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Efficient Pairwise 3D Registration of Urban
Scenes Via Hybrid Structural Descriptors

Long Zhang, Jianwei Guo, Zhanglin Cheng, Jun Xiao, Xiaopeng Zhang

Abstract—Automatic registration of point clouds captured
by terrestrial laser scanning (TLS) plays an important role
in many fields including remote sensing (e.g., transportation
management, 3D reconstruction in large-scale urban areas and
environment monitoring), computer vision, virtual reality and
robotics, among others. However, noise, outliers, non-uniform
point density and small overlaps are inevitable when collecting
multiple views of data, which poses great challenges to 3D
registration of point clouds. Since conventional registration
methods aim to find point correspondences and estimate
transformation parameters directly in the original point space,
the traditional way to address these difficulties is to introduce
many restrictions during the scanning process (e.g., more
scanning and careful selection of scanning positions), thus
making the data acquisition more difficult. In this paper, we
present a novel 3D registration framework that performs in
a ”middle-level structural space” and is capable of robustly
and efficiently reconstructing urban, semi-urban and indoor
scenes, despite disturbances introduced in the scanning pro-
cess. The new structural space is constructed by extracting
multiple types of middle-level geometric primitives (planes,
spheres, cylinders, and cones) from the 3D point cloud. We
design a robust method to find effective primitive combina-
tions corresponding to the 6D poses of the raw point clouds
and then construct hybrid-structure-based descriptors. By
matching descriptors and computing rotation and translation
parameters, successful registration is achieved. Note that the
whole process of our method is performed in the structural
space, which has the advantages of capturing geometric
structures (the relationship between primitives) and semantic
features (primitive types and parameters) in larger fields.
Experiments show that our method achieves state-of-the-art
performance in several point cloud registration benchmark
datasets at different scales and even obtains good registration
results for data without overlapping areas.

I. INTRODUCTION

With the rapid development of 3D scanning technologies
in recent decades, it has become more convenient for users
to quickly obtain 3D point clouds representing individual
objects, indoor scenes, or large-scale urban and semi-urban
scenes. As it contains the most concise and accurate 3D
information about the real world, 3D point clouds are
widely used in many fields including remote sensing (e.g.,
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Fig. 1. Point cloud registration of an urban scene from Semantic3D
dataset [10] in middle-level structural space, where the target and source
point clouds are depicted in blue and yellow, respectively.

transportation management, 3D reconstruction in large-
scale urban areas and environment monitoring), computer
graphics, computer vision, virtual reality, and robotics, etc.
However, limited to capturing reflections, an individual scan
cannot cover the whole surface of the target scene. To
obtain data that represent a complete scene, multi-view
scans are required to obtain a collection of unoriented point
clouds with full coverage. To unite the raw data, it is
necessary to align unoriented point clouds to a common
coordinate system to reconstruct the real scene. There has
been a great deal of research on point cloud registration [1],
[2], predominantly using the Iterative Closest Point (ICP)
algorithm [3], [4] and its many variants [5]–[9].

Previous works on point cloud registration generally
have two steps: they search for a set of corresponding
point pairs between two point clouds and then estimate the
transformation based on the point pairs. A corresponding
point is usually found by searching for the closest point
or point with a similar local feature. Since these two steps
are performed in the original point space, the correctness
and accuracy of the registration result are highly dependent
on the quality of point clouds in regard to several fac-
tors, such as noise level, outlier ratio, non-uniform point
density, data completeness degree, and the scale of the
overlapping areas between the source and target point
clouds. Generally, it is difficult, if not impossible, to find
correct point correspondences for two point clouds that
have small overlapping areas or no overlapping area. In
addition, when the outlier ratio, non-uniform point density,
and missing data degree are higher, the incorrectness in
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the point distribution increases drastically and thus disturbs
the accuracy of feature point extraction. To address these
difficulties, some plane-based approaches are presented
[11]–[14], but since they are all based on the assumption
that the scene should contain sufficient plane primitives, the
adaptation scenarios are still limited. Furthermore, although
there may exist overlapping planes in point clouds without
overlapping areas, due to each plane contains only 2 degrees
of freedom, these methods need to match at least 3 pairs
of appropriate planes to achieve registration, which is still
difficult to achieve for data that has small overlapping areas
or no overlapping areas. As a result, point cloud registration
remains a challenging problem, especially when two point
clouds have no overlapping areas.

In contrast with previous point cloud registration meth-
ods that perform registration in the original point space,
we propose a new 3D registration framework that ex-
tracts features, determines correspondence and computes
transformation in a constructed feature space, as shown
in the pipeline of Fig. 2. We extended the commonly
used middle-level primitive shape (plane) to include more
curved surfaces (e.g., spheres, cylinders, and cones) and
then proposed a method of constructing a descriptor that has
a bijective relationship with the 6D pose of the raw point
cloud and captures the geometric and semantic structures.
Since these common primitive shapes exist in most urban
and semi-urban scenes, it is reasonable for us to assume
that the point clouds contain these primitive shapes that
represent important structures, e.g., roofs, facades, domes,
and columns, etc. Moreover, the usage of hybrid primitive
shapes improves the registration robustness on point clouds
that lack enough planes or contain many similar local
structures. Last but not least, point clouds without overlap-
ping areas may still have overlapping primitives and can
be registered by matching the overlapping primitives. By
matching the descriptors, the point cloud registration is cast
as the alignment of primitive features using middle-level
semantics (e.g., unit normal vectors of all planes, distances
from the origin of coordinates to the planes, cylinder axis,
cylinder radius, cone axis, and sphere center).

To emphasize the difference from the original ”point
space”, we describe our method as registration that works
on the ”middle-level structural space”. Operating in the
middle-level structural space enables our framework to
overcome the existence of noise, outliers, large holes, and
small overlaps between point clouds since primitive shapes
can be robustly extracted using an efficient RANSAC
algorithm [15]. It should be noted that although there is
another kind of scene abstraction that represents high-level
semantics (e.g., object types and part types), it has weak
generalization potential and is not applicable to registration
tasks. Experiments show that our method achieves state-
of-the-art registration performance in several benchmark
datasets of different scales, including real-world scans of
urban scenes (an example is shown in Fig. 1), and even
obtains good registration results for scans that do not have
overlapping area. (see Fig. 9).

In summary, the main contributions of this work include

the following:
• A novel generalized hybrid structural descriptor com-

posed of multiple 3D primitive shapes. This new
descriptor has a bijective relationship with the 6D
pose of the raw point cloud and is able to capture
the geometric and semantic structures;

• A new estimation method of transformation between
two descriptors based on their contained middle-level
semantics;

• A new and powerful framework for registering raw
point clouds in middle-level structural space using our
specially designed descriptors, which allows registra-
tion with noise, outliers, small overlapping areas and
no overlapping area.

II. RELATED WORK

Geometric registration methods can be roughly divided
into two categories: coarse registration and fine registration.
The former computes an initial alignment of two point
clouds, while the latter aims to further improve the accuracy
of the initial estimate. Fine registration methods are usually
based on an iterative optimization strategy, e.g., the (ICP)
algorithm [3], [4] and its variants [5]–[8] improve the
registration accuracy by iteratively estimating the closest
corresponding point pairs and optimizing the minimum
distance between them. Our method falls into the coarse
registration category and aims at pairwise registration using
local features, which is different from registering multiple
point clouds simultaneously [16], [17] and global feature-
based methods [18], [19]. Therefore, we present a brief
overview of the various techniques related to coarse regis-
tration, as well as some important feature-correspondence
searching strategies since they are crucial to registration.

