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Abstract

Automatic understanding of floor plan images is a key component of various ap-

plications. Due to the style diversity of rural housing design, the latest learning-

based approaches cannot achieve satisfactory recognition results. In this paper,

we present a new framework for parsing floor plans of rural residence that com-

bines semantic neural networks with a post-processed room segmentation. First,

we take case studies from typical residential buildings in China’s rural areas and

provide a novel image dataset, called RuralHomeData, containing 800 rural res-

idence floor plans with accurate man-made annotations. Based on the dataset,

we propose a new deep learning-based recognition framework using a joint neu-

ral network to predict the geometric elements and text information on the floor

plan simultaneously. Our insight is that walls and openings (doors and win-

dows) are the basic elements corresponding to the room boundary that a closed

1D loop must form a certain room. Then the semantic information (e.g., the

room function) of room regions can be obtained through text detection and

identification. Furthermore, we use the MIQP algorithm to divide the area con-

taining multiple room type texts into multiple room areas. Finally, the input

floor plan can be transformed into a room layout graph with room attributes
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and adjacent relationships. The proposed algorithm has been tested on both ur-

ban and rural datasets, and the experimental results demonstrate our efficiency

and robustness compared with the state-of-the-art methods.

Keywords: Floor plan understanding, rural residence, neural networks.

1. Introduction

A floor plan is the most fundamental architectural diagram used to show the

layout of rooms in a building by the spatial configurations between its elements

(e.g., windows, doors, walls) and room type texts. In the past decades, floor plan

understanding remains an active research topic in the field of pattern recognition5

and document analysis.

Specifically, given an input floor plan image, not only the individual floor

plan elements as well as their geometric properties (such as wall length, window

size) are detected, but also the meaningful semantic units associated with high-

level information (such as room function) can be identified. Early works focus on10

analyzing floor plans based on low-level image processing, such as line detection

through Hough transform [1], graphical symbol recognition by a bag-of-words

model [2]. However, the performance of these methods is largely limited by the

representation power of the hand-crafted features.

Recently, several data-driven techniques [3, 4, 5] based on the convolutional15

neural networks (CNNs) have achieved promising results. However, the public

datasets [6, 3, 7, 8] they used are collected from the apartments of urban resi-

dence, where the complexity of the floor plans is limited, e.g., the types of rooms

are relatively few and the graphic elements are regular straight lines. By con-

trast, the architecture of rural residences is more complex, and their structure20

of rooms is related to the local environment, production mode, and residence

lifestyle. Therefore, buildings in different rural areas have different geometric

structural layouts and functional space rooms as shown in the figure 1 (top) for

the two rural residence floorplans from different provinces in China. In general,

these learning methods cannot achieve satisfactory prediction results on the ru-25
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Figure 1: Top: the buildings in different rural areas have different structural layouts and

functional space regions. Bottom: our parsing results by elements recognition and room

segmentation.

ral dataset due to various irregular geometric elements (including arcs, diagonal

walls) and a large number of room types.

In this paper, we propose a new deep learning-based recognition framework

with an emphasis on better-understanding floor plans of rural residence. To this

end, we have first built a new dataset containing 800 real rural residential floor30

plans from the China region, in which the annotation ground truth of each floor

plan is manually labeled. Compared to previous work [4, 5], we not only labeled

the geometric elements and the room semantic information but also labeled the

room type text information. Because there are many room types in the rural

floor plan, the room prediction accuracy is far beyond satisfactory. Our algo-35

rithm is based on two intuitive observations: first, walls and openings (doors and

windows) are the graphical elements corresponding to the room boundary, and

a closed 1D loop forms a certain room, where an adjacency between two rooms

means they are connected by sharing walls or openings; second, the semantic

information (e.g., the room function) of room regions can be obtained through40

room type text detection and identification. In our approach, we first propose

a joint deep neural network to address the graphical elements recognition and

3



text detection of floor plans simultaneously. Then we recover the geometric and

semantic structure of a floor plan by optimizing elements prediction results and

using a MIQP-based room parametrization and segmentation method. Finally,45

we construct a room layout graph with room attributes and adjacent relation-

ships from the input floor plan. In summary, our main contributions include:

• We design a joint neural network that simultaneously performs two tasks:

recognizing basic graphical elements and detecting the room type text.

Followed by room segmentation and layout generation, our framework is50

simple and effective to handle a variety of floor plan images. We also

provide a splitting module to handle the input with arbitrarily large size.

• To effectively train our networks, we provide a novel and high-quality im-

age dataset, called RuralHomeData, containing 800 real-world floor plans

of rural residence with man-made detailed annotations. To the best of our55

knowledge, we are the first to analyze the floor plans of rural residence.

