area based on the gray value difference between I and I0
with a threshold t instead of labeling every pixel manually.
The threshold is calculated as t = 0.7max(I − I0).

TABLE II
QUANTITATIVE COMPARISON ON OUR DATASET. THE BEST RESULT OF

EACH MEASUREMENT IS MARKED IN BOLD FONT.

Scenes Methods MSE/1e−2↓ SSIM ↑ PSNR ↑
Ours 0.10 0.9876 28.4635

Multi-class GAN [32] 0.16 0.9728 26.3812
Chocolate Spec-CGAN[18] 0.14 0.9745 26.7707

Shen et al. [45] 0.30 0.9758 23.8261
Yamamoto et al. [60] 15.45 0.3599 6.9627

Ours 0.03 0.9946 32.7073
Multi-class GAN [32] 0.08 0.9833 28.9527

Balls Spec-CGAN[18] 0.08 0.9771 27.8457
Shen et al. [45] 0.13 0.9797 26.9133

Yamamoto et al. [60] 5.89 0.6946 10.9937
Ours 0.15 0.9849 26.5272

Multi-class GAN [32] 0.16 0.9801 26.1796
Toys Spec-CGAN[18] 0.31 0.9559 22.8340

Shen et al. [45] 0.40 0.9731 22.4474
Yamamoto et al. [60] 1.17 0.9441 17.9891

Ours 0.07 0.9850 29.6032
Multi-class GAN [32] 0.23 0.9636 24.4730

Beans Spec-CGAN[18] 0.19 0.9467 24.3184
Shen et al. [45] 0.70 0.9095 20.2650

Yamamoto et al. [60] 0.85 0.9028 19.4611
Ours 0.10 0.9730 27.9719

Multi-class GAN [32] 0.29 0.9290 22.8184
Fruits Spec-CGAN[18] 0.26 0.9104 22.9580

Shen et al. [45] 1.28 0.8121 17.2048
Yamamoto et al. [60] 12.14 0.5488 7.8656

Ours 0.14 0.9916 30.4694
Multi-class GAN [32] 0.50 0.8550 23.5240

All test set Spec-CGAN[18] 0.36 0.9172 25.7082
Shen et al. [45] 1.07 0.8826 20.6226

Yamamoto et al. [60] 8.46 0.6264 11.8587

B. Comparisons

We now compare our approach against various highlight
removal competitors, including five traditional approaches
([46], [45], [60], [1], [17]) and two state-of-the-art learning-
based approaches (i.e., Spec-CGAN[18] and Multi-class
GAN [32]). For a fair comparison, we re-train Multi-class
GAN and Spec-CGAN on our training dataset. Due to the page
limit, we only show some selected results, and more exhaustive
comparisons are provided in the supplemental materials.
Comparison on our proposed dataset. Fig. 5 visually
compares specular highlight removal results on our proposed
dataset, where the ground truth results are provided in Fig. 5
(b). Note that none of the objects in our testing set appear
in the training set. As can be seen, previous methods in-
duce visual artifacts including enhanced textures/structures and
color distortion. In contrast, our specular-free results are more
similar to the ground truths, i.e., we remove the specular
highlights more cleanly with more realistic texture filling in
highlight area.

For quantitative comparison, we adopt three commonly used
metrics including mean-squared error (MSE), structural sim-
ilarity index (SSIM), and peak signal to noise ratio (PSNR).
The numerical statistics are reported in Table II. As we can
see, among all the competing methods, our network achieves
the best performance, which demonstrates the ability of our
approach to remove specular highlights.
Comparison on publicly available datasets. In Fig. 6, we
use the real images introduced in [17] for evaluation. We
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Fig. 5. Visual comparison on the testing set of our dataset. From top to bottom, the scenes we selected are chocolate, balls, toys, beans, and fruits. (a) Input,
(b) ground-truth, (c) our results, (d)-(g) are the results of Multi-class GAN [32], Spec-CGAN [18], Shen et al. [45], Yamamoto et al. [60], respectively.

Fig. 6. Visual comparison on the testing data in [17]. (a) Input, (b) our results, (c)-(g) are the results of Multi-class GAN [32], Spec-CGAN [18], Fu et
al. [17], Shen et al. [45], Yamamoto et al. [60], respectively.

observe that Yamamoto et al. [60] induces color distortion on
the surface of lighting objects, resulting in more black areas
(see the third row), while Fu et al. [17] and Shen et al. [45]
result in local chromatic aberrations, especially on the toy face
of the models (see second and third rows). Besides, Multi-class
GAN [32] and Spec-CGAN [18] have obvious specular high-
light residuals. In comparison, our network removed most of
the highlights and produced no black shadows and chromatic
aberrations.

Comparison on natural images. In order to prove the validity
and fairness of our approach in natural images in the wild, we

capture several pictures using mobile phones and take some
web images. As shown in Fig. 7, traditional methods (Shen et
al. [45] and Yamamoto et al. [60]) generate distinct black color
in the white and specular highlight regions. Although deep-
learning-based methods (Multi-class GAN [32] and Spec-
CGAN [18]) are likely to have the ability to exclude non-
specular regions, they usually fail to locate tiny highlight
details (see pomegranate in third row), and there are still
specular remnants in uneven areas (see the crab in fourth row).
In comparison, our method can effectively detect and remove
the specular highlights. This attests to a better generalization
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Fig. 7. Visual comparison on natural images in the wild. (a) Input, (b) our results, (c)-(f) are the results of Multi-class GAN [32], Spec-CGAN [18], Shen
et al. [45], Yamamoto et al. [60], respectively.