A. Point feature-based registration

Algorithms in this category usually follow a same pro-
cedure. First, key points are detected in the point cloud
by using key point detectors, such as intrinsic shape sig-
nature [20], 3D Harris [21] and local curvature maximum,
etc. These key points express significant geometric features
within the neighborhood of the point cloud. Next, a local
shape descriptor is constructed to encode the geometric in-
formation around the key points [22]. Johnson and Andrew
E proposed the Spin Image [23] to measure the similarity of
the scene and the model, but it is sensitive to data resolution
changes and noise. Rusu et al. [24] proposed a fast point
feature histogram (FPFH) which has the characteristics of
fast and strong discrimination ability. They also proposed
an algorithm (called SAC-IA) for the online computation
of FPFH features for real-time applications. Tombari et
al. [25] proposed the signature of histograms of orientations
(SHOT), which directly encodes surface normal vectors at
different locations in space, and adds robustness of his-
togram statistics to the geometric distribution information.
Although SHOT is relatively descriptive, it is still sensitive
to point density changes. Guo et al. [26] presented the
RoPS which is robust to noise, but its main drawback is
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Fig. 2. Illustration of the pipeline of our registration framework using two view-opposite scans of a individual object. (a) input point clouds Pt and
Ps which are scanned from opposite angles and almost have no overlapping area; (b) primitive extraction using efficient Ransac [15]; (c) descriptor
construction and matching, where M and N are the number of descriptors for each category; (d) the optimal registration and the corresponding
descriptors pair; (e) 3 perspectives of our registration result.

that the data with uneven distribution of points is poorly
descriptive and the calculation is time-consuming. Frome
et al. [27] extended the 2D shape context features to the
3D domain and proposed 3DSC. This descriptor for the first
time shows the strong differentiation of the property of local
depth. Using FPFH features, Zhou et al. [28] presented
an optimization algorithm for fast global registration with
partially overlapping 3D surfaces. Although these methods
have achieved good results, they still require a large overlap
between the point clouds.

B. Primitive feature-based registration

Compared with the point-based feature, the primitive-
based feature covers a larger range, so it can perform a
higher-level feature abstraction of the point cloud. There
exist a vast number of approaches that focus on primitive
shape extraction [29]. Schnabel et al. [15] proposed the
efficient RANSAC algorithm, which automatically decom-
poses the point cloud into point sets associated with fitted
basic primitive shapes. Che et al. [30] proposed a fast
segmentation method for Terrestrial Laser Scanning (TLS)
data in which the effects of edge-points on the normal
estimation and region growing process were eliminated.
To utilize the advantages of primitive shapes, primitive
feature-based registration methods are proposed by which
the robustness of feature recognition and feature matching
is greatly improved. Habib et al. [31] and Al-Durgham et
al. [32] proposed frameworks for point cloud registration
using 3D straight lines. Yang and Zang [33] extended the
use of straight lines to spatial curves. Based on a prior
knowledge that man-made scenes usually contain many
planes, researchers have proposed various feature construc-
tion and matching methods for the plane sets extracted from
the point cloud. Dold et al. [34] used image information
to improve registration methods based on planar matching.
Xiao et al. [11] proposed an algorithm that uses planes for
registration. After computing the plane area, a combination
of heuristic search and pruning is used to find the optimal
solution using the weighted least squares. Chuang et al. [35]
proposed a multi-feature registration scheme that utilizes
point, line, and plane features to achieve the registrations

of multiple scans obtained from the same or different light
detection and ranging (LiDAR) systems. Based on the deep
convolutional neural network, Shi et al. [12] proposed
a novel RGB-D block descriptor for detecting coplanar
planes in SLAM reconstruction. Hattab et al. [36] pro-
posed a RANSAC-based registration method that focuses
on CAD point clouds using surface primitive group. Since
the number of primitives selected in each round is fixed to
3, it cannot estimate the most accurate transformation by
extracting effective primitive combinations. Xu et al. [13]
proposed to use planar triples based on voxelization to
construct descriptors and combine the RANSAC strategy
for feature matching. On this basis, V4PCS [37] is then
proposed, which further accelerates the efficiency of the
algorithm by establishing voxel-based 4-planes congruent
sets. Recently, Chen et al. [14] proposed the PLADE
method, which aims to use plane-/line-based descriptor
for establishing structure-level correspondences between
point clouds. Plane-based features are more descriptive than
local descriptors, and they are more robust to point cloud
resolution changes and the existence of noise. However, the
common drawback of these methods is that they are suitable
for scenes that contain a large number of planar structures,
thus they are difficult to register scenes dominated by
curved surfaces.

C. Feature correspondence searching strategies

Aiming at increasing the efficiency and accuracy of
pairwise registration, many widely-used efficient feature
correspondence searching strategies are presented includ-
ing geometric hashing [38] and RANSAC [39], [40]. In
addition, some methods have also been proposed to speed
up the establishment of key points correspondences. Aiger
et al. [41] proposed to utilize the affine invariant ratio
by constructing the 4-points congruent sets (4PCS), which
increase the registration efficiency a lot. Mellado et al. [42]
extended the original 4PCS algorithm and use an intelligent
indexing strategy to achieve fast extraction of point pairs,
reducing the computational complexity.
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D. Learning-based registration

In recent years, some methods for constructing features
based on deep neural networks have been proposed to
replace hand-crafted descriptors. For the registration of
indoor scenes, Zeng et al. [43] proposed the 3DMatch
that establishes the correspondence between local 3D data
by learning the descriptors of the local space blocks.
This method can also be extended to different tasks and
scales. Gojcic et al. [44] proposed a new workflow, called
3DSmoothNet, to match 3D point clouds based on a
voxelized smoothed density value (SDV) representation.
They use a Siamese deep learning architecture with fully
convolutional layers to learn a compact local descrip-
tor. 3DSmoothNet achieves state-of-the-art performance on
3DMatch benchmark. For single object registration, Aoki
et al. [45] combined the classic LK image registration
algorithm [46] and PointNet [47] into a single trainable
neural network. This unified network has the advantages
of good generalization ability for various shapes and high
computational efficiency. Wang et al. [48] proposed an end-
to-end method, referred to as Deep Closest Point (DCP),
consisting of three parts: a point cloud embedding net-
work, an attention-based module combined with a pointer
generation layer to approximate combinatorial matching,
and a differentiable singular value decomposition layer to
extract the final rigid transformation. DCP achieves good
results in the registration data set built on ModelNet40 [49].
These learning-based methods can achieve high accuracy
and efficiency on their applicable data set. But they must be
pre-trained on the appropriate dataset, and they are sensitive
to noise and have poor generalization ability.

III. OVERVIEW

In this paper, we propose to construct robust hybrid-
structure-based descriptors for efficiently registering point
sets that have small overlap areas or no overlap area. The
input to our method is a pair of point clouds named source
Ps and target Pt. Our goal is to estimate a 3 × 3 rotation
matrix R and a 3 × 1 translation vector T that transform
Ps to Pt to achieve rigid registration.

Fig. 2 illustrates the overall process of our algorithm
using a simple case, which comprises four main steps.
First, we extract the basic primitive shapes in Ps and
Pt and construct the atomic structure sets {As

k}
4
k=1 and

{At
k}

4

k=1, which abstract the main structure of the geo-
metric primitives. Second, we build descriptors Ds and
Dt by considering the geometric relationships between
paired atomic structures. Next, we match the descriptors
and obtain transformation hypotheses {Rm, Tm}Nm=1 (N is
the number of matched descriptors). Finally, we evaluate
each estimated transformation, and a verification operation
is performed to identify the transformation that achieves
optimal registration, as shown in Fig. 2 (d) and (e).