2. Related work

Hand-crafted floor plan parser. Early works on floor plan understanding

rely on a bunch of low-level image processing and strong heuristics. Gener-

ally, a floor plan contains graphic elements and text information. Therefore,60

traditional methods. [9, 10, 11, 1, 12, 13, 2, 14, 15] usually divide a floor plan

into a text image and a graphic images and then extract key graphic elements

from the graphic image to generate a 3D model. For example, Dosch et al. [9]

analyze the architectural drawings by feature extraction and detect the basic

architectural entities for the 3D building reconstruction. Or et al. [10] solve a65

slightly simplified problem that considers only walls, doors, and windows and

convert a floor plan into the corresponding 3D description. Macé et al. [11]

propose to segment the architectural floor plans into rooms based on wall and

door detection by Hough transform. Ahmed et al. [1] apply a novel prepro-

cessing method to separate texts from graphics and extract walls according to70
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line thickness, and the door and windows are located finally. de las Heras et

al. [12] present an automatic wall segmentation method by assuming that the

wall is a repetitive element and usually modeled by straight parallel lines. This

method performs well on high-resolution images with different graphical styles.

In their other works, they use the patch-based segmentation approach to detect75

walls [13], or the basic building blocks using a statistical approach where the

rooms are located by the structural pattern recognition techniques [2].

At the same time, there are also some methods that consider text informa-

tion to guide room type detection. Ahmed et al. [14] retrieve the meaningful

room labeling by OCR and split floor plans into rooms vertically or horizon-80

tally according to the distribution of labels. Ravagli et al. [15] take the suitable

pre and post-processing steps to improve the performance of text extraction,

classification, and recognition in floor plan images. Besides, text information
R2 A2

also plays an important role in many text-enriched tasks such as VQA [16], im-

age captioning [17], text recommendation [18] and cross-domain retrieval [19],85

etc. Due to the complexity of these tasks, they usually need a large scale of

training data, e.g., the ST-VQA [16] includes 23,038 scene images and 31,791

questions. However, in contrast to the above tasks, the number of room-type

texts in floor plans is relatively limited, and we can effectively identify room type

texts through OCR technology. Our proposed image splitting module further90

indirectly expands the training data.

However, those low-level methods based on hand-crafted features are error-

prone, and their generality is limited in the real world as they need to manually

tune the specific parameters when dealing with different datasets.

Deep floor plan analysis. With the rapid development of deep learning tech-95

nology, the models based on deep convolutional neural networks achieve state-of-

the-art results in automatic floor plan analysis. Dodge et al. [20] propose to use

a fully convolutional network (FCN) for wall segmentation, the Faster R-CNN

for object detection, finally an optical character recognition API for estimating

room sizes. Liu et al. [3] adopt a learning-based approach to extract a set of100

junctions and apply integer programming to encode high-level constraints. They
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extracted the constraints in recovering the floor plan data from a raster image.

However, this method cannot handle irregular layouts due to the assumption of

the Manhattan world and uniform wall thickness. Later, Huang and Zheng [21]

apply pix2pixHD in recognizing and generating architectural drawings, marking105

rooms with different colors, and then generating apartment plans through two

convolutional neural networks. Jang et al. [22] propose an automatic method to

extract the wall from a floor plan according to the indoor spatial information

standard. Yamasaki et al. [4] also utilize FCN to segment floor plan images,

then the semantic segmentation forms a graph model to measure the structural110

similarity. A recent work of [5] designs a deep multi-task neural network to

predict room-boundary elements and rooms with types. However, the kernels

in the context module are not efficient for the learning of spatial relations. And

the pixel labels of the rooms and other elements are noisy, thus the performance

is beyond satisfactory.115

There are also some recent methods that focus on geometric structure and

image semantic understanding. For example, Cheng et al. [23] propose the

DARNet to extract polygon-based contours as building boundaries for auto-

matic building segmentation. Some researchers focus on image understanding

in different scenarios, such as multi-view image matching based on consistent120

affinity graph learning [24] and fashion compatibility prediction based on low-

rank hypergraph regularizer multiple-representation learning [25].

Floor plan generation. Related to floor plan analysis, there are many other

works with a special focus on designing and generating floor plans, i.e., deter-

mining the position and size of several rooms [26, 8]. Besides, reconstructing125

3D room layouts from RGB images [27, 28, 29, 30], or RGBD streams [31] have

recently gained a lot of attention from researchers. A detailed survey is out of

the scope of this paper, we refer readers to the above references for an in-depth

review of this area.
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Figure 2: Overview of our framework. Given an input floor plan image (a), our deep recog-

nition network detects the graphical elements and text locations simultaneously (b). After

optimizing the prediction results, we segment the input image into different room regions

(c), as well as generating a room graph layout (d) to encode the geometric and semantic

information.

