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Efficient Center Voting for Object Detection and
6D Pose Estimation in 3D Point Cloud

Jianwei Guo, Xuejun Xing, Weize Quan, Dong-Ming Yan, Qingyi Gu, Yang Liu, Xiaopeng Zhang

Abstract—We present a novel and efficient approach to estimate 6D object poses of known objects in complex scenes represented by
point clouds. Our approach is based on the well-known point pair feature (PPF) matching, which utilizes self-similar point pairs to
compute potential matches and thereby cast votes for the object pose by a voting scheme. The main contribution of this paper is to
present an improved PPF-based recognition framework, especially a new center voting strategy based on the relative geometric
relationship between the object center and point pair features. Using this geometric relationship, we first generate votes to object
centers resulting in vote clusters near real object centers. Then we group and aggregate these votes to generate a set of pose
hypotheses. Finally, a pose verification operator is performed to filter out false positives and predict appropriate 6D poses of the target
object. Our approach is also suitable to solve the multi-instance and multi-object detection tasks. Extensive experiments on a variety of
challenging benchmark datasets demonstrate that the proposed algorithm is discriminative and robust towards similar-looking
distractors, sensor noise, and geometrically simple shapes. The advantage of our work is further verified by comparing to the
state-of-the-art approaches.

Index Terms—6D pose estimation, 3D object recognition, Point pair features, 3D point cloud
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1 INTRODUCTION

Object recognition and pose estimation in point cloud
have been active in computer vision and robotics. The goal
of a 6D pose estimator is to predict a rigid object pose, which
is represented by a 4×4 matrix T = [R, t;0, 1], consisting of
a 3×3 rotation matrix R and a 3×1 translation vector t. The
pose aligns the object to a scene by transforming a 3D point
po in the object coordinate system to a 3D point pc in the
camera coordinate system, i.e., pc = Tpo. Finding accurate
poses of the objects is a crucial prerequisite for various
downstream applications, including robot bin-picking [1],
autonomous driving [2], augmented reality [3], [4], indoor
scene reconstruction [5], to name a few.

In the past years, a large number of literatures focus
on detecting 3D objects and determining their poses in
a 3D scene, which is represented in the form of either
point clouds or RGB-D images. Early works [6], [7] rely
on matching 3D local point descriptors to build a number
of correspondences between the object and the scene, then
the correspondences are used to generate 6D pose candi-
dates which are further refined by using an Iterative Closest
Point (ICP) algorithm. This kind of approaches achieves low
recognition performance when detecting objects with uni-
form shapes, i.e., objects with planar or repetitive structures.
Recently, deep learning-based object pose recovery meth-
ods are proposed for RGB [8], [9] or RGB-D images [10],
[11]. However, deep learned 6D pose estimators should be
re-trained for each new detection environment, thus they
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Fig. 1. Single (a) and multiple target (b) matching and 6D pose esti-
mation in point clouds using our center voting scheme. Given one or
more templates and a point cloud of a 3D scene, our method detects all
instances of the templates in the scene, and predicts the 6D pose for
each instance.

cannot easily be generalized well to unseen object classes
which are outside the training distribution. Besides, the
improvements inspired by these works on RGB/RGB-D
images are not directly tailored to 3D point cloud data.

Drost et al. [12] propose a new recognition framework in
a ’model globally and match locally’ manner based on ori-
ented point pair features (PPF). It operates purely on point
clouds and outperforms other feature-based state-of-the-art
approaches [13]. Since introduced, many variants [14], [15],
[16], [17], [18], [19], [20] have been proposed to obtain better
and faster recognition performance. These PPF matching
methods have shown very successful object detection in
a vast number of industrial and robotic applications. Al-
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though being well studied, PPF-based approaches still have
some issues that limit its performance: (1) it is sensitive to
sensor noise, heavy occlusion and background clutter; (2)
it has problems when recognizing rotationally symmetric
objects without distinctive texture, which are often encoun-
tered in the industrial environments; (3) it is inefficient in
terms of computation time because it relies on searching a
large set of paired feature correspondences.

In this paper, we present a new object detection and
6D pose estimation method based on point pair features.
We improve the whole pipeline of [12] and make signifi-
cant adaptations in each crucial component to make PPF
more discriminative and robust towards noise, occlusions
and geometrically simple shapes. Our algorithm is based
on an intuitive observation that the geometric relationship
between the model PPF and object center is simple and
clear. Thus we introduce a novel center-targeted voting
scheme, where by voting we essentially generate new points
near objects’ centers in the scene, which can be aggregated
through a clustering module to generate pose candidates.
This introduces a simpler approach to compute transforma-
tion matrix from the matched point pairs. Then a hypotheses
verification approach in context of the center voting module
is proposed to find correct poses.

Previous PPF-based methods generate a pose vote for
each scene reference point, then clustering is performed on
the generated poses, which are easily affected by the scene
noises. Unlike this, our approach first groups the voted
object centers, and then generates one pose by averaging
each group. In this way, we can improve the robustness
against noise as well as reduce the computational burden
to some extent. Furthermore, the object center is invariant
under pose ambiguity, thus our approach has the ability to
detect geometrically simple shapes. In summary, the main
contributions of this work are as follows:

• An improved PPF-based recognition pipeline that is
intuitive, simple, and effective to detect objects in point
clouds and recover their 6D poses.

• A new center voting module based on the relative
geometric relationship between the object center and
point pair features. It provides a simpler but more
accurate approach to compute potential poses.

• A new pose clustering and hypotheses verification
approach that takes into account our center voting
strategy. It supports multi-instance and multi-object
detection.

2 RELATED WORK

In this section, we present an overview of the key techniques
towards object pose estimation in 3D point clouds in past
years. The relevant work for matching rigid objects from
a single RGB-D input image are also briefly revisited. For
more comprehensive discussions, we refer the reader to the
survey papers [21], [22], [23].
Pose estimation from point clouds. Early works on 3D
object recognition and pose estimation are based on local
point descriptors to match feature points, such as local
representation of differential surface properties [24], point
signatures [25], spin images [26]. Following this idea, in [6],
a local 3D shape context descriptor was used for matching

segmented point cloud models. Taati and Greenspan [27]
formulated the selection of a good local shape descrip-
tor for 3D object recognition as an optimization problem
with a number of variable-dimensional descriptors. Their
descriptors have high precision and generalization. Buch et
al. [7] thoroughly analyzed and evaluated several aspects
of existing local shape descriptors on multiple datasets.
Then, they introduced a RANSAC-based method to fuse
several features to improve matching accuracy and achieved
better generalization properties, but suffered from a cubic
complexity in the number of feature correspondences. In a
follow-up work, Buch et al. [28] proposed a more robust pose
estimation method via rotational subgroup voting and pose
clustering. The work of [13] presented a detailed compari-
son with the most popular local features. However, as men-
tioned earlier, these approaches performed unsatisfactorily
when detecting objects with planar or constant-curvature
surfaces, because there will be many different points which
yield the same local feature.