IV. METHODOLOGY

A. Atomic structures

Primitive shape extraction. Taking into account the ro-
bustness to noise, efficiency and the ability to deal with
a large number of points, we chose to use the efficient
RANSAC algorithm [15] to decompose the entire area of
each point cloud into subsets associated with the fitted
primitive shapes (planes, cylinders, cones and spheres) and
a set of unclaimed points. To further improve the robustness
of primitive extractions, we adopt three simple strategies.
First, the extractions are mainly focused on the major rep-
resentative primitives that cover large areas with large point
numbers. Second, the threshold δ on the maximum distance
between a point and a primitive is set to be small (9 cm in
urban scenes and 4 cm in indoor scenes by default). Third,
the efficient RANSAC algorithm is implemented iteratively
(1 round by default) in the unclaimed point set with δ
increases by 4 cm in urban scenes and 2 cm in indoor scenes
if the number of unclaimed points is higher than 70%
of the total points. Since we extract major representative
primitives robustly, our method can distinguish the surface
of most structures in urban scenes or indoor scenes, e.g.,
building facades, roofs, domes, cylinders, tabletops, floors,
etc. Fig. 3 shows the extracted geometric primitives for the
target point cloud in Fig. 1.

Fig. 3. Primitive shape extraction result for the target point cloud in
Fig. 1, where each primitive is randomly color-encoded.

Atomic structure construction. After primitive shapes
extraction, we discard the remaining unclaimed point set
because it does not represent any of the four primitive
shapes. We construct a set of atomic structures based on the
extracted primitives, which is a mapping from point space
to the middle-level structural space. The atomic structures
abstract the main structure of the geometric primitives and
will be used as basic elements to construct descriptors and
enable them to correspond to unique coordinate systems
in the raw point cloud space. As shown in Fig. 4 (b), we
define 4 types of atomic structures:

• a plane A1 = (p,n) with the normal n and an
arbitrary point p;

• a sphere A2 = (p∗), where p∗ represents the center
of this sphere;

• a line A3 = (l), which can be the intersection of two
planes or the axis of a cylinder;
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Fig. 4. Illustration of our defined atomic structures: (a) primitive shapes
extraction; (b) 2D illustration of atomic structures. The auxiliary lines and
points are explained in upper right.

• a line passes through a given point A4 = (p∗, l). There
are 3 specific cases: the axis and apex of a cone, the
axis of a cylinder and the intersection point with the
plane perpendicular to it, and a spherical center and
the normal of a plane intersecting it.

In the above definitions, p is an arbitrary point on the
surface primitive (e.g., a point on a plane) or on the element
of one primitive (e.g., a point on the axis of a cylinder).
p∗ is called a given point, e.g., p∗ can be a sphere center,
a cone apex, or the intersection point between a line and
a plane. When a pair of atomic structures are in a one-to-
one correspondence, their given points should also match.
The difference between A3 and A4 is the given point along
the straight line, which allows recovery of two additional
degree of freedom. This introduces a difference in the
combination of atomic structures.

B. Hybrid-structure-based descriptors construction

For each view of the raw point clouds, we have obtained
a candidate set of atomic structures. We now propose
the construction of hybrid-structure-based descriptors by
considering the combination of atomic structures. To ensure
validity, a descriptor should have concise ingredients, be in-
formative, and correspond to the raw point cloud coordinate
system, which means it not only needs to abstract geometric
structure information but also contains the minimum num-
ber of primitives to keep a bijective relationship with the
6D pose of the raw point cloud.

We first define three rules to avoid invalid combinations
of the atomic structures:

• R1: for atomic structures a1 and a2, if a1 ⊆ a2
or a2 ⊆ a1 (e.g., a1 is a line and a2 is a plane
that contains a1), it is clear that this combination
only provides information about one atomic structure
which is not enough for registration. Therefore, this
combination is not allowed;

• R2: for atomic structures a1 ∈ A3, a2 ∈ A4 and a3 ∈
A1, if a1 ⊥ a3 or a2 ⊥ a3, we can only recover four
degrees of freedom in the vertical direction of plane
a3, but we cannot obtain the rotation angles around the
axis that is parallel to a3. We discard this combination;

• R3: for atomic structures a1 ∈ A3 and a2 ∈ A3, a1 is
not allowed to be parallel to a2. In this case, although
we can recover two candidate rotations (one is in the
same direction as the correct solution and the other is
in the opposite direction), the translation between the
two structures cannot be obtained.

Based on the above rules, we construct 4 kinds of
descriptors D = {D1,D2,D3,D4}, where each descriptor
D ∈ Di is a multi-dimensional vector. As shown in Fig. 5,
the descriptors are defined as follows:

1) D1 describes the geometric relationship between
two unparallel lines li ∈ A3 and lj ∈ A3,
and each D ∈ D1 is defined as D =
(L1,min(r(li), r(lj)),max(r(li), r(lj)), angle(li, lj),
dist(li, lj)), where L is the label of the descriptor to
distinguish the combination type of atomic structures
that construct this descriptor, r(li) and r(lj) refer
to the radii of their atomic structure, angle(li, lj)
refers to the acute angle between li and lj , and
dist(∗, ∗) denotes the shortest distance between two
atomic structures (e.g., line to line or line to point).

2) D2 describes the relationship between a line li ∈ A3

and a given point p∗
j ∈ A2, and each D ∈ D2 is

defined as D = (L2, r(li), r(pj), dist(li,p
∗
j )).

3) D3 describes the relationship between a
line li ∈ A4 and another line lj ∈ A3,
and each D ∈ D3 is defined as D =
(L3,min(r(li), r(lj)),max(r(li), r(lj)), r(p

∗
i ),

apx(p∗
i ), angle(li, lj),

dist(li, lj)), where apx(p∗
i ) denotes the angle of the

cone at apex p∗
i .

4) D4 describes the relationship between a line li ∈ A3

and a plane Pj ∈ A1, and each D ∈ D4 is defined
as D = (L4, r(li), angle(li, Pj)).

It should be mentioned that even for one descriptor
type, the atomic structures can be quite different, leading
to different vector elements. For example, in a descriptor
D ∈ D3, lj can represent the axis of a cone or a cylinder.
If it is a cone, it is clear that the radius does not exist at the
apex point p∗

i . In this situation, we set r(p∗
i ) as a relatively

large number (e.g., 10 ∗ e6). If li represents a cylinder, the
value of apx(p∗

i ) is set to a relatively large number. As a
result, the distance between the above two descriptors with
different structures is large.

It is important to prove the bijective relationship between
descriptor D and the raw point cloud coordinate system
CP , which is the core of our registration algorithm. Obvi-
ously, each descriptor D is uniquely defined by CP . The
key is to prove that CP can be represented by D in a
unique way. First, a unique local coordinate system can be
recovered from each descriptor D following a predefined
construction strategy. We extract two vectors and a given
point (vi,vj ,p

∗) in each D, such as, for D ∈ D1, vi is
the unit vector of line li, vj is the unit vector of line lj , and
p∗ is the midpoint of the shortest distance between li and
lj , etc. Then, we obtain the X-axis and Z-axis that share
the same direction with vi and vi×vj , respectively. Then,
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Fig. 5. Illustration of 4 kinds of descriptors. Left: atomic structures
used for constructing descriptors. Middle: multi-dimensional vectors of the
descriptors. Right: sectional view of the local coordinate systems defined
by the descriptors.

we obtain the Y-axis direction as vi × vj × vi. Finally,
we translate the origin of the local coordinate system to
the given point p∗ in D. According to the knowledge of
coordinate transformation, CP can be represented by the
local coordinate system uniquely, which means that each
descriptor D has an injective relationship with its raw point
cloud coordinate system CP . Thus, the descriptor has a
bijective relationship with its raw point cloud coordinate
system (D ∼ CP ).