3. Overview130

In this paper, we propose to recover the building topology with accurate

room semantic information by recognizing various kinds of floor plan elements

and room type texts, then constructing a room layout graph model for compactly

encoding the input floor plan.

Fig. 2 illustrates the overall process of our algorithm. Given an input floor135

plan image, we start by recognizing the floor plan graphical and semantic in-

formation, where we have two main tasks in the network: one for predicting

the room-boundary pixels of graphical elements with five labels (i.e.,wall, door,

window, stair, and slope), and the other one for detecting the room type texts.

Next, we perform a room segmentation step to extract the room semantic by140

optimizing the floor plan elements and get the room type by combining the

text detection result. The rooms with more than one function label are split
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by using the method of MIQP [26]. Finally, the room attributes and adjacent

relationships of the floor plan are transformed into a room layout graph used

for 3D model reconstruction.145

4. Methodology

4.1. Dataset

As all of the current public floor plan datasets are sampled from the apart-

ments of urban residence, we have provided a novel dataset for analyzing floor

plans of rural residence in Chinese regions. Compared with the previous dataset,150

there exist a large number of different types of rooms, hollow walls, and curved

windows in rural floor plans.

To create the ground-truth annotation, we collect 926 rural residence floor

plans converted from original CAD files and ask humans to annotate both the

semantic and geometric information for all elements that appear in the corre-155

sponding floor plan. We use Photoshop to manually label the basic architectural

elements in the images including walls, doors, windows, stairs, slopes, and texts.

Meanwhile, we use different colors to annotate room regions in each floor plan.

Unlike [5], we marked different labels to separate some connected room regions,

e.g., living room and dining room, although they locate next to one another160

without walls separating them. We also perform a second check to make sure

that all the semantic and geometric annotations satisfy the building standards.

After dropping floor plans without semantic annotations, we collect 800 valid

floor plans with different resolutions. In total, we marked 21 types of rooms

including Bedroom, Living room, Kitchen, Bathroom, Restaurant, Storeroom,165

Stairs, Corridor, Balcony, Open space, Garage, Laundry, Study room, Railing,

Clearing, Garden, Steps, Eaves, Slope, Roof, and Others. On average, each

image contains 7 types, and the walls in each image are hollow, and there are

670 floor plans with curved or inclined windows. For the train-test split ratio,

we randomly split it into 700 images for training and 100 images for testing.170
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4.2. Deep Floor Plan Recognition

Since the topological structure of a floor plan is defined by the wall and

opening adjacencies while the semantic information of space regions is given by

the texts, we first detect such basic graphical elements and the room type text.

Network architecture. Both deep object recognition and text detection have175

been well-studied in the computer vision community. However, for our task, it

is redundant and time-cost to train two independent neural networks to handle

graphical elements and texts respectively. To overcome this issue, we propose

a new joint deep neural network with a carefully designed loss to address the

graphical elements recognition and text detection simultaneously.180

Our network architecture is based on a convolutional network that takes a

fixed-size (512× 512) image as the input and produces the mask of our defined

architectural elements and the bounding boxes of room type texts. As illustrated

in Fig. 2, we use the VGG-16 encoder [32] to get a common feature map and

extract latent features of the input image. Then the common feature is shared185

for the following two branches: one uses a U-Net [33] decoder to get upsampling

features and predicts the mask of our defined room-boundary elements, and the

other uses the SSD [34] method to obtain additional SSD features and get the

bounding boxes of the texts.

First, we use a U-Net decoder to predict the mask of architectural elements.190

To expand the range of feature perception and improve the prediction accuracy,

we directly combine the original features and the deconvolution features by the

element-wise product unlike the concatenation in original U-Net architecture,

as shown in Fig. 3. Meanwhile, we propose to use a 1 × 1 convolutional layer

to share the information of all features and use a 3 × 3 convolutional layer to195

expand the receptive field.

On the other hand, we use a fast single shot detector (SSD) [34], as the

detector for room type texts. SSD is a method designed for detecting objects in

images, whose key feature is predicting category scores and box offsets for a fixed

set of default bounding boxes using small convolutional filters applied to feature200

maps. Our SSD network uses the features extracted from the VGG encoder
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Figure 3: The combination module we used in U-Net.

layers to share the features with the above U-Net decoder. In addition to the

original SSD features layers, we also extract the text locations and probability

from multiple feature layers includes VGG encoder layers and additional SSD

layers.205

Training objectives. Technically, combining floor plan recognition and text

detection seems simple, but it is not so straightforward, because the correla-

tion between two tasks is relatively low, and it is easy to cause one branch to

deteriorate during training. Therefore, we define two specific losses for each

decoder branch in our network: Lrecognition for predicting element masks of

room-boundary pixels and Ltext for locating the bounding boxes of texts. The

total loss L for network training is a weighted sum of Lrecognition and Ltext with

a trade-off factor λ as defined:

L = λLrecognition + Ltext. (1)

We use λ = 0.025 in our training step.