Drost et al. [12] proposed one of the most promising
algorithms by using point pair features to ease the pro-
cess of matching 3D models to 3D scenes. We will give a
general review of this approach in Sec. 3. Many researchers
developed extensions to improve recognition accuracy and
reduce computational complexity of this framework. Not
only using surface information, Choi et al. [17] extracted
additional edge or boundary information to construct point
pair features in order to match industrial objects with planar
primitives. Drost et al. [15] combined the stable information
from two modalities, i.e., the intensity and depth data, to
propose a multimodal, scale- and rotation-invariant feature.
Besides, an effective geometric edge extractor was designed
to facilitate this process. Birdal and Ilic [19] improved the
pipeline of [12] via combining several revised techniques.
Specifically, they coupled the object detection with a coarse-
to-fine segmentation, a weighted Hough voting and an in-
terpolated recovery of pose parameters were applied during
matching, and an occlusion-aware ranking was used for
the testing and sorting of all the generated hypotheses.
To further reduce the impact of clutter and sensor noise,
Hinterstoisser et al. [20] proposed a novel sampling and vot-
ing schemes, together with minor modifications to the pre-
and post-processing steps, to achieve competitive results.
Vidal et al. [29] proposed a 6D pose estimation approach
based on point pair features voting, along with a novel
preprocessing step and an improved clustering step. In ad-
dition, they introduced view-dependent re-scoring process
are proposed. Vidal et al. [30] further enhanced the work
of [20], where a novel subsampling step with normal clus-
tering and neighbor pairs filtering was introduced, then a
faster kd-tree neighbor search is proposed for run-time. Two
filtering postprocessing steps were also applied to discard
special ambiguous cases. However, this approach combined
various heuristics and it was too complex to implement. To
accelerate the template matching approach based on point
tuple features, Vock et al. [31] introduced two key improve-
ments: during the scoring phase, they designed a voxel
based scoring method with an early exit strategy; for the
generation of transformation hypotheses, they introduced
a novel sampling strategy which considers stable, salient
points and exploits the locality of possible template occur-



JOURNAL OF LATEX CLASS FILES, VOL. PP, NO. 99, 2020 3

rences. Although these methods yield competitive results,
there is still some room for improvement, e.g., sensitivity
to noise and difficulties in the detection of geometrically
simple objects.
Pose estimation from RGB/RGB-D images. Recovering 6D
pose from 2.5D data is different from 3D point cloud. In
the literature, several template matching approaches were
proposed, where the best-known method is LINEMOD [32]
for real-time 3D object instance detection. Subsequently,
this method was generalized by [33] to incorporate new
quantized cues: they proposed an efficient representation
of templates that captures the multiple modalities, i.e., im-
age gradients and quantized surface normals, for better
performance. Hodaň et al. [34] proposed another method
for the detection and accurate 3D localization of multiple
texture-less objects. They addressed the excessive compu-
tational complexity of sliding window approaches by fast
filtering and voting procedure based on hashing. The main
drawback of these methods is that they are not robust
to distortions along object borders caused by clutter and
occlusions.

For learning-based systems, random forest is firstly used
for predicting both 3D object coordinates and object instance
probabilities, such methods include [35], [36], [37]. Recently,
Wohlhart and Lepetit [8] learned the descriptors using the
convolutional neural network by enforcing simple similarity
constraint on poses of the same object and dissimilarity
constraint on different objects. This work uses a scalable
nearest neighbor search to evaluation and delivers impres-
sive results in terms of object retrieval and pose estimation.
Kehl et al. [10] proposed a local-patch-based deep learning
method to solve object detection and pose estimation. They
employed a convolutional auto-encoder model pre-trained
on a large collection of random local patches to regress
the patch descriptor, matched them against codebooks of
descriptor of synthetic patches and finally casted 6D votes
using a threshold. Sundermeyer et al. [38] implicitly learned
3D orientation via an augmented auto-encoder, which is
trained to encode 3D model views in a self-supervised
way. Wang et al. [11] presented a new framework, called
DenseFusion, in which a heterogeneous architecture is used
to process the RGB image and depth individually, then a
dense fusion network is applied to extract pixel-wise dense
feature embedding. In addition, an iterative pose refinement
procedure is integrated to further improve the pose estima-
tion while achieving near real-time inference. Gao et al. [39]
presented a deep learning system that regresses 6D object
poses from depth information. They first perform semantic
segmentation then use two separate networks for rotation
and translation regression. There is a benchmark for 6D ob-
ject pose estimation (BOP) [22], [40] to continuously report
the state of the arts in estimating the 6D pose of rigid objects
from RGB or RGB-D images. In the latest report1, a variety of
recent deep-learning-based methods have been evaluated,
including CosyPose [41], Pix2Pose [42], CDPN [43], Hybrid-
DL-PointPairs [44], leaping from 2D to 6D [45], EPOS [46],
PointVoteNet [47], SingleMultiPathEncoder [48]. It shows
that the methods based on deep neural networks achieve

1. The website for latest datasets and state-of-the-art results:
https://bop.felk.cvut.cz/challenges/bop-challenge-2020/
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Fig. 2. Illustration of the point pair feature (Eq. 1) of two oriented points
(pr,pt).

good performance on 2.5D datasets. However, the improve-
ments inspired by these methods on RGB/RGB-D images
are not directly tailored to 3D point cloud.

3 BACKGROUND AND OVERVIEW

The input to our framework consists of a 3D object of
interest that we call a template, and a scene represented by
a point cloud that captures a partial 3D view of the real
world. Each template occurrence in the scene denotes one
of its instance, which may be a result of 3D rotation and
translation of the (partial) template. Our goal is to recognize
the template in the scene and determine its 6D pose with
respect to the sensor. The output of our method is therefore
a list of recognized instances along with their 6D poses in
the scene.

Our approach is based on the basic framework of orig-
inal PPF matching method [12], which is referred to Drost-
PPFM in this paper. To make the paper self-contained, in this
section, we first give a general review of the Drost-PPFM
approach, then present our key ideas.