C. Registration

In the registration phase, we aim to examine the cor-
respondence between descriptor Di extracted in Pt and
Dj extracted in Ps. Since Di ∼ CPt

and Dj ∼ CPs
, by

transforming Dj to coincide with Di, the rigid transforma-
tion from CPs to CPt can be computed according to the
invariant property of the equivalence relation.
Descriptors matching. We use the L2 Euclidean norm as
the similarity metric between two descriptors: S(Di, Dj) =
||Di −Dj ||2. Obviously, the closer the Euclidean distance
is to 0, the higher the similarity of the matching pair. Note
that if two descriptors have different labels, they cannot be
matched by directly setting S(Di, Dj) = +∞. Although
embedding the construction and matching of descriptors
into the RANSAC framework can improve the matching
efficiency, to ensure the registration result optimal, we still
enumerate all the effective descriptors and evaluate their
correspondences. First, we organize the descriptors in Pt

into a hash table where the hash keys are their labels
and the values encode the descriptors’ multi-dimensional
vectors. Then, we use a KD-tree to search the most similar
descriptor Dt

i ∈ Dt for Ds
j ∈ Ds by looking that descriptors

up in the hash table when Ds
j is constructed. Finally, we use

Fig. 6. Illustration of our registration process. Left: feature extraction
from 4 kinds of matched descriptors. Right: registration process based on
extracted features.

an additional constraint to ensure the quality of descriptor
correspondences. For a candidate matching pair (Dt

i , D
s
j ),

we conduct a reciprocity test, which means that when Ds
j

is the most similar descriptor to Dt
i and vice versa, they

can be regarded as successfully matched.
Transformation estimation. Fig. 6 (left) shows 4 kinds of
matching configurations, which correspond to the descriptor
types in Fig. 5. To compute the transformation between
any pair of best-matched descriptors (Dt

i and Ds
j ), we first

need to recover two feature lines and a feature point from
each descriptor, which are denoted as (l1tf , l

2
tf ,p

∗
tf ) and

(l1sf , l
2
sf ,p

∗
sf ). In Fig. 6 (left), we also display how we

compute the feature lines and feature points. Using the
matching cases in Fig. 6 (a) as an example, the two feature
lines are the original lines in the descriptor, and the feature
point is the center point of the shortest vector between
two lines. Other matching cases are handled similarly by
making a perpendicular line and computing the intersection
point.

After obtaining the feature lines and feature points, we
compute the transformation between the coordinates recov-
ered from matched descriptors by making {l1tf , l2tf ,p∗

tf}
and {l1sf , l2sf ,p∗

sf} coincide as much as possible. Assuming
that the current descriptor matching is correct, the final
transformation calculation locates Ps and Pt in the same
coordinate system as recovered from their descriptors,
although their coordinate values are still based on the
coordinate system of Pt. On the right side of Fig. 6,
we illustrate the registration process performed on a unit
sphere, where we use unit vectors (v) to represent the
feature lines l with the same colors as these lines (in some
combinations l corresponds to v in two opposite directions).
Specifically, we first compute the rotation matrix R1

m that
rotates v1

sf to v1
tf , then apply rotation R1

m to v1
sf and v2

sf ,
so now v1

sf and v1
tf coincide. Since the rotation applied

by the rotation matrix is based on the Euler angle, the
directly computed matrix of rotation v2

sf to v2
tf is likely to

destroy the current coincidence. Therefore, we first make
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Fig. 7. Illustration of the evaluation between the registered primitives.

v1
tf and v1

sf coincide with the Z to avoid rotation around
the coordinate axis. We obtain the rotation matrix as R2

m

and we apply it to v2
tf and v2

sf . We then compute the
rotation matrix R3

m from v2
sf to v2

tf and finally obtain the
rotation matrix Rm as follows:

Rm = R4
m ·R3

m ·R2
m ·R1

m, (1)

where R4
m is the inverse matrix of R2

m. We give the
translation vector Tm as:

Tm = p∗
tf −Rm · p∗

sf . (2)

D. Optimal registration identification
We estimate the transformation parameters between the

target Pt and source Ps based on the similarity of the ge-
ometric structure. However, due to the existence of similar
details in the scene, transformations derived from similar
geometric structures do not always guarantee registration
correctness. Additionally, among a set of correct registra-
tion results, we hope to identify the optimal one. Since our
structural space contains planes and curved surfaces, the
correctness of the coincidence of curved surfaces is difficult
to misjudge. For example, it is easy to check whether
a sphere and other primitives coincide. For each pair of
primitives (Ti, Tj), we evaluate their coincidence degree
according to the following formula:

score(Ti, Tj) =



ang (Ti, Tj) + 0.5 · (dist (Ti, Tj) + dist (Tj , Ti)) ,
if T is plane;

ang (Ti, Tj) + 0.5 · (dist (Ti, Tj) + |r (Ti)− r (Tj)|) ,
if T is cylinder;

ang (Ti, Tj) + 0.5 · (dist (Ti, Tj) + |apx (Ti)− apx (Tj)|) ,
if T is cone;

dist (Ti, Tj) + |r (Ti)− r (Tj)| ,
if T is sphere,

(3)

where ang (∗, ∗) denotes the angle between two primi-
tives (see Fig. 7), dist (∗, ∗) denotes the shortest distance
between two primitives (point-to-plane distance in planes,
axis-to-axis distance in cylinders and cones, and center-to-
center distance in spheres), r (∗) denotes the radius of the
primitive (cylinder radius or sphere radius), and apx (∗)
refers to the angle of the cone. Only when score(Ti, Tj) is
less than the threshold ζ (which is 0.08 in planes, 0.09 in
cylinders, 0.09 in cones, and 0.1 in spheres), Ti and Tj are
considered coincident. For each pair of primitives verified
to be coincident, we sum their scores to obtain Sm and
count the number of all coincidence pairs as Nm. We give
the evaluation of the transformation Sm as follows:

Sm = α ·Nm +
1

Sm
, (4)

where we set α to be large enough to ensure that
Nm becomes the most important criterion for measuring
registration. By computing Sm for each transformation
{Rm, Tm}, the transformation with the largest Sm can be
considered the optimal transformation, which not only ob-
tains the most coincident primitives but also makes the coin-
cidence the most compact. Since we consider both primitive
descriptors (in the previous stage) and registration quality
to evaluate each transformation, even if primitives with
similar descriptors are wrongly matched, other primitives
from two point clouds can not find matches or have very
small coincidence degrees, which makes the registration
result is of low quality and can be easily rejected.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

In this section, our approach is first tested on several
point clouds of large-scale urban/semi-urban scenes. Then
we provide experiments in multiple registration scenarios
including point clouds of indoor scenes and single objects
to demonstrate that our method outperforms state-of-the-
art registration approaches. Our algorithm is implemented
in C++ and relies on the CGAL Library 1 to detect primitive
shapes from the input point clouds. The shown results are
obtained on a desktop computer equipped with an Intel
Core i7-3770 Processor with 3.4 GHz and 16GB RAM.