While detecting the basic graphical elements, we observe that the number

of room-boundary pixels is too small compared to the whole image, which is a

classical class imbalance problem. To overcome this issue, we define our element
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type loss as:

Lrecognition =
∑(

gcα(1− pc)γ log pc

+(1− gc)(1− α)pc
γ log(1− pc)

) (2)

where pc is the pixel-level predicted confidence of class c and gc is the ground

truth of class c. α and γ are the super-parameter setting, we set α = 0.75 and

γ = 2.0 in our training stage.

To accurately locate the bounding boxes of texts, we use the following loss

function defined in SSD:

Ltext =
1

N

( N∑
i∈Pos

∑
m∈{cx,cy,w,h}

xpijsmoothL1(lmi − ĝmj )

−
N∑

i∈Pos
xpij log(ĉpi )−

∑
i∈Neg

log(ĉ0i )
)
.

(3)

In this function, xpij means that the i-th default box is matched with the

j-th ground-truth box of category p. (cx, cy) is the center point of the default

box (d) and w, h is its width and height. We uses a smooth L1 loss between the

predicted box (l) and the ground-truth box (g). The Pos and Neg indicate the

positive and negative samples, where we use hard negative mining like SSD and

the ratio between the positives and negatives is 1:1. Other terms (more details

can be referenced in [34]) are defined as:

ĝcxj =
gcxj − dcxi

dwi
, ĝcyj =

gcyj − dcxi
dhi

,

ĝwj = log(
gwj
dwi

), ĝhj = log(
ghj
dhi

),

(4)

and

ĉpi =
exp (cpi )∑
p exp (cpi )

, (5)

where cpi is the confidence of the predicted text.210

Training and implementation. Our joint neural network is implemented

based on TensorFlow. For training, we optimize the loss functions using the

ADAM optimizer with a fixed learning rate 1× 10−3. We use a batch size of 8
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in our training step. We also use a pre-trained SSD model trained on VOC and

COCO datasets to initialize the weights of VGG and additional SSD layers. We215

train the network for 30000 steps and takes about 4 hours.

Note that the size of our RuralHomeData is 2560×1600, but the input of our

network is 512×512. It will cause serious loss of information if we use the original

image directly or downsample it, e.g.the disappearance of some wall lines. In

this paper, we split the image into multiple blocks (see Fig. 4) before feeding220

the image into our network. However, this approach will bring a new problem

that the same text may exist in two blocks. To overcome this issue, we divide

the image by building a grid with a cell size of 256 pixels, then we construct

image blocks with a size of 512× 512 by combining four neighboring cells. For

example, the green square is shown in Fig. 4(a) is an image block. Since the225

overlaps (the dark-colored areas) between adjacent blocks will be detected more

than one time, there will be some redundant text bounding boxes (see Fig 4(b))

and the elements masks may also be different in different blocks. Therefore, we

combine these detection results as follows:

• For graphical elements masks, we first get the probability value for each230

image block from our U-Net decoder, then sum the values of corresponding

pixels in the original input image to get the final probability. Finally, we

use the ‘argmax’ function to obtain the classification result from the final

probability.

• For text detection, we get the text bounding box and its probability

value from our SSD network. Then we apply a non-maximum suppres-

sion (NMS) algorithm on all results in the whole input image. Since the

redundant text bounding boxes may be a small part in the whole boxes

and the IoU is too low, so we use the following function to calculate the

Jaccard which measure the similarity of two text bounding boxes B1 and

B2:

jaccard =
area(B1 ∩B2)

min(area(B1), area(B2))
.
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(a)

(b)

(c)

Figure 4: (a) Illustration of image blocks; (b) three individual image blocks with text detection;

(c) final combination result from (b).

Fig 4 (c) shows the combination results from three image blocks in Fig 4235

(b).