3.1 Point Pair Features based Object Detection
Point Pair Feature encodes the relative position and orien-
tation of two oriented points. As depicted in Fig. 2, given
a reference point pr and a target point pt with normals nr

and nt respectively, the point pair feature is an asymmetric
4-dimensional vector, which is formally defined as:

PPF(pr,pt) = (||d||2,∠(nr,d),∠(nt,d),∠(nr,nt)), (1)

where d = pt − pr , ∠(a,b) is the angle between vectors a
and b.
Drost-PPFM recognizes instances and estimates their poses
via two main phases: off-line global template description
and on-line template matching. First, at the off-line stage,
the template is usually down-sampled to a sparse set of uni-
formly distributed model points. Then the template descrip-
tion is created by computing PPFs for all permutations
of model point pairs. The resulting PPFs are discretized
and organized in a hash table where hash keys are the dis-
cretized feature vectors and the values encode the feature’s
pose with respect to the template. In this context, a feature’s
pose is achieved by storing the index of the first model point
pr and an angle α that can be derived from a standardized
set of transformations. Actually, the stored hash table is our
desired template description which will be used during the
matching stage.
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(a) Template PPF

(b) Input scene data (c) Center votes (d) Vote clusters (f) Final output(e) Pose verification
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Fig. 3. Overview: (a) a global model description based on PPFs and local reference frames; (b) the input scene point cloud; (c) center votes by
matching scene PPFs in the hash table; (d) top 100 clusters after pose clustering, where each cluster is color-encoded by the number of votes
(warmer color indicates higher weight); (e) hypotheses verification; (f) the final estimated 6D poses shown by overlaying the aligned template.

At run-time, the uniform subsampling procedure is also
applied to the scene point cloud to obtain a set of scene
points, then every i-th (i = 5 in default) scene point is
used as reference scene point. To detect each instance of
the template in the scene, the scene PPFs paired by every
reference point with all other scene points are computed
and matched to the template PPFs by using previously
built hash table. If similar features on the template are
retrieved for each reference scene point, it suggests a set
of possible template poses, i.e., each pose is represented
by a model reference point and an angle. For the voting
scheme, the pose suggestions are accumulated in a General-
ized Hough Transform manner. The maxima weighted by the
votes number are extracted in the Hough space, to form the
raw pose hypotheses, which are subsequently clustered. The
poses in the cluster with the highest accumulated weight are
averaged to return the optimal object pose. In case multiple
object instances should be retrieved, the top k clusters are
considered.

3.2 Our Key Improvements

Although our modeling and matching framework follows
Drost-PPFM, we make significant adaptations in each key
step to make PPFs more robust towards noise, occlusions
and geometrically simple shapes.

As shown in Fig. 3, our algorithm consists of three core
components corresponding to our main contributions. First,
in the off-line phase, our global template description is
represented by the template center and a hash table based on
PPFs. However, instead of discretizing the features’ poses
to the bin’s value, we only need to store the local reference
frame (LRF) computed at each model point. Then in the
matching phase, we present a novel center-targeted voting
scheme. When a scene PPF is matched to a template PPF,
we could build two pairs of local reference frames between
the corresponding reference and target points, respectively.
Two center votes are then generated by transforming the
template center according to each pair of local reference
frames. As a result, the votes appear near instance centers
and in turn can be aggregated through a clustering module
to generate pose candidates. Finally, a pose verification
operator based on the concept of Intersection over Union
(IOU) is performed to return the poses with the maximal
scores.

4 METHODOLOGY

This section gives a complete and improved algorithm for
6D object pose estimation, where we describe our novel
ideas and all extensions based on original Drost-PPFM.

4.1 Global Model Description

The input template, M, is considered to be either a mesh
data or a point cloud. We denote the template diameter,
dobj , as the diagonal length of its bounding box, which is
relevant to most of the parameters used in our approach.
The template center, cobj = (xc, yc, zc), is computed as the
center point of its bounding box. Besides, we also compute
two auxiliary points p1

aux = (xc − dobj , yc, zc) and p2
aux =

(xc, yc − dobj , zc). Then with the template center, we form
a point triplet Gobj = (cobj ,p

1
aux,p

2
aux), which will be used

for pose computation in the later center voting module.
To speed up the matching computation and avoid too

many non-discriminative point pair features, the template
is usually re-sampled and represented by a sparse set of
oriented model points, P = {pi,ni}ni=1 , where a normal is
associated with each point coordinate. Different from Drost-
PPFM where the template is uniformly subsampled, we
adopt an adaptive sampling approach similar to [30] by tak-
ing the normal information into account. To do that, we first
discretize the template by building multi-resolution voxel-
grid structures with respect to the object diameter, where
the sampling rate for the coarsest resolution is τd. Then for
each voxel cell at each resolution (in a fine-to-coarse order),
we merge the similar points where the angle between their
normals is smaller than a threshold θ (θ = 20◦ in default).
As a result, the feature parts (e.g., sharp edges or curved
surfaces) of the input template are more sufficiently sampled
than planar parts, thus yielding a set of discriminative point
pairs.

Next, we compute the PPFs between every pair of
model points in P by calculating the feature vector of Eq. 1.
The resulting PPFs are discretized with a distance and
angle quantization step size (∆dist and ∆angle), then used
as indices of a hash table (more detailed explanations can
be referenced in original Drost-PPFM). However, instead of
discretizing the features’ poses into the pointed table bins,
we only need to store the local reference frames computed at
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Fig. 4. An example for visualizing the center voting process: (a) the input
template and scene point clouds; (b) transformed template centers; (c)
top 100 clusters after pose clustering; (d) after hypotheses verification,
the final estimated 6D pose is shown by overlaying the aligned template.

corresponding reference point pr and target point pt. Their
local reference frames are defined as:

Opr
= [nr ×

d

||d||
,nr × (nr ×

d

||d||
),nr],

Opt = [nt ×
d

||d||
,nt × (nt ×

d

||d||
),nt],

(2)

where operator × represents the vector cross product.

4.2 Center Voting Module
Given the input scene, we subsamples it using above adap-
tive sampling approach to obtain a subset of scene points,
denoted as S . However, due to the objects are usually
placed on a table or a platform in industrial environments,
the captured scene point cloud often contains relatively
large background planes. Therefore, before downsampling,
we first apply an efficient RANSAC approach to extract
planar primitives from the point cloud, then remove the
large planes whose sizes are much bigger than the template
diameter. This step could greatly reduce the number of 3D
points, thus speeding up the whole matching process.

During run-time voting, a reference scene point sr is
paired with every other scene point st and the correspond-
ing scene PPF and local reference frames (Osr and Ost )
are computed. Then we find template PPFs for all possible
model point pairs (pr,pt) that generate the same quantized
feature as (sr, st) by searching previously built hash table in
a constant time. For each matched scene–model pair corre-
spondence, the transformation between reference points are
calculated as following:

Tpr→sr =

[
Rr tr
0 1

]
,

Rr = OT
sr · Opr ,

tr = sr −Rrpr.

(3)

Here the rotation matrix Rr aligns the local reference frame
of the template with the scene, and tr translates model point
pr to the scene sr . Therefore, Tpr→sr gives us a candidate
pose. Similarly, we can obtain another transformation matrix
Tpt→st that maps pt to st.