Datasets. We select many pairs of point clouds for our
performance evaluation and comparisons from six public-
domain datasets. We first test our algorithm on the Robotic
3D scan repository [50], Semantic3D dataset [10] and Whu-
TLS-dataset [16], both of which contain a lot of outdoor
scenes with planar and curved surfaces. Then, we compare
to a hierarchical method HMMR [16] on their presented
Whu-TLS-dataset. Besides, we compare to the plane-based
descriptor on RESSO [14] which contains real-world scans
of indoor and urban scenes with a small overlap. We
also compare with previous methods on data without over-
lapping areas. Finally, to test the generalization ability
of our method on complex indoor scenes, we conduct

1www.cgal.org
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(b)

(a)

Fig. 8. Registration results of semi-urban and urban scenes. Left: Input
two point clouds. Right: Our registration result.

another comparison on several difficult examples selected
from an RGB-D indoor dataset [44]. In order to avoid
the complicated parameter adjustment work that may be
caused, we re-scale the coordinate of every two-frame point
cloud into a bounding box with length size 2 and inverse
map them in the end. To show the experimental results more
clearly, we may have appropriately cropped the pictures.
Evaluation metric. To determine the registration accuracy,
we measure the deviation between the predicted values
and the ground truth values by calculating the root mean
squared error (RMSE) and mean absolute error (MAE)
for the translations and the Euler angles of the rotations.
Obviously, the closer the RMSE and MAE are to 0, the
more accurate the predicted values.

B. Evaluation

Evaluation on pairwise registrations. Fig. 1 and Fig. 8
display the registration results of the proposed method on
three pairs of point clouds on urban scenes. Our method
constructs descriptors based on the relationships between
primitive shapes. The rigid transformation of Ps is recov-
ered through descriptor matching. In Fig. 1, we show our
registration results on a large scanned urban scene based on
the matching of three planes, and in Fig. 8, we use different
configurations of the matching primitive descriptors for
registration: (a) two planes and a cylindrical surface and
(b) one plane and a cylindrical surface. From these results,
we observe that our approach successfully registered these
pairs of point clouds.

We also conduct experiments on examples that do not
have overlapping areas. As illustrated in Fig. 2, the input
source and target point clouds are generated by scanning
a pipe from two opposite views, and there is almost no
overlapping area between them. Previous methods whose
descriptors are based on key points, lines, or planes cannot
resolve this registration problem due to the absence of
corresponding coordinates and effective plane pairs. By

contrast, our method builds descriptors and finds the cor-
respondence of a cylindrical surface pair in a middle-level
structural space. As a result, we can match the descriptors
between primitives in each point cloud (as shown in Fig. 2)
for registration. In addition, as shown in Fig. 9 (a), we
use a pair of architectural point clouds derived from the
Semantic3D dataset with little overlap as input and suc-
cessfully register them, as shown in Fig. 9 (b). We have
further trimmed the input point cloud of Fig. 9 (a), which
not only reduces the number of potential primitives (points
reduced by 50%) but also ensures that they do not have any
overlapping parts in the real scene. The result of successful
registration is shown in Fig. 9 (c). In Fig. 9 (d), we show
that our method can perform accurate registration in a scene
that contains only one plane and one cylindrical surface.
Evaluation on successive pairwise registrations. Al-
though our method focuses on pairwise registration, we
conduct another experiment to evaluate our overall per-
formance for successive pairwise registrations. Specifically,
among the urban scans of Whu-TLS-dataset [16], we select
all the 10 scans of the ”campus” scene whose ground truth
dimension is (940.616 m × 978.801 m × 218.893 m).
Then, the pairwise registrations perform in three sequences,
which are ”scan 1→ 2→ 3→ 4”, ”scan 7→ 6→ 5→ 4”
and ”scan 10 → 9 → 8 → 4”, respectively. By the
end of successive registrations, all point clouds are aligned
onto the reference point cloud of scan 4 and realize the
registration of a complete ”campus” scene. As shown in
Fig. 10 (a) and (c), the 10 point clouds individually cover
subareas of the complete scene and are correctly registered
by our method. In addition, Fig. 10 (b) and Fig. 10 (d) show
that the building boundaries and building facades are both
aligned accurately, which further verifies the correctness
of the successive registration results. Table I reports the
rotation and translation errors of all registrations, where
the related registration sequences are shown in the third
column. These experimental results demonstrate that our
proposed method performs well in registering successive
point clouds, with the average rotation error (RMSE) and
translation error (RMSE) are 0.1562◦ and 0.1689 m, both
of which are quite small with respect to the dimensions of
the real scene. There are mainly two reasons for the error
accumulation can be limited: first, our method is able to
register pairwise point clouds accurately, which generates
little error; second, the orientation offset caused by rotation
error generated in each pairwise registration is different, so
is with the translation offset.
Evaluation on the feature observations. For urban, semi-
urban and indoor scenes, since most surfaces that cover
large areas are far from each other (usually more than
0.5 m in outdoor scenes and 0.2 m in indoor scenes),
e.g., the distance between two building facades or the
distance between a desk and a floor, our method can easily
distinguish the major representative primitives. However,
when the positions and angles of similar primitives are
too close, they may be hard to be separated. As shown in
Fig. 11 (a), the facades of two buildings in the black box
are nearly coplanar and are not separated. In such cases,
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(b) (c) (d)(a)

Fig. 9. Our algorithm takes as input a pair of point clouds with a very small overlap (a), which is particularly challenging for 3D registration. We
propose to find correspondences between primitives and successfully register such data in a middle-level structural space (b). Our algorithm also works
when data completeness is only 50% and does not contain any common parts of the real-scene (c). Our algorithm even achieves registration when the
real-world scene contains only two primitives (d).

(a) (b)

(c) (d)

Fig. 10. Successive registration result of the 10 scans from the ”campus” sub-set of Whu-TLS-dataset [16], where points from different point clouds
are rendered with different colors. (a) and (c) are two side views; (b) is the plain view; (d) shows two zoom-in views of (c).

because our method uses the least number of primitives to
represent each local structure, even if some of the extracted
primitives are not accurate, we can still construct and
match effective combinations composed of other accurate
primitives. Therefore, as shown in Fig. 11 (b), our method
registers point clouds by matching primitive combinations
located in the orange boxes.
Evaluation on noises. In order to evaluate the impact
of noises on registration performance, we added Gaussian
noise increasingly to the point clouds from the ”campus”
subset of the Whu-TLS-dataset [16], where the standard de-
viation σ is set to 2.5, 5, 7.5, 10, 12.5, 15, 17.5 and 20 cm,
respectively. As shown in Fig. 12 (a), although the number

of extracted primitives in target and source point clouds
fluctuates along with the increasing noise, we can still
register point clouds by matching about 11 pairs of major
representative primitives. Moreover, as shown in Fig. 12 (b),
our method registers the eight pairs of noisy point clouds
correctly, where the average rotation and translation errors
are 0.166◦ and 0.2578 m. Comparing with the dimensions
of the real scene (638.029 m × 833.059 m × 177.237 m)
and the point spacing (0.1002 m), the errors are small and
can satisfy the requirement of coarse registration. Fig. 12
(c) displays the registration result at noise level σ = 20 cm
and locates the primitive combinations that are matched
in orange boxes. These experimental results demonstrate
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(b)(a)

Fig. 11. Registration result on Robotic 3D scan repository [50]: (a) the primitive extraction result; (b) the matching result of three pairs of primitives.

TABLE I
QUANTITATIVE ANALYSIS OF THE SUCCESSIVE REGISTRATION

RESULTS.