4.3. Room Segmentation

Room-boundary elements optimization. After feeding a floor plan into our

network, we obtain the prediction results of its walls, doors, windows, stairs,

slopes, and the bounding boxes of text symbols. Since our network is based240

on per-pixel prediction, the output is not regular and smooth, and some noises

are existed near the boundaries (see Fig 5 (a)). Before completing the room

segmentation, we optimize the graphical elements prediction results. Since the

labels for basic elements ( such as walls, windows, stairs, and slopes) are marked

based on the element lines in the original input floor plan, we use the same way245

to optimize these types of pixels. First, we map the pixel prediction results

to the binary image without assigning values to the pixels with a value of 255

to divide these results as they may lie on the element lines. And we find the

connected components in the current image by clustering adjacent pixels that

share the same label. To this end, we remove the noisy components in which250

the pixel number is less than a threshold N (N = 50). And we perform region

growing to assign unlabeled pixels to the label of their adjacent pixels. If the
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（a） （b） （c）

Figure 5: (a) Initial floor plan prediction results; (b) the expanded result for the elements of

wall, window, stair, and slope; (c) final result after elements optimization.

Intersect over Union (IOU) between the newly expanded component and its

original component exceeds 50%, we accept this expanded component as the new

prediction result. Since these components do not contain the original boundary255

of element lines, we further expand the wall prediction results to the adjacent

lines.

Afterward, we iteratively visit the adjacent pixels of the basic elements and

assign the label of the corresponding class whose number of neighboring pixels

exceeding 10 to the same class label. As shown in Fig 5 (b), all connected260

elements of the four categories are expanded. Although the walls are generally

composed of straight lines in standard CAD drawings, in our input floor plan,

some extra pixels exist in the boundary of the intersection between the wall

line and other elements lines due to the vector-to-raster conversion and image

compression. Therefore, we find the rectangle set with the most pixels in the265

wall components and the rectangle width is more than 1, and then we delete

the remaining wall element vertices as noise. Finally, because the label of the

door is a standard rectangle connecting the surrounding walls, we traverse the

corners of adjacent walls and find the smallest rectangle that can surround the

connecting elements of the door as the optimization result. The final element270

optimization result is illustrated in Fig 5(c).

MIQP based room parametrization and segmentation. We combine the
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（a） （b） （c）

Figure 6: (a) The white area need to be further divided; (b) room segmentation result obtained

by MIQP; (c) final room segmentation result.

above-optimized results with the text locations and room prediction results to

parameterize the input floor plan. We introduce the room rectangle that is de-

fined as the room element of a floor plan. A room rectangle is described by275

a tuple (xmin, ymin, xmax, ymax, l), where (xmin, ymin) and (xmax, ymax) denote

the position of the top-left and bottom-right corner of the rectangle respectively,

and label l denotes its room type/functionality. Since the doors and windows

have been optimized to be rectangular shape adjacent to wall corners, the pixels

bounded by the optimized walls, doors, and windows form a closed area R. We280

first extract the rectangle surrounding each stair element as the room rectan-

gle with the label ’stair’. Besides, we use an open-source OCR engine, called

Tesseract1, to recognize the text indicating a room type in each detected text

box and map the text positions into R. Then from the text locations, we apply

region growing again to divide R into multiple areas containing texts. For the285

area containing one text, we identify it (including its corners and room type)

as a room in the floor plan if it is rectangular; otherwise, the polygonal area is

decomposed into a set of corners and uses the same text label.

For the area containing multiple texts (Fig 6(a)), we use the mixed-integer

1https://github.com/tesseract-ocr/tesseract

15



quadratic programming (MIQP) method to divide the polygonal area, M, into

multiple rooms. Specifically, we first find the smallest rectangle that contains

M and parameterize the outside area that does not belong to M into rectangles.

Then we use the internal constraints and non-overlapping constraints proposed

in [26], and add a new text location constraint that ensures the texts are located

in the room rectangles. The text location constraint is defined as:

xmin 6 xtext,

xmax > xtext,

ymin 6 ytext,

ymax > ytext

(6)

where (xtext, ytext) denotes the text location. Then we define an energy function

that prefers room rectangles cover the M as much as possible:

Ecover (M) = Area (M)−
∑
i

(xmaxi − xmini) ∗ (ymaxi − ymini) . (7)

By minimizing Eq. 7 under constraints, we can get an initial valid layout of

rooms. However, M may not be completely covered by current room rectangles290

(see Fig 6 (b)), then we iteratively cluster the remaining areas to obtain final

layouts. Then we divide the area adjacent to only one room rectangle in M into

room rectangles and label them directly with the same room label. For the area

which is adjacent to multiple rooms: if it is rectangular, we decompose it into

two small rectangle rooms according to the adjacent boundary, and the label is295

the same as the adjacent room label; otherwise, we first divide the area from

adjacent corners into multiple rectangles and then assign the room label with

the neighboring room type. Finally, we can get the room segmentation result

as illustrated in Fig 6 (c)) after a few seconds of post-processing.

4.4. Room Layout Graph Extraction300

From the above room segmentation, we could transform the input floor plan

into a room layout graph representation, in which each node is a specific room

and each edge indicates the connection relationship between two rooms (the

priority is neighbor, door, window, and wall).
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Figure 7: (a) The initial room layout graph with only nodes; (b) the final result with detailed

attributes.