To determine whether the pair (pr,pt) is a possible
position of (sr, st) on the template surface, we transform
the template center cobj into the scene by using Tpr→sr

and Tpt→st respectively to obtain crobj and ctobj ; in other
words, a vote is cast for the template center. However, if
the distance between crobj and ctobj is larger than a distance
threshold ζ (we set ζ = 0.1dobj), the vote is discarded
directly. Otherwise, we accept this vote and compute trans-
formed triplet Grobj by Tpr→sr as an attribute of the current
vote. After processing all reference scene points using above
center voting module, we generate multiple pose votes that
appear near instance centers. Fig. 4 (b) shows an illustration
of the transformed template centers.

4.3 Pose Clustering and Hypotheses Verification

Due to the noisy data and different sampling rate of the
scene and template point cloud, our center voting scheme
may generate isolated or incorrect votes. To remove incor-
rect votes and increase the matching accuracy, we propose a
new clustering approach that takes into account our center
voting strategy. In particular, we build a uniform voxel-
grid with cell size ιd to voxelize the points in all trans-
formed triplets Grobj . Therefore, each point in each triplet
is mapped to an index of the grid cell. Then in each cell
containing transformed template centers, we consider each
pair of triplets, e.g., Gr1obj and Gr2obj w.r.t. transformed template
centers cr1obj and cr2obj , respectively. If the cell indices of the
three points in Gr1obj equal to corresponding indices in Gr2obj ,
we group Gr1obj and Gr2obj into one cluster. This clustering
approach enforces that similar triplets should be trans-
formed by similar translations and rotations. Note that in
our implementation, to minimize the impact of the binning
problem, we also perform smoothing over neighboring cells
to further help group nearby correct triplets together. After
all cells are processed, we obtain multiple clusters which
are ranked in decreasing order of the number of triplets (or
votes), see Fig. 4 (c).

We average the transformed triplets contained in each
cluster, and generate a list of pose hypotheses associated
with scores by computing the transformation between the
original triplet and each averaged triplet. However, we
observe that the pose with the maximum score may not
be optimal in case of sensor noise and background clutter.
To verify each hypothesis pose, we transform the template
according to the pose and the score of this pose is re-
calculated by estimating the visibility of the template in
the scene. For each template point pi, we find k nearest
scene points and if there is a scene point sj that satisfies
||pi − sj || < εD and ∠(npi

,nsj ) < εA where εD = 0.02dobj
is a distance threshold and εA = 25◦ is an angle threshold,
then we regard that pi is visible in the scene and sj is a
fitted scene point for current pose. Finally, all of the poses
are re-ordered by using the number of visible points, and
we return the pose with the maximum score as the optimal
one that best fits the scene points (Fig. 4 (d)).
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Fig. 5. Multi-instance detection. Left: there may be duplicate and missing
poses after pose hypotheses verification. Right: our pose filtering based
on NMS improves the recognition accuracy.

4.4 Multi-instance and Multi-object Detection
In case of detecting multiple instances of the object, an
intuitive approach is to retrieve the top k poses from above
re-scored pose hypotheses. However, this approach can
easily lead to duplicate or missing poses, see Fig. 5 (left).
In our algorithm, we perform a pose filtering step based on
non-maximum suppression (NMS) which is widely used in
many computer vision applications. From the list of pose
hypotheses, we first return the pose with the maximum
score, and then visit each other pose in decreasing order. If
the Intersection over Union between the fitted scene points
of current visited pose and last returned pose is larger
than 0.4, we filter out current visited pose; otherwise, we
accept and return it. We iteratively perform this step in the
remaining poses until we retrieve k poses.

To solve multiple objects recognition task, we perform
the steps of center voting, pose clustering and hypotheses
verification in parallel for all objects. Then in the final step
of returning appropriate poses, we put the pose hypotheses
of all objects together and rank them according to the
visibility of each object in the scene. The same pose filtering
approach based on NMS is applied to reject poses that do
not correspond to any object. According to our test results
in next section, we found this approach could achieve better
results than detecting the objects one by one, i.e., segmenting
out the scene data containing the instances of one object then
proceeding to the next object.

5 EXPERIMENTAL RESULTS

In this section, we first demonstrate the effectiveness of
the proposed algorithm by evaluating different parameter
settings. Then after describing the used evaluation met-
rics, we provide a complete comparison with state-of-the-
art approaches in terms of pose accuracy and recognition
rate. Their performance is thoroughly evaluated using both
qualitative and quantitative results on a large number of
well-known datasets. Our algorithm is implemented in C++.
All results presented in this paper are obtained on a desktop
computer equipped with an Intel i7-7700k processor clocked
at 4.2GHz Ghz, 16 GB of RAM.

5.1 Experimental Setup
Datasets. For our performance evaluation and comparisons,
we carry out experiments on the public-domain datasets,
which are selected based on different criteria, e.g., quality of
the data, variety of objects, complexity of scenes and acqui-
sition technique. In particular, we evaluate the algorithms

on three 3D point cloud data which are most common used
for 3D object recognition. The UWA [49] contains 4 complete
object models and 50 view based scenes, which are all laser
scanned and represented as high resolution meshes. The
objects are highly occluded in each scene and the number
of instances to recognize is 188 in total. Toshiba CAD [50]
provides a challenging and realistic 3D dataset with a
vision-based geometry capture system. The dataset consists
of 12 shape classes which are fabricated from CAD models,
with and without rotational symmetries. The DTU [51] is a
large-scale dataset consisting of 45 objects and 3204 scenes
captured by a structured light scanner, where each scene
contains 10 objects. The objects belong to three different
types: geometric complex objects, cylindrical and flat 3D
object models. We focus on the last two types because they
are more challenging for pose estimation.
Evaluation metric. To determinate the pose accuracy, sev-
eral pose error functions are proposed [52] to compute the
error of an estimated 6D object pose T̂ w.r.t the ground-
truth pose T̄. A widely used pose error function is average
distance metric (ADM) which measures the L2 distance be-
tween the model points transformed by the estimated pose
and ground-truth pose respectively. In [52], two alternatives
(eADD and eADI ) of ADM are defined for objects without
and with symmetry properties:

eADD = avg
x∈M

||T̄x− T̂x||2,

eADI = avg
x1∈M

min
x2∈M

||T̄x1 − T̂x2||2.
(4)

However, since eADI yields relatively small errors , values
of eADD and eADI should not be directly compared [52]. To
solve this problem, we define a new eADI as:

e
′

ADI = max( avg
x1∈M

min
x2∈M

||T̄x1 − T̂x2||2, ||T̄cobj − T̂cobj ||2),

(5)
where we also consider the distance between transformed
object centers cobj .