Data
Avg. point Registration Rotation err.(deg) Translation err.(m)
spacing(m) Sequence RMSE MAE RMSE MAE

Scan 1 0.1153
Scan 1-2 0.0782 0.0738 0.0701 0.0695

Scan 1-2-3 0.0198 0.0181 0.1772 0.1402
Scan 1-2-3-4 0.1228 0.1095 0.193 0.1762

Scan 2 0.1144
Scan 2-3 0.0721 0.0612 0.167 0.1491

Scan 2-3-4 0.1502 0.1186 0.1932 0.1465
Scan 3 0.1165 Scan 3-4 0.1329 0.1129 0.023 0.0223
Scan 5 0.1075 Scan 5-4 0.0575 0.0433 0.056 0.0485

Scan 6 0.0824
Scan 6-5 0.1507 0.1304 0.2443 0.2133

Scan 6-5-4 0.1964 0.1747 0.3006 0.2871

Scan 7 0.0597
Scan 7-6 0.3487 0.2887 0.067 0.0644

Scan 7-6-5 0.3375 0.3281 0.2887 0.2381
Scan 7-6-5-4 0.3331 0.3211 0.349 0.3428

Scan 8 0.0939 Scan 8-4 0.2051 0.1758 0.0831 0.062

Scan 9 0.1136
Scan 9-8 0.0303 0.0275 0.0662 0.0652

Scan 9-8-4 0.1899 0.1356 0.3039 0.2393

Scan 10 0.1199
Scan10-9 0.0686 0.0452 0.0526 0.0457

Scan 10-9-8 0.0604 0.0493 0.1274 0.1267
Scan 10-9-8-4 0.2582 0.1688 0.2772 0.2316

that our method is robust to the noises and can register
point clouds correctly, as long as the major representative
primitives are not contaminated severely and a sufficient
number of them can be extracted.

C. Comparisons

We now compare our method against various registration
competitors, including three classic approaches based on
feature points (SAC-IA [24], Super4PCS [42], FGR [28]),
a Plane-based registration method (PLADE [14]), and
two recent deep learning approaches (3DSmoothnet [44],
DCP [48]). These methods provide a plethora of compari-
son to other techniques and establish themselves as state-
of-the-art methods. Besides, we use the same voxel size
when computing the FPFH feature for SAC-IA [24] and
FGR [28] approaches.
Comparison on point clouds of urban scenes. Fig. 13
visualizes the registration results of different methods on
three pairs of real-scans in which the ground truth dimen-
sions are 794.385 m × 808.98 m × 616.179 m, 880.754 m

(b)
b

(a)

(c)

(a) (b)

Fig. 12. Registration results on point clouds with increasing noise
level: (a) the numbers of the extracted primitives and the primitives that
are matched in a pair of point clouds obtained from the Whu-TLS-
dataset [16]; (b) the rotation and translation error at each noise level;
(c) the visualization of registration result at noise level σ = 20 cm.

× 710.86 m × 318.738 m, and 195.506 m × 214.653 m
× 61.9268 m, respectively. Table II gives a quantitative
analysis of the registration results in Fig. 13. From the
comparison, it can be seen that the 3 registration methods
based on feature points have similar prediction accuracy for
rotation. However, although we constructed the same FPFH
features for SAC-IA and FGR, the translation accuracy of
FGR on the scene in Fig. 13 (b) is significantly higher
than SAC-IA. At the same time, Super4PCS shows obvious
translation errors in all experimental cases due to incorrect
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(b) (c)

Input

Ours

FGR

Super4PCS

SAC-IA

Ground Truth

(a)

Fig. 13. Comparison with previous methods on three pairs of point clouds of large-scale urban scenes. The data in (a) and (b) are from Robotic 3D
scan repository [50], while the data in (c) is from Semantic3D dataset [10].

matching of feature points. In urban scenes, there are many
similar local features that are very close, e.g., different
doors or windows in the same building; therefore, even
if the rotation error of Super4PCS is relatively small, its
translation error may still be large. By contrast, our method
can perceive a larger range of geometric structures, so it is
not sensitive to locally similar features.

From the RMSE and MAE calculated for rotation and

translation in Table II, it can be seen that the registration
result obtained by our method is closest to the ground
truth. Moreover, the average RMSEs for rotation and
translation errors are 0.3523◦ and 0.2366 m, which are
small comparing with the dimensions of the real scenes
and only twice the average point spacing (0.1131 m).
The experiment results further verify our proposed method
performs well in registering the TLS point clouds for urban
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TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON POINT

CLOUDS OF URBAN SCENES.

Data
Avg. point

Method
Rotation err.(deg) Translation err.(m) Time

spacing(m) RMSE MAE RMSE MAE (s)

Fig. 13 (a) 0.1293

SAC-IA 1.5477 1.3717 3.3706 2.3568 125.775
Super 4PCS 1.9096 1.1732 8.3882 7.0623 288.287

FGR 2.4825 2.1026 1.3482 1.0782 57.6015
Ours 0.1808 0.1161 0.1591 0.1584 19.518

Fig. 13 (b) 0.1273

SAC-IA 2.0659 1.7483 12.215 10.1572 110.663
Super 4PCS 1.5577 1.3342 5.5534 4.4959 264.709

FGR 1.6755 1.3719 1.9085 1.6097 39.0356
Ours 0.6721 0.5049 0.4852 0.4399 17.917

Fig. 13 (c) 0.0828

SAC-IA 1.2137 1.0813 0.9366 0.8392 133.017
Super 4PCS 4.9007 3.549 2.062 1.5555 322.872

FGR 1.9462 1.4587 0.8228 0.613 61.0737
Ours 0.204 0.1442 0.0654 0.0561 28.811

scenes, especially considering that our method belongs to
the coarse registration category. It can also be seen that
since Super4PCS relies on searching for the corresponding
4-point-sets in Ps and Pt, the corresponding relationships
produced by this method have nothing to do with the
similarity of local features but are related to the point
numbers. Due to the significant local features in these
examples, the efficiency of Super4PCS is slower than that
of the other methods. For local feature-based methods,
although the number of points participating in the FGR
and SAC-IA operation is under the same downsample scale
(in the FPFH-computing stage), FGR directly predicts the
transformation parameters between the corresponding point
pairs through optimization of an objective function, and it
has a faster speed than SAC-IA. By contrast, our method
registers the raw point clouds in the primitive space, thus
the efficiency depends on the performance of the primitive
shape extraction step, descriptor construction and matching
step, and the transformation estimation step. In terms of
the primitive shape extraction step, its efficiency is also
related to the point number; however, it is still much faster
than point-based registrations. For the other two steps, the
efficiency depends on the primitive number and the number
of matched descriptor pairs which are much less than
the original point number and the feature-point number,
respectively. Meanwhile, in the entire processing chain
of our method, the primitive extraction step is the most
computationally expensive part, and the time consumptions
in Fig. 13 (a) to (c) are 19.327 s, 17.712 s and 28.623 s,
respectively. In comparison with SAC-IA, Super4PCS and
FGR, our method is the most efficient.
Comparison to HMMR on the Whu-TLS-dataset. We
now compare our method with a hierarchical merging-
based registration method (HMMR) on the Whu-TLS-
dataset [16]. Note that the HMMR method contains a
fine registration step which is not utilized in our method.
In Fig. 14, we visualize the comparison results, where
the ground truth dimensions of scenes (a), (b) and (c)
are 388.616 m × 155.318 m × 10.5235 m, 255.592 m
× 262.477 m × 93.394 m, and 899.628 m × 898.404 m

TABLE III
QUANTITATIVE COMPARISON OF OUR METHOD WITH HMMR [16].