To construct the room layout graph, we directly take all rooms in the floor305

plan as the graph nodes as shown in Fig 7 (a), then detect the room attributes

and connection relationships for the graph edges. First, we can obtain detailed

attributes of each room based on the room area pixels, such as room types, room

area, shape, aspect ratio, and orientation. We store them as node attributes.

Then, we obtain a series of room boundaries from a set of room corners and310

expand their pixels outward to obtain the room connection relationship. While

the label of the next pixel is a wall, door, or window, we will continue to expand

until encounter other room pixels; Otherwise, we stop the expansion and build

or update the edge in two nodes based on the original pixel label and edge

priority. If the label is room, the connection relationship is neighbor, otherwise,315

the connection relationship is the same as the label, which is door, window, or

wall. After all the expansions stopped, we got the final room layout graph that

encodes all the detailed attributes of the entire input floor plan (see Fig 7 (b)).
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5. Experimental Results320

In this section, we first give our data collection process and training details.

Then we provide a complete comparison with state-of-the-art approaches with

qualitative and quantitative evaluations on the test set. We further showcase

several applications. All experiments were conducted on a server computer

equipped with an Intel Xeon Gold 6226R processor clocked at 2.9GHz with 64325

cores, 256 GB of RAM, and an NVIDIA GeForce RTX 2080Ti (11GB memory)

graphics card. We implemented our floor plan elements recognition algorithm

using TensorFlow. The room segmentation was implemented in Python.

5.1. Experimental Setup

Datasets. For performance evaluation and comparison, we carry out experi-330

ments on three datasets: 1) Our RuralHomeData containing floor plan images

with various room types to assess the challenging task of parsing complex floor

plans of rural residence. 2) two benchmark datasets commonly used to compare

performance. For the latter, we first use the R2V dataset [3] consisting of 870

ground-truth floor plan images of urban residence, where 770 images are used335

as training data and the remaining 100 examples are served as test images. We

then randomly collect and manually label 900 images from a large-scale dataset,

CubiCasa [7], which consists of 5000 ground-truth Finnish floor plan images. We

split it into 800 images for training and 100 images for testing.

Evaluation metrics. For quantitative evaluations, we adopt several mea-

sures that are commonly used in the related literature [20, 5], including overall

pixel accuracy, per-class pixel accuracy, mean accuracy, and mean Intersect over

Union (IOU). They are formally defined as:

overall accu =

∑
iNi∑
i N̂i

, (8)

class accu =
Ni

N̂i
, (9)
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mean accu =
1

C

∑
c∈classes

Ni

N̂i
, (10)

mean IOU =
1

C

∑
c∈classes

Ni

N̂ ′i
, (11)

where C is the number of classes, N̂i, Ni, and N̂ ′i are the total number of the340

ground-truth pixels, the correctly-predicted pixels, and the union of ground-

truth and predicted pixels for the i-th classes.

5.2. Evaluation and Comparison

As competitors, we select two representative learning approaches to compar-

atively evaluate floor plan recognition: Raster-to-Vector [3], DeepFloorPlan [5].345

These works provide a plethora of comparison to other techniques and establish

themselves as state-of-the-art methods, so we omit comparisons with the works

that have already been compared: e.g., Raster-to-Vector outperforms a tradi-

tional approach [1], while DeepFloorPlan compares itself with various recent

networks aiming to edge detection [35] and general semantic image segmenta-350

tion [36, 37].

Comparison on RuralHomeData. We first evaluate the algorithms using

our proposed new dataset. For a fair comparison, we use the training images

from the RuralHomeData to re-train DeepFloorPlan [5] and our network. We

provide both the initial prediction results of our network and the room seman-355

tic results after room segmentation. Since there are more than 20 categories of

rooms in the RuralHomeData, we convert the ground-truth images into the cor-

responding dataset for training DeepFloorPlan. Besides, the Raster-to-Vector

network can only output 2D joint points and room rectangles in the image,

thus we followed the procedure presented in [35] to convert their output into an360

image.