After defining the pose error function, we accept a pose
estimate as positive if the pose error is less than a thresh-
old ξe. Then the performance for detecting each object is
quantitatively measured by using recognition rate (RR) that
is the ratio of true positive poses compared to all retrieved
poses. We also calculate the Mean Recall (MR) as the mean
of the per-object recognition rates to evaluate the overall
performance on one dataset:

MR = avg
o∈O

∑
s∈S |P (o, s)|∑
s∈S |G(o, s)|

, (6)

where O and S are the sets of all templates and test scenes.
|P (o, s)| is the number of correctly detected poses and
|G(o, s)| is the number of ground-truth poses of object o
in scene s.
Description of competing algorithms. We thoroughly com-
pare our method against most competitive methods. On
3D point cloud data, we select a commercial machine vi-
sion software MVTec HALCON2 as a competitor because
it contains the optimized and improved implementation
of the original Drost-PPFM. We denote it Drost-PPFM∗.

2. https://www.mvtec.com/products/halcon/
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Fig. 6. Parameter analysis using two models from DTU dataset [51]. For each parameter setting, we also show the performance of our approach
reacting with data at different noise levels.

(a)

(b)

(c)

Fig. 7. Recognition results for multi-instances and multi-objects. The
number of instances is 9 (a), 17 (b) and 8 (c), respectively.

In addition, we compare to an open-source method Buch-
17 [28], which presents a new pose voting and clustering
method by integrating a local feature-based recognition
pipeline. Here we test several representative 3D local feature
descriptors, including PPF, spin images (SI) [26], fast point
feature histograms (FPFH) [53] and signature of histogram
of orientations (SHOT) [54].

5.2 Evaluation
Parameter settings. We first run different detection tests
with varied parameters to evaluate their influence on the
recognition rate. While the majority of parameters can be
set to default, we mainly analyze the following four param-
eters: the sampling rate τd for downsampling template and
scene point clouds, the quantization step size of distance
∆dist and angle ∆angle for computing quantized PPFs, and
the cell size ιd of the voxel-grid for clustering center votes.

To be independent from the template size, the values of τd,
∆dist and ιd are relative to the template diameter dobj . Fig. 6
shows the ablation studies for those four parameters, i.e.,
we vary one parameter while fixing all other parameters.
We can observe that our algorithm is robust to the values
of ∆dist, ∆angle and ιd. The parameter τd affects our perfor-
mance, where we see an obvious performance drop when it
is larger than 0.06. We find that setting τd = 0.05 achieves
the best performance for most of the models.
Resistance against noise. The robustness of our method
is also demonstrated in Fig. 6. To generate noisy scene
point clouds, we randomly add Gaussian noise to the point
coordinates with different values of standard deviation. As
shown in the figures, our algorithm has a good resilience
against noise. The performance is slightly reduced as the
level of noise increases, but we still perform well on noisy
data.
Multi-instance and multi-object detection. Figs. 1 and 7
verify the use of our method for solving multi-instance and
multi-object recognition problems. In Fig. 1 (a) and Fig. 7 (a)
we use a full object model as the template, while in other
examples the template is selected as a partial part of the
object. For both cases, our method detects all of the instances
and returns their correct 6D poses.
Algorithm inspection. To better understand our algorithm,
we analyze the behavior of our center voting strategy. Tak-
ing the scene in Fig. 3 as an example, given the clustering
voxel-grid with cell size ιd, if one center vote is located in
a cell that contains a ground-truth center, this center vote is
judged as an inlier. The ratio of inliers in Fig. 3 (c) is termed
as rinlier. However, the inlier center vote may be cast by
reference point pairs that are not on the object instances.
Therefore, we count how many valid inliers are cast by the
point pairs that are located on the instances, and the ratio of
valid inliers among all inliers is termed as rvalidinlier. The ratio
of inliers after pose clustering (Fig. 3 (d)) and verification
(Fig. 3 (e)) are rcinlier and rvinlier, respectively. Note that we
cannot count the number of valid inliers in Fig. 3 (d) and
(e) because the clustering process has grouped the valid and
invalid inliers together.
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TABLE 1
Statistic analysis of our center voting strategy and triplets verification.

Scene ιd rinlier(%) rclusterinlier (%) rverifinlier(%) rvalidinlier(%) robjinlier(%) Dist rtrip(%)

Fig. 3

0.20 50.55 84 100 95.66 59.89 7.8 ×
0.18 40.44 68 100 96.69 46.83 7.6 ×
0.16 39.23 78 100 97.18 45.06 7.4 ×
0.14 36.65 70 100 97.40 41.87 7.2 ×
0.12 33.15 70 100 99.19 37.99 7.0 ×
0.10 30.16 38 100 99.29 34.10 4.3 ×
0.08 25.66 35 100 99.50 28.94 6.3 ×
0.06 17.22 21 90 96.73 19.16 6.9 ×
0.04 15.38 10.29 80 100 15.38 6.5 ×

Fig. 4

0.20 1.06 2 100 78.07 16.99 25.2 8.39
0.18 1.63 4 100 57.07 25.09 24.5 8.97
0.16 1.80 2 100 54.95 27.29 24.4 8.82
0.14 1.44 2 100 58.31 20.19 23.6 9.97
0.12 0.92 4 100 84.86 12.55 22.6 10.05
0.10 1.31 10 100 95.83 17.25 21.5 14.85
0.08 1.06 8 100 93.47 13.31 21.1 12.45
0.06 1.12 16 100 89.74 13.40 20.1 15.46
0.04 0.81 8 100 100 8.75 21.1 11.25

Next, to analyze the spread of the center votes, we
compute two indicators from Fig. 3 (c): the first one is robjinlier,
which shows how many point pairs that are on the instances
vote for the correct center; the second one is the average
distance Dist from the valid inliers to the corresponding
ground-truth centers, and this Dist reveals the approximate
deviation of the valid votes from the correct centers.

These numerical statistics are reported in Table 1. In
order to avoid interference between different instances, we
also report the analysis on Fig. 4 in which there is only one
instance but with complex background. From the analysis,
we see that the ratio of inliers in Fig. 3 is much greater than
those of Fig. 4. The reason is that the background of Fig. 3
is relatively simple, and there is no interference from other
objects. The robjinlier and deviationDist of the valid votes also
shows the same phenomenon. Besides, from deviation Dist
we can observe that our voting module really generates
votes near the object centers.

Finally, we compute another indicator (rtrip) to inspect
how many triplets that are from object instances are really
located in the same bin containing the ground-truth triplet.
The results are also reported in Table 1. Note we can only
analyze rtrip in Fig. 4 because the ground-truth triplet is not
unique for the symmetric object in Fig. 3.

5.3 Comparisons
Comparison on 3D point cloud datasets. Tables 2, 3 and
4 show an extensive comparison of performance scores
and timings on datasets of UWA, Toshiba CAD and DTU,
respectively. Recognition rate per object and per dataset are
reported in each table. Furthermore, for fair comparison, we
set three levels (10%, 20%, 30% w.r.t the object diameter
dobj) of the pose error threshold ξe to evaluate each algo-
rithm sufficiently.