Data
Avg. point

Method
Rotation err.(deg) Translation err.(m)

Spacing(m) RMSE MAE RMSE MAE

Fig. 14 (a) 0.0207
HMMR 0.0106 0.0071 0.121 0.0841

Ours 0.0091 0.0065 0.1441 0.1361

Fig. 14 (b) 0.0548
HMMR 0.0043 0.003 0.0043 0.004

Ours 1.6094 1.4761 0.394 0.3128

Fig. 14 (c) 0.0625
HMMR × × × ×

Ours 1.3974 1.0748 0.4088 0.3372

TABLE IV
QUANTITATIVE COMPARISON OF OUR METHOD WITH PLADE [14].

Data
Avg. point

Method
Rotation err.(deg) Translation err.(m)

spacing(m) RMSE MAE RMSE MAE

Fig. 15 (a) 0.0062
PLADE 1.1661 0.9738 0.08 0.0697

Ours 0.1815 0.1774 0.1518 0.1414

Fig. 15 (b) 0.0086
PLADE 0.4361 0.3713 0.0838 0.0658

Ours 0.376 0.3483 0.112 0.0933

Fig. 15 (c) 0.1198
PLADE 0.2716 0.2072 0.1094 0.0936

Ours 0.1815 0.1774 0.1565 0.1338

× 57.5262 m, respectively. For the ”subway station” scene
in Fig. 14 (a), our method successfully registers the raw
point clouds and achieves better rotation estimation perfor-
mance than HMMR, which is also verified in Table III.
Because we use primitives to register the point clouds,
our method has obvious advantages in the urban scenarios;
however, our method can also perform registrations on
some nature scenes by extracting and matching the approxi-
mately accurate primitives, see the ”mountain” scene shown
in Fig. 14 (b). From Table III, we can see that since HMMR
utilizes binary shape context descriptors, they are more
capable of dealing with nature areas and obtains higher
accuracy. However, HMMR fails in the registration of the
difficult ”railway” scene (see Fig. 14 (c)) because it contains
too many similar local features. By contrast, we can still
register the input by matching primitives despite relatively
large errors occurring in both rotation and translation.
Comparison to PLADE on the RESSO dataset. We
now compare our method with the state-of-the-art plane-
based registration method, PLADE, on the 3Dmatch and
RESSO [14] datasets. Fig. 15 and Table IV report the
comparison results. The ground truth dimensions of scenes
in Fig. 15 (a), (b) and (c) are 3.298 m × 2.072 m × 2.19
m, 12.2759 m × 14.5238 m × 5.9677 m, and 338.641
m × 242.85 m × 153.613 m, respectively. In Fig. 15 (a),
our method recovers the transformation parameters using
the descriptor based only on planes, while in Fig. 15 (b)
and (c), the best matching descriptors constructed by our
method consist of planes (1 in (b) and 2 in (c)) and cylinders
(1 in (b) and (c)). From the results, we see that our method
can achieve similar performance to PLADE on point clouds
with planar primitives. However, in addition to plane-based
shapes, our method can also handle point cloud registration
for shapes and scenes that are composed of curved surfaces.

Comparison on point clouds without overlapping areas.
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HMMR Ours
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Input Ground Truth

Fig. 14. Comparison with HMMR [16] on large-scale outdoor scans in the Whu-TLS-dataset.

In Fig. 16, we make a further comparison on point clouds
without any overlapping area. We obtain point clouds by
scanning objects from two opposite views or crop the
existing views so that there do not exist overlapping areas

between each pair of point clouds. We also downsample
source Ps and target Pt in Fig. 16 (a) and (b) with different
scales to ensure that they have different average point
spacing, e.g., 0.0124 m in Ps and 0.0208 m in Pt for Fig. 16
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PLADE Ours

Fig. 15. Comparison with PLADE [14] on different pairs of point clouds in the 3DMatch dataset (a) and RESSO dataset ((b) and (c)).

Ours

FGR

SAC-IA

Input

(a) (c)(b)

Fig. 16. Comparison with previous methods for registering point clouds
with different point densities and without any overlapping area.

(b). As shown in Fig. 16, SAC-IA and FGR perform poorly
due to the absence of enough point correspondences. Since

our method is based on the abstraction of the primitives in
the structural space, we can successfully register Ps and Pt

with high accuracy by matching the overlapping primitives.
Comparison on 3DMatch dataset. We now compare
registrations of indoor scenes on the 3DMatch dataset. In
addition to SAC-IA [24] and FGR [28], we also compare to
a deep learning method 3DSmoothNet [44], which achieves
state-of-the-art performance on the 3DMatch dataset.

Fig. 17 and Table V report the qualitative and quantitative
comparison results, where the ground truth dimensions are
2.994 m × 1.242 m × 2.178 m, 2.628 m × 2.4 m × 2.514
m, 2.67 m × 3.5936 m × 4.3673 m, 4.0586 m × 2.4444
m × 2.4879 m. In this experiment, due to incorrect point
pair correspondence, FGR failed in all cases, while SAC-
IA only achieved the near-accurate result shown in Fig. 17
(a) and still had considerable RMSE and MAE errors.
3DSmoothNet has successfully registered point clouds in
Fig. 17 (a) and (b), but the quantitative statistics show that
our results have lower RMSE and MAE. The difficulty of
the cases in Fig. 17 (c) and (d) is that the overlapping area
between the two-frame point clouds is too small and has
too many repetitive local features. The comparison shows
that only our method has achieved successful registration
results thanks to the best matching between primitives in the
structural space. Although we notice a relatively large error
in our result on the example in Fig. 17 (c), our approach
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Fig. 17. Comparison with previous methods on four pairs of indoor point clouds in 3DMatch dataset.

TABLE V
QUANTITATIVE COMPARISON OF DIFFERENT METHODS ON 3DMATCH

DATASET. [44]

Data
Avg. point

Method
Rotation err.(deg) Translation err.(m) Time

spacing(m) RMSE MAE RMSE MAE (s)

Fig. 17 (a) 0.0062

SAC-IA 1.7688 1.564 0.0885 0.0757 82.637
FGR 8.0091 6.2351 0.3366 0.2551 4.1936

3DSmoothNet 0.4504 0.4374 0.0182 0.0166 56.1282
Ours 0.4165 0.4079 0.0097 0.0086 4.5423

Fig. 17 (b) 0.0062

SAC-IA 98.5408 89.8151 1.9669 1.8997 173.525
FGR 5.8391 5.4922 0.0834 0.083 6.3354

3DSmoothNet 1.0537 0.9413 0.0325 0.0272 57.1807
Ours 0.9353 0.9123 0.0207 0.0154 6.609

Fig. 17 (c) 0.0062

SAC-IA 93.4877 93.2583 3.3444 3.0574 86.014
FGR 114.573 114.269 2.1334 2.0335 5.5208

3DSmoothNet 127.282 106.317 1.8102 1.806 55.1595
Ours 6.16 5.0516 0.088 0.0798 12.2228

Fig. 17 (d) 0.0062

SAC-IA 26.5245 21.6016 1.3629 1.2677 179.873
FGR 56.0427 49.4405 1.7233 1.6502 8.1258

3DSmoothNet 116.658 103.406 3.3875 3.03 58.1974
Ours 0.967 0.7684 0.0318 0.0251 13.981

still outperforms other methods, especially for point clouds
with small overlapping areas.

From the perspective of algorithm efficiency, FGR is the
fastest. Since the deep learning method 3DSmoothNet is
a two-stage method and its feature point acquisition speed
in the first stage is not fast, the efficiency is slow. From
Table V, we can see that as the number of points increases
(e.g., from (a) to (b), and (c) to (d)), the efficiency of FGR
decreases slightly, while the efficiency of SAC-IA is greatly
reduced. By contrast, the primitive shape extraction step
is less sensitive than the point-based registrations to the
increasing point number, and its time consumption related
to Fig. 17 (a) to (d) is 4.5183 s, 6.264 s, 12.0928 s and
13.537 s, respectively. In addition, since the efficiency of
our core registration steps only depends on the primitive
number and the number of descriptor pairs that are matched,

our method is still fast enough in registering indoor scenes.