Fig. 8 shows a complete visual comparison of the experiments on 5 test im-

ages. The Raster-to-Vector network is mainly for rectangular floor plans, but

the RuralHomeData contains a lot of non-rectangular elements such as curved

19



windows and walls. As shown in the top and second rows of Fig. 8 (e), we can365

see that the results of Raster-to-Vector miss many room regions even though

most joint points can be detected while the input image contains arcs and diag-

onal lines. The reason is that it is based on the assumption of the Manhattan

world thus it cannot process such irregular images.In the following three rows

of Fig. 8 (e), Raster-to-Vector can detect most of the walls, doors, windows,370

and rooms information, but they often generate wrong rectangular results when

some isolated elements such walls and stairs appear in the input image. Due

to the too many room categories and the similarity of room structures in the

RuralHomeData, the floor plan recognition results produced by DeepFloorPlan

have too many errors and cannot be used even after post-processing (see Fig. 8375

(f) and (g)), because this approach cannot generalize to floor plans with un-

seen room types. Therefore, RuralHomeData provides very challenging data for

Raster-to-Vector and DeepFloorPlan to produce satisfactory recognition results.

In comparison, our method can detect most of the graphic elements (wall, win-

dow, door, stair, and slopes) and the text bounding boxes, as shown in Fig. 8 (c).380

Furthermore, in the later room segmentation step, we optimized the prediction

results of the graphical elements and they can form an enclosed area through

post-processing. We can obtain the floor plan recognition results closest to the

ground-truth compared to other methods by mapping the text detection results

to the enclosed area (Fig. 8 (d)).385

We also report numerical statistics about the performance of each method

in Table 1. As can be seen from the quantitative results, our method achieves

higher accuracies for most floor plan elements, and the postprocessing could

further improve our performance. However, there is no identification text in

some Hall areas as shown in the last two rows of Fig. 8 (a), so the room type in390

these areas will be marked as other or their adjacent room types, resulting in

the prediction result not being the best.

Comparison on R2V dataset. We also test our algorithm on the R2V

dataset [3] to see how our pipeline can be generalized to floor plan images

collected from various regions in Japan. We train our network on the R2V395
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(a) (b) (c) (d) (e) (f) (g)

Figure 8: Visual comparison of floor plan recognition results on RuralHomeData. From left

to right: input floor plan (a), ground-truth (b), our method (c), our method after room

segmentation (d), Raster-to-Vector [3] (e), DeepFloorPlan [5] (f), and DeepFloorPlan with

postprocessing (g).

Table 1: Comparison on our RuralHomeData. The best result of each measurement is marked

in bold font. The symbol * indicates the methods with postprocessing. Note for our method

before postprocessing (’Our’), we can only report the results on the elements of walls, doors,

and windows.

Methods overall accu
class accu

mean accumean IoU
Wall Door-and-window Closet Bathroom & etc. Living room& etc. Bedroom Hall Balcony

Raster-to-Vector 0.61 0.73 0.56 0.52 0.56 0.64 0.58 0.34 0.39 0.55 0.48

DeepFloorPlan 0.63 0.88 0.63 0.76 0.60 0.69 0.64 0.62 0.53 0.64 0.52

DeepFloorPlan* 0.74 0.88 0.63 0.79 0.69 0.81 0.72 0.43 0.57 0.69 0.58

Our 0.85 0.90 0.73 (window) / 0.77 (door) × × × × × × 0.85 0.76

Our* 0.87 0.96 0.80 0.89 0.79 0.93 0.94 0.53 0.70 0.81 0.76

training data to compare to Raster-to-Vector and DeepFloorPlan.

As the Raster-to-Vector network only outputs the vector-graphics represen-

tation, we follow the annotations and procedure introduced in [3] to convert the
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Table 2: Comparison on R2V dataset.

Methods overall accu
class accu

mean accumean IoU
Wall Door-and-window Closet Bathroom & etc. Living room& etc. Bedroom Hall Balcony

Raster-to-Vector 0.84 0.73 0.71 0.86 0.89 0.80 0.96 0.87 0.84 0.85 0.71

DeepFloorPlan 0.86 0.86 0.79 0.81 0.80 0.80 0.83 0.58 0.89 0.80 0.67

DeepFloorPlan* 0.86 0.86 0.79 0.83 0.83 0.85 0.84 0.75 0.79 0.83 0.67

Our 0.88 0.89 0.82 × × × × × × 0.86 0.64

Our* 0.92 0.90 0.84 0.90 0.90 0.94 0.98 0.76 0.94 0.90 0.82

vector-graphics to the pixel images for comparison. For the DeepFloorPlan, we

re-train their network using the official open-source code released by the authors.400

As this approach applies a postprocessing step to refine per-pixel prediction in

room regions, we provide their initial prediction results and optimized results

after postprocessing.

Fig. 9 shows the visual comparisons. As the Raster-to-Vector network pre-

dicts the junction locations to obtain the basic elements such as walls, doors,405

and windows, and finally finds the room area by an integer programming with

various geometric and semantic constraints. Comparing to the ground-truth in

Fig. 9 (b), the results of Raster-to-Vector lose some isolated wall lines and their

room prediction is wrong in the area contains multiple corner points, as shown

in Fig. 9 (e). The results of DeepFloor always contain noises at the junction of410

different classes due to the per-pixel prediction and their prediction result of the

room type may be wrong. Compared with these methods, our initial door and

window prediction results contain noise. After the post-processing by a simple

heuristic algorithm, we eliminate the noise on the boundary. Our predictions for

room type are more similar to the ground-truths as we use the text prediction415

results.