The quantitative comparisons verify that our algorithm
achieves best-performing results on these datasets. Specifi-
cally, since UWA dataset contains 3D models that possesses
rich shape variations, all of the test algorithms obtain good
matching accuracy for this dataset, where we achieve 100%
recognition rates for all objects even with a high degree of
occlusion. On Toshiba CAD dataset which is with limited
shape features, methods based on the framework of Buch-
17 [28] perform worst because they rely on finding local
feature correspondences thus are very little descriptive for
planar and constant curvature surfaces. On the other hand,

TABLE 2
Quantitative comparison on UWA dataset. The best result of each

measurement is marked in bold font. ξe is the pose error threshold,
RR is per-object recognition rates, and MR represents the overall

performance on this dataset.

Methods ξe RRcheff RRchicken RRpara RRTrex MR

Buch-17-PPF

0.1dobj 100 100 97.8 97.8 98.95
0.2dobj 100 100 97.8 97.8 98.95
0.3dobj 100 100 97.8 97.8 98.95
T ime(s) 4.36 2.53 3.41 3.21 3.39

Buch-17-SHOT

0.1dobj 96 85.4 75.6 84.4 85.63
0.2dobj 96 85.4 75.6 84.4 85.63
0.3dobj 96 85.4 77.8 84.4 86.16
T ime(s) 4.61 2.95 5.63 5.37 4.61

Buch-17-SI

0.1dobj 100 100 97.8 100 99.47
0.2dobj 100 100 97.8 100 99.47
0.3dobj 100 100 97.8 100 99.47
T ime(s) 3.26 2.56 3.85 2.91 3.14

Buch-17-FPFH

0.1dobj 100 97.9 95.6 97.8 97.88
0.2dobj 100 97.9 95.6 97.8 97.88
0.3dobj 100 97.9 95.6 97.8 97.88
T ime(s) 12.85 10.32 23.9 22.9 17.25

Drost-PPFM∗

0.1dobj 98 93.8 91.1 97.8 95.23
0.2dobj 98 93.8 91.1 97.8 95.23
0.3dobj 98 93.8 91.1 97.8 95.23
T ime(s) 0.98 0.53 0.31 0.41 0.57

Ours

0.1dobj 100 100 100 100 100
0.2dobj 100 100 100 100 100
0.3dobj 100 100 100 100 100
T ime(s) 3.65 3.65 3.65 3.65 3.65

TABLE 3
Quantitative comparison on Toshiba CAD dataset. The best result of

each measurement is marked in bold font.

Methods ξe RR1 RR2 RR3 RR4 RR5 RR6 RR7 RR8 RR9 RR10 MR

Buch-17-PPF

0.1dobj 5 5 5 90 45 20 0 50 0 15 23.50
0.2dobj 5 25 10 90 55 40 0 50 5 25 30.50
0.3dobj 15 50 10 100 55 50 0 50 12 40 38.20
Time(s) 10.90 4.18 34.50 9.10 3.62 3.84 6.87 4.62 6.83 7.43 9.19

Buch-17-SHOT

0.1dobj 0 15 0 10 50 20 0 20 5 25 14.50
0.2dobj 5 55 5 45 55 20 0 20 10 30 24.50
0.3dobj 5 75 5 45 65 20 0 25 45 90 37.50
Time(s) 15.45 2.50 21.00 15.50 7.38 7.40 13.35 14.78 4.41 4.80 10.66

Buch-17-SI

0.1dobj 20 25 50 95 95 60 0 60 0 40 44.50
0.2dobj 20 50 50 95 95 70 0 60 0 40 48.00
0.3dobj 30 55 50 95 95 70 0 65 20 70 55.00
Time(s) 10.70 1.69 12.10 4.92 3.60 6.02 6.00 4.46 3.72 3.84 5.70

Buch-17-FPFH

0.1dobj 5 25 5 85 25 15 0 35 0 25 22.00
0.2dobj 10 40 5 95 25 20 0 35 5 30 26.50
0.3dobj 10 50 10 95 30 35 0 35 25 45 33.50
Time(s) 35.00 14.32 58.67 30.52 20.61 36.33 30.23 45.83 42.00 36.33 34.98

Drost-PPFM∗

0.1dobj 95 100 100 100 100 100 100 100 45 95 93.50
0.2dobj 95 100 100 100 100 100 100 100 75 95 96.50
0.3dobj 95 100 100 100 100 100 100 100 95 100 99.00
Time(s) 0.58 0.51 3.2 2.16 0.23 1 1.58 1.6 1.53 1.25 1.36

Ours

0.1dobj 95 100 100 100 100 100 100 100 80 100 97.50
0.2dobj 95 100 100 100 100 100 100 100 90 100 98.50
0.3dobj 95 100 100 100 100 100 100 100 100 100 99.50
Time(s) 9.44 2.45 4.71 1.4 3.33 0.81 3.07 0.46 9.14 5.25 4.01

Drost-PPFM∗ and our approach still obtain good perfor-
mance scores on this dataset, and ours is slightly better. DTU
dataset is more challenging because it has distinct levels of
complexity with high occlusion and clutter. We avoid testing
feature-rich objects and select repetitive, flat, cylindrical and
thin-edge objects without many local features. As expected,
we observe a significant performance drop for each method.
However, our algorithm still outperforms other competi-
tors for most of the test objects. The main reason of our
improvement over other PPF-based methods is that we
conducted pose clustering on the transformed object centers
instead of the pose matrix, which is sensitive to the values
of rotation and translation elements. Fig. 8 shows qualitative
comparison results on the DTU dataset.

Finally, in terms of running time, HALCON/Drost-
PPFM∗, as a commercial software, takes advantage of hard-
ware and it is the fastest. Our method is considerably faster
comparing to Buch-17. Moreover, each step of our method
can be parallelized thus in future we could implement it on
GPU for further acceleration.
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Scene Buch-17-PPF Buch-17-SHOT Drost-PPFM* Ours

Fig. 8. Qualitative comparison results on two scenes from DTU dataset.

TABLE 4
Quantitative comparison on DTU dataset. The best result of each measurement is marked in bold font.