Fig. 8. Ablation studies of the proposed network. (a) Input; (b) ground-truth; (c) our results; (d) ours without highlight detection branch; (e) results of using
directly iterative refinement; (f) ours without distribution-based channel attention; (g) ours without gated convolution.

from our network.

C. Ablation Studies

Network architecture. We first conduct experiments to eval-
uate the influence of different components of our designed
network.
• Highlight detection branch. We remove the highlight

detection branch to validate the effectiveness of our multi-
task design, which is shown in Fig. 8 (d).

• Directly iterative refinement. The refinement structure in
our current network works with additional inputs such

as I . Instead, another design is to iteratively feed the
coarse result I ′c to the whole network as a new input. We
implement such directly iterative refinement method and
show the result in Fig. 8 (e).

• Detail structures. We test the effectiveness of our
distribution-based channel attention method and the gated
convolution, as shown in Fig. 8 (f) and (g).

Fig. 8 demonstrates that the complete implementation of
our network performs better with more efficient removal of
highlights and fewer color distortion than other variants. We
also compute the quantitative results to reflect the contribution
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Fig. 9. Comparison of our PSD dataset with a synthetic dataset [48]. Separated specular reflection are shown in the second and fourth rows.

of each component of the proposed network. Table III reports
the average quantitative results of this ablation study for the
three local windows in Fig. 8. As observed, our full network
(Fig. 8 (c)) obtains the best results.

TABLE III
COMPARISON OF DIFFERENT NETWORK SETTINGS. EACH NETWORK
STRUCTURE IS USED IN THE SUB-FIGURE AS SHOWN IN FIGURE 8.

Fig. 8 (c) Fig. 8 (d) Fig. 8 (e) Fig. 8 (f) Fig. 8 (g)
MSE 0.0029 0.0036 0.0064 0.0032 0.0074
SSIM 0.8813 0.8670 0.8227 0.8387 0.8073
PSNR 28.6 26.7 24.4 26.7 23.9

Weights of loss functions. Our loss function consists of
textural loss, perceptual loss, adversarial loss and segmentation
loss. The textural loss restricts the color and texture of the
generated image to be consistent with ground truth. The
perceptual loss helps the network to obtain the clearer images.
The adversarial loss makes network generate more realistic
results, while the segmented loss is used to guide the network
to identify the highlight area. The weights of these four terms
are adjusted according to our experiments, and the weights
of the internal components of the perceptual and textural loss
are set according to existing works [13], [66], [56]. Table IV
shows the quantitative results on the data used in Fig. 8. It
shows that the complete loss function leads to better results.
As for the trade-off parameters ωi, larger parameters for Pixel
loss can maintain the consistent texture and color compared
with the input images, while the VGG loss and GAN loss
with small weights make the results have better visual effects.
Moreover, the Focal loss hardly affects the results of highlight
removal. As shown in Fig. 10 (d) and (e), if the GAN loss
or the VGG loss is too large, the highlight area is filled with
dark color. This is because the GAN loss and the VGG loss
are based on the high-level feature expression of the images,
and they ignore the basic color and textures in the local area.
Dataset. Next, we train our network on other datasets to verify
the validity of our proposed dataset. The number of specular-

Fig. 10. Ablation study of different parameters ωi.

TABLE IV
ABLATION STUDY OF LOSS FUNCTIONS.

Data MSE SSIM PSNR Data MSE SSIM PSNR
Full loss 0.0010 0.969 29.5 0.0013 0.960 29.2

Only Pixel loss 0.0011 0.953 29.5 0.0013 0.937 29.0
Without GAN loss Pepper 0.0011 0.966 29.6 Fruits 0.0026 0.948 25.8
Without Pixel loss 0.0013 0.935 28.7 0.0028 0.947 25.6
Without VGG loss 0.0012 0.960 29.0 0.0026 0.952 25.9

diffuse images in the rendering dataset of [7] is too small
to support network training. Lin et al. [32] did not make
their synthetic data public accessible. Therefore, we compare
our dataset with the synthetic dataset of [48]. We train the
exact same network on these two datasets, and test them using
natural images, as shown in the Fig. 9. It can be seen that the
deep model trained on our dataset obtains cleaner results with
less color distortion and no black shadows.

D. Limitations

We successfully applied our method for removing specular
highlights from a variety of images. However, our neural
network may fail to remove large specular-highlight areas, as
shown in Fig. 11, where the large areas with bright specularity
are quite challenging since most pixels are over-exposed and
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the textural information is lost. In addition, our PSD-Dataset
only contains Lambertian objects, whose diffused reflection on
surface is isotropic. The limitation is that for non-Lambertian
objects, e.g., metal, our method cannot completely remove the
specular highlights.

Fig. 11. Test on images with various area of specularity. Top row: input
specular highlight images. Bottom row: our removal results. While our method
performs well on small- and middle-size specular regions, it is hard for large
area with bright specularity.

VI. CONCLUSION AND FUTURE WORK

In this work, we construct a large-scale Paired Specular-
Diffuse (PSD) image dataset consisting of 13,380 real-world
images. Based on this new dataset, we propose an attention-
based Generative Adversarial Network for removing specular
highlight. Our method outperforms existing approaches on
the proposed dataset as well as many challenging real-world
images. We believe that our dataset will inspire more advanced
methods to tackle the tasks of specular highlight removal or
detection. In future work, we will conduct in-depth research on
bright specularity, large-area specularity and the specularity on
metal materials and build a ourdoor scencs dataset. Moreover,
we will manually mark out the specular highlight areas to im-
prove the detection results of the specular highlights, thereby
improving the performance of specular highlights removal.
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