D. Discussion

To further analyze the characteristics of the proposed
hybrid structural descriptors, we provide a comprehensive
discussion of the overall performance of our method in
experiments shown in Fig. 2, Fig. 8, Fig. 9 and Figs. 12-17.
Similar to other registration methods, the robustness of our
descriptors mainly relies on the percentage of overlapping
primitives and the effectiveness of primitive configurations.
Note that the percentage of overlapping primitives is not
rigorously related to the percentage of the overlapping ar-
eas. Even though the overlapping areas do not exist, the per-
centage of overlapping primitives may still be surprisingly
large, e.g., examples shown in Fig. 9 (d) and Fig. 16 (a),
(b). In general, as the percentage of overlapping primitives
increases, there are more useful primitive features, which
then make our method generates more effective descrip-
tors and prone to obtaining higher registration quality. In
contrast, when the percentage of overlapping primitives
reduces, there are more invalid descriptors constructed from
the non-overlapping primitives, which makes it harder to
obtain high-quality registration. However, since the hybrid
structural descriptors accurately encode the local structures,
the valid descriptor pairs can always be chosen under a
strict constraint in the matching process and make correct
registrations achieved, e.g., examples shown in Fig. 12 and
Fig. 17 (b), (c), (d).

We also make quantitative analysis about the registration
performances in terms of different primitive configurations,
except for the cases on the repeated scene in Fig. 12 and the
hard case in Fig. 17 (c). It should also be noted that for the
scene shown in Fig. 9, we only statistic the registration
(d) as its representative. Table VI reports the average
RMSEs of rotation and translation errors for registrations
that matching different primitive configurations, where pln,
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TABLE VI
QUANTITATIVE ANALYSIS OF THE REGISTRATION PERFORMANCE IN

TERMS OF THE PRIMITIVE CONFIGURATION OF DESCRIPTORS.

Type ID
Atomic Primitive

Num.
Avg. RMSE of

Example
structure configuration rotation(deg.) translation(m)

D1

1 A3,A3 2 pln, 2 pln 7 0.3576 0.1478 Fig. 17 (a)
2 A3,A3 2 pln, 1 cyl 7 0.1197 0.0815 Fig. 16 (c)
3 A3,A3 1 cyl, 1 cyl 1 0.0016 0.0035 Fig. 2 (e)

D2 4 A3,A2 2 pln, 1 sph 1 1.6094 0.394 Fig. 14 (b)

D3

5 A4,A3 1 con, 1 cyl 1 0.0852 0.0016 Fig. 16 (b)
6 A4,A3 1 con, 2 pln 1 0.0207 0.0154 Fig. 17 (b)
7 A4,A3 1 pln, 2 cyl 2 0.095 0.1516 Fig. 13 (a)

D4
8 A3,A1 1 cyl, 1 pln 2 0.291 0.065 Fig. 9 (d)
9 A3,A1 2 pln, 1 pln 5 0.4359 0.1672 Fig. 17 (d)

cyl, con and sph stand for the plane, cylinder, cone and
sphere, respectively. By comparison, plane and cylinder
primitives are used most commonly in our experiments. At
the same time, cone and sphere primitives are also utilized
to register point clouds that lack enough accurate plane or
cylinder primitives, e.g., examples shown in Fig. 17 (b)
and Fig. 14 (b). In terms of accuracy performance, the
deviations of registrations by matching different primitive
configurations are small. However, when ignoring configu-
ration 4 whose primitives are approximately extracted in a
nature scene, registrations by matching two plane-based de-
scriptors, configurations 1 and 9, obtain the comprehensive
worst performance with the largest rotation and translation
errors. There are two main reasons for the phenomenon.
On one hand, for plane-based descriptor pairs with the
same composition, we only estimate the transformation
parameters once. Therefore, since only one plane normal
and one intersection line or two intersection lines contribute
to the rotation estimation, the probability of estimating
rotations by matching the 2 direction vector pairs that
have the highest similar degrees in 3- or 4-plane-based
configurations is only 1/C2

3 = 1/3 or 1/C2
4 = 1/6, re-

spectively. Although estimating the rotations between every
plane-based descriptor pairs with the same composition
can reduce the rotation error, the computation consumption
also increases by 3 or 6 times, which is not affordable
when there are too many planes. On the other hand, in
order to acquire the translation parameters, it’s essential
to compute the intersection point of three planes or the
midpoint of two intersection lines in each 3- or 4-plane-
based configuration, which may accumulate more error
compared with the directly computing the intersection point
or midpoint of two primitive elements. In conclusion, the
overall experimental results demonstrate that the proposed
hybrid structural descriptors encode structural features with
high accuracy, as well as making our method performs
well in registering point clouds of urban/semi-urban scenes,
indoor scenes and individual objects, which can satisfy the
requirements of downstream applications in remote sensing
and computer vision fields.

TABLE VII
QUANTITATIVE ANALYSIS OF THE REGISTRATION PERFORMANCE IN

TERMS OF USING ONLY PLANE PRIMITIVES AND MULTI TYPES OF
PRIMITIVES.

Data
Using only plane primitives Using multi types of primitives

RMSE(R) (deg) RMSE(T) (m) RMSE(R) (deg) RMSE(T) (m)
Fig. 10 ”Scan 1-2” 0.1905 0.2954 0.0782 0.0701
Fig. 10 ”Scan 3-4” 0.1916 0.2589 0.1329 0.023
Fig. 10 ”Scan 9-8” 0.1931 0.2839 0.0303 0.0662
Fig. 10 ”Scan 10-9” 0.1599 0.231 0.0686 0.0526

Fig. 13 (a) 0.2245 0.2885 0.1808 0.1591

E. Limitations

We successfully perform point cloud registration by
matching geometric primitives under relation constraints in
a structural space. Since the construction of the hybrid-
structure-based descriptors requires the point cloud to be
stereoscopic, our method cannot handle the registration
of point clouds with a shape that is close to a plane. In
addition, according to the registration errors that statistic in
Table VII, although the registration performances of using
multi types of primitives are good, it has large uncertainty
when only planes are used or only planes are available
in the scene. Moreover, our method aims at registrations
on urban/semi-urban and indoor scenes, for complicated
natural scenes that are hard to extract the approximately
accurate primitives (e.g., humans, forests), it remains a
challenge for us to successfully constructing our structure-
based descriptors, thus the proposed method often fails to
return correct solutions.

VI. CONCLUSION AND FUTURE WORK

We have presented a new approach for point cloud
registration. Our method transforms the point clouds into
the middle-level structural spaces, achieves accurate reg-
istration by matching the structure-based descriptors that
capture the relationships between geometric primitives.
Experiments prove that our method is robust to data that
contain noise, partial points, small overlapping areas, and
even none overlapping areas. We also demonstrated the
advantages of our approach by comparing to the state-of-
the-art methods on previous benchmark datasets.

Although our method performs registration based on
the middle-level geometric structures, it still lacks an
understanding of high-level semantics. This causes our
method to have larger registration errors when it encounters
the point clouds are full of extremely similar geometric
structures. In future work, we would like to incorporate
high-level semantic information into our method to improve
the accuracy and efficiency of feature matching. Besides,
we would also like to use graph optimizations to further
improve the robustness of hybrid structural features and
estimate the transformation parameters simultaneously in
multiple scans by using a non-linear optimization method.
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