Methods ξe RR2 RR4 RR10 RR12 RR13 RR14 RR15 RR16 RR17 RR20 RR28 RR31 RR37 RR41 RR48 RR50 MR

Buch-17-PPF

0.1dobj 67.1 71.2 62.4 59.4 11.7 48.7 73.3 14.7 85 15.3 19.3 76.8 62.4 29.6 23.1 7.1 55.26
0.2dobj 75 72.3 76.3 64.1 15.9 49.1 74 42.6 89.7 24.5 20.5 78 63.4 33 46.1 7.1 60.41
0.3dobj 77 73.4 82.8 72.7 20.2 49.1 74 62.3 93.1 27.8 21.6 78.7 65.5 38.9 46.1 7.1 63.82
T ime(s) 2.76 3.44 1.15 1.2 1.36 1.45 1.52 1.68 1.15 1.07 1.46 1.41 1.36 3.52 1.04 0.52 1.70

Buch-17-SHOT

0.1dobj 46.4 51.1 21.2 42.2 15.9 32.4 36.3 14.8 50.2 20.2 40.9 44.5 36 42 15.4 0 36.45
0.2dobj 55.7 54.9 39.2 44.5 15.9 38.2 37.7 29.5 61.1 26.2 42 51.6 36.5 45.1 15.4 14.3 43.11
0.3dobj 60.7 54.9 52.3 48.4 15.9 39.5 39 52.5 70.4 30.1 45.5 52.3 41.1 47.5 30.8 14.3 48.16
T ime(s) 5.71 7.36 1.45 2.86 1.67 3.02 1.65 2.46 2.08 4.88 3.48 3.31 2.89 4.49 1.43 1.39 3.32

Buch-17-SI

0.1dobj 64.3 72.3 46.5 48.4 3.2 39.9 62.3 21.3 75.4 18 45.5 61.9 61.4 43.2 0 0 50.82
0.2dobj 69.3 76.1 61.2 57 6.4 40.4 64.4 42.6 85.7 25.7 47.7 66.5 63.5 46.3 7.7 0 57.07
0.3dobj 75 78.9 73.8 63.3 7.4 48.8 65.1 59 91.6 28.4 47.7 67.1 66 50 15.4 0 62.16
T ime(s) 2.36 2.96 0.91 1.14 1.28 1.23 1.13 0.67 1.69 1.01 0.81 1.33 1.77 1.72 1.03 0.58 1.49

Buch-17-FPFH

0.1dobj 35 51.1 36.3 35.9 14.9 45.6 56.8 16.3 71.7 10.4 52.3 45.2 41.1 43.2 0 0 42.60
0.2dobj 47.1 54.3 52.2 44.5 18.1 48.7 63 36.1 79.1 25.1 53.4 54.8 43.7 51.2 0 0 50.60
0.3dobj 52.9 56.5 66.1 55.5 19.1 48.7 63 50.8 85.4 30.6 55.7 56.8 46.2 56.7 30.8 0 55.83
T ime(s) 34.2 49.1 8.47 13.9 8.76 13.9 12.64 9.54 8.4 19.8 13.6 21.5 19.87 77.6 8.79 8.76 21.90

Drost-PPFM∗

0.1dobj 67.1 69 57.9 68 77.7 63.5 62.3 42.6 82.8 55.8 29.5 54.8 66 86.4 15.4 0 65.08
0.2dobj 69.3 69 64.1 70.3 77.7 64.5 62.3 49.2 85.6 63.4 29.5 54.8 66.5 86.4 23.1 0 67.31
0.3dobj 70.7 69 66.1 70.3 77.7 64.9 63 50.8 87.9 66.7 31.8 54.8 69.5 88.2 46.2 0 68.88
T ime(s) 0.19 0.28 0.06 0.08 0.02 0.04 0.05 0.04 0.024 0.03 0.47 1.66 2.46 0.03 0.04 0.03 0.39

Ours

0.1dobj 67.8 61.7 64.9 58.6 81.9 68 63 55.7 85.4 54.6 68.2 69 68 95.7 46.2 21.4 69.29
0.2dobj 72.9 63.4 74.7 60.2 83 68 64.4 60.7 88.2 59.5 69.3 69 68.5 96.3 46.2 21.4 71.88
0.3dobj 75 64.5 76.7 60.2 83 68 65.1 63.9 90.3 61.2 69.3 69.7 70.6 96.3 53.8 21.4 73.24
T ime(s) 11 17.32 1.36 11.8 10.1 30.5 15.25 6.79 0.85 10.5 6.51 8.4 12.6 0.956 8.85 0.11 10.15

TABLE 5
Comparison of average recall scores on several RGB-D datasets. The
performances of other methods are reported in BOP challenge 2020.

Methods CNN Image T-LESS IC-BIN LM-O ITODD
CosyPose-Synt+Real-ICP [41] Yes RGB-D 0.701 0.647 0.714 0.313

Hybrid-DL-PointPairs [44] Yes RGB-D 0.655 0.430 0.631 0.483
CosyPose-Synt+Real [41] Yes RGB 0.728 0.583 0.633 0.216

Pix2Pose-BOP20-w/ICP-ICCV19 [42] Yes RGB-D 0.512 0.390 0.588 0.351
CosyPose-PBR-1View [41] Yes RGB 0.640 0.583 0.633 0.216

Vidal-Sensors18. [30] No D 0.538 0.393 0.582 0.435
CDPNv2BOP20-RGB-ICP [43] Yes RGB-D 0.464 0.450 0.630 0.186

Drost-CVPR10 [12] No D 0.444 0.388 0.527 0.316
Félix&Neves-ICRA17-IET19 [55], [56] Yes RGB-D 0.212 0.323 0.394 0.069

Sundermeyer-IJCV19+ICP [57] Yes RGB-D 0.487 0.281 0.237 0.158
Zhigang-CDPN-ICCV19 [43] Yes RGB 0.124 0.257 0.374 0.070

Sundermeyer-IJCV19 [57] Yes RGB 0.304 0.217 0.146 0.101
Pix2Pose-BOP-ICCV19 [42] Yes RGB 0.275 0.215 0.077 0.032

DPOD (synthetic) [58] Yes RGB 0.081 0.130 0.169 0.000
Ours No D 0.341 0.294 0.182 0.519

Comparison on RGB-D datasets. In addition, although
our algorithm is not tailored to 2.5D recognition, we also
provide a comparison on recent RGB-D datasets. To this
end, we evaluate our method using the evaluation protocol
proposed in BOP challenge and compare various advanced
approaches therein. In this challenge, the task needed to

solve is 6D localization of a varying number of instances of
a varying number of objects in a single RGB-D image. Note
the data captured by consumer RGB-D cameras usually has
a low and heavily inhomogeneous point density, and the
used datasets in BOP challenge include challenging test
cases (household and industry-relevant objects) with a high
amount of clutter and occlusion. Due to this, our hypotheses
verification based on 3D IOU usually generates many false
positive poses which greatly reduce the performance. For
such RGB-D datasets, we implemented a view-dependent
re-scoring measure to filter out incorrect poses by checking
model-scene data consistency and silhouette matching [20],
[30]. The rest of our pipeline is kept unchanged and we
strictly follow the evaluation protocol described in BOP
challenge.

The comparisons against 14 previous approaches are
reported in Table 5. We observe that most of top-performing
methods are based on deep neural networks and make full
use of RGB image channels to achieve good performance.
Note that even for one algorithm, its performance can be
different by integrating different ingredients, such as depth-
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TABLE 6
Ablation study of the pose clustering baseline based on a simple angle

comparison, where PCBAa represents the baseline with angle
threshold a, RR is per-object recognition rate using the DTU model
(#16 or #41 in Fig. 6) and with different number of scene reference

points.

Methods ξe RR16
2.5%

RR16
5%

RR16
10%

RR16
20%

RR41
2.5%

RR41
5%

RR41
10%

RR41
20%

PCBA2.5◦

0.1dobj 33.7 39.3 37.7 44.3 88.9 89.5 90.7 89.5
0.2dobj 44.2 47.8 44.3 45.9 90.7 90.1 92.6 90.7
0.3dobj 54.1 54.1 49.2 50.8 91.4 90.7 92.6 90.7

PCBA5◦

0.1dobj 29.5 29.5 34.4 42.6 87.6 86.4 89.5 90.7
0.2dobj 39.3 45.9 47.5 49.2 88.9 87.6 91.4 92
0.3dobj 44.3 52.5 57.4 57.4 89.5 88.9 91.4 92.6

PCBA10◦

0.1dobj 31.1 27.9 34.4 37.7 88.3 88.3 91.4 91.4
0.2dobj 39.3 42.6 49.2 47.5 90.1 90.7 93.2 92
0.3dobj 45.9 47.5 57.4 57.4 90.7 92 93.2 92

PCBA15◦

0.1dobj 31.1 32.8 32.3 41 87.2 90.1 91.4 90.1
0.2dobj 42.6 39.3 47.5 52.5 89.2 91.4 92 91.4
0.3dobj 45.4 49.2 50.8 55.7 90.3 92.6 92.6 92

Ours

0.1dobj 36.1 42.6 45.4 55.7 92.6 93.8 94.4 95.7
0.2dobj 42.6 49.2 54.1 60.7 93.2 93.8 94.4 96.3
0.3dobj 52.5 52.5 57.4 63.9 93.4 94.6 94.2 96.8

based ICP refinement and data augmentation. Although we
do not yet perform perfectly on all those 2.5D datasets, we
achieve results comparable to some recent deep-learning-
based methods in terms of average recall by only using the
depth information. We would like to further increase our
accuracy by considering RGB information in future work.

5.4 Ablation studies

Pose clustering. In our approach, we use the triplets voting
and identification for pose clustering. A more intuitive
baseline is to directly compare the rotation of poses using ro-
tation angle and cluster poses by setting a distance threshold
for the angle. We implement such a pose clustering baseline
based on a simple angle comparison, which is abbreviated
as PCBA. We compute the rotation angle using the method
described in [59], [60]:

2cos|α| = trace(R−11 R2), (7)

where the absolute orientation error |α| measures the mini-
mum rotation angle required to align the rotations (R1 and
R2) of two poses. However, it is very slow to perform all
pairwise pose comparison (it takes 4-5 minutes for matching
one scene). Therefore, we speed it up by using our voxeliza-
tion, i.e., we only compare the poses located in the same grid
cell. Table 6 shows the comparison results using the DTU
models shown in Fig. 6, where we define four pose accuracy
intervals by varying the angle thresholds: 2.5◦, 5◦, 10◦, 15◦.
We also select different number of scene points as references
for fair and thorough comparison. From the table, we can
see that the baseline method has a good effect, but our
method still achieves better accuracy in general.
Pose hypotheses verification. To evaluate the effect of our
pose hypotheses verification, we perform an ablation study
by using the algorithm of Iterative Closest Point (ICP). After
we cluster poses in Sec. 4.3, we transform the template
into the scene according to the poses, and perform ICP to
refine the poses. Then in order to compute the score of each
pose, we implement two variants: (1) using the number of
triplet votes in each cluster as the score, which is indicated
as ICP+voting; (2) using the ICP distance between the re-
fined template and scene as the score (a smaller distance
means a better pose), which is indicated as ICP+distance. As
observed from the quantitative comparison in Table 7, our

TABLE 7
Ablation study of two variants of pose hypotheses verification based on

ICP+Scoring, where we also test them on the DTU model (#16 or
#41) used in Fig. 6.

Methods ξe RR16
2.5%

RR16
5%

RR16
10%

RR16
20%

RR41
2.5%

RR41
5%

RR41
10%

RR41
20%

ICP+voting

0.1dobj 14.8 23 16.4 32.8 62.9 59.3 76.5 75.3
0.2dobj 26.2 36.1 37.7 47.5 77.2 79.6 81.5 82.1
0.3dobj 37.7 44.3 54.1 57.4 80.9 81.5 84 82.7

ICP+distance

0.1dobj 1.6 3.3 4.91 6.56 58 56.2 56.2 58
0.2dobj 8.2 9.8 13.1 14.8 59.9 57.4 59.3 60.5
0.3dobj 16.4 9.8 14.8 21.3 65.4 61.1 61.7 64.2

Ours

0.1dobj 36.1 42.6 45.4 55.7 92.6 93.8 94.4 95.7
0.2dobj 42.6 49.2 54.1 60.7 93.2 93.8 94.4 96.3
0.3dobj 52.5 52.5 57.4 63.9 93.4 94.6 94.2 96.8

pose hypotheses verification based on the template visibility
is clearly better than these two variants.

5.5 Limitations

An inherent shortcoming of the PPF based approaches is
that it relies on the surface normals. In our method we
use a traditional method to estimate the point normals,
thus our matching performance is affected by the accuracy
of normal estimation to a large extent, especially for the
RGB-D datasets. We would like to integrate more robust
approach for estimating surface normals from noisy point
sets (e.g., PCPNet [61]). Another limitation is that we cannot
handle object scaling because the PPF relys on the Euclidean
distance between the point pair.

6 CONCLUSION AND FUTURE WORK

We have presented a new approach for 6D pose estimation
of free-form objects in 3D point cloud. We achieve major
improvements by modifying the whole pipeline of original
point pair feature matching. A new center voting scheme
associated with pose clustering and hypotheses verification
operations enables us to find correct poses. We demon-
strate the advantages of our approach by comparing to the
state-of-the-art methods on various challenging benchmark
datasets.

Future work would be to explore new point pair feature
that does not rely on estimated surface normals. A possi-
ble direction may be investigating deep neural networks
to automatically learn such features. Besides, we are also
working on further improving our performance on RGB-D
datasets by enhancing depth quality. Combining semantic
image information (e.g., object detection or segmentation
based on deep neural networks) and 3D point pair features
would also be an intriguing problem to explore.
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