The numerical statistics about prediction accuracy and mean IOU for each

method are reported in Table 2. Consistent with the results of RuralHomeData,

our performance scores are clearly better than other methods except in the hall

area.420

Comparison on CubiCasa dataset. Finally, we perform the evaluation on

CubiCasa [7] by retraining all of the algorithms on this dataset. Since the
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(a) (b) (c) (d) (e) (f)

Figure 9: Visual comparison on R2V dataset. From left to right: input floor plan (a), ground-

truth (b), our method without (c) and with room segmentation (d), Raster-to-Vector [3] (e),

and DeepFloorPlan with postprocessing [5] (f).

CubiCasa dataset is annotated as the SVG vector graphics format, we follow its

method introduced in [7] to convert the SVG vector graphics into pixel image

annotations for training and comparison.425

Fig. 10 shows the visual comparisons, and Table 3 reports the numerical

statistics about the performance. Again, the Raster-to-Vector network can ef-

fectively predict the door and window elements and find the room areas, but

its results lack these isolated wall lines as their sides belong to the same room,

and they contain some non-existent door elements when these wall junctions430
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(a) (b) (c) (d) (e) (f)

Figure 10: Visual comparison on CubiCasa dataset. From left to right: input floor plan

(a), ground-truth (b), our method without (c) and with room segmentation (d), Raster-to-

Vector [3] (e), and DeepFloorPlan with postprocessing [5] (f).

without doors form a closed loop, as shown in Fig. 10 (e). The prediction re-

sults of walls, doors, and windows in DeepFloorPlan always contain noise due

to pixel-by-pixel prediction, and the room predictions may be wrong. Besides,

the areas where multiple rooms exist are only be assigned to one room type

due to the limitation of their post-processing (see Fig. 10 (f)). In comparison,435

we eliminate most of the noise and extract the room semantics by combining

the text prediction results, which are the most similar to the ground-truth, as

shown in Fig. 10 (d). Similarly, a large number of balcony rooms in the Cubi-

Casa dataset have no identification text as shown in Fig. 10 (a), and there are

no boundary elements to close them, so we cannot detect these areas and the440

prediction results are low.

24



Table 3: Comparison on CubiCasa dataset.

Methods overall accu
class accu

mean accumean IoU
Wall Door-and-window Closet Bathroom & etc. Living room& etc. Bedroom Hall Balcony

Raster-to-Vector 0.66 0.65 0.62 0.53 0.66 0.72 0.56 0.36 0.43 0.67 0.56

DeepFloorPlan 0.80 0.81 0.70 0.68 0.50 0.75 0.72 0.56 0.72 0.69 0.57

DeepFloorPlan* 0.82 0.81 0.70 0.74 0.55 0.78 0.76 0.36 0.77 0.70 0.64

Our 0.84 0.86 0.76(window) / 0.70(door) × × × × × × 0.77 0.58

Our* 0.89 0.87 0.78 0.79 0.82 0.93 0.94 0.81 0.37 0.80 0.74

5.3. Ablation studies

Next, we present ablation studies to verify the effectiveness of the designed

framework. First, to evaluate our joint neural network, we train two indepen-

dent networks for graphical element recognition using U-Net and text detection445

using SSD (we denote such a two-network method as ”U-Net & SSD”). All

networks are trained using the same parameters and epochs. Performance and

time-cost comparison is summarized in Table 4. In terms of recognition per-

formance, the results of our proposed joint network are similar to or slightly

better than the results of two independent networks. Since the U-Net and SSD450

decoders in our joint neural network use the same VGG encoder, they can simul-

taneously influence the weights of the VGG encoder. Therefore, by balancing

the two decoders, the results of our network are more stable compared with two

independent networks. In terms of time-cost, the training and testing time of

our joint network is similar to the U-Net time alone and is almost half the sum455

of the two-network method. Thus our proposed method is more efficient.

In addition, we conduct another ablation study on our RuralHomeData to

prove the effectiveness of the image blocks. As shown in Table 5, the graphical

elements prediction and text detection results of our network with image blocks

are far better than the network without image blocks. Meanwhile, we also com-460

pare the different methods of combination modules used in the U-Net decoder

(see Fig. 3), including direct concatenation, element-wise sum, and element-wise

product. The result shows that the element-wise product is more effective. Fur-
R2 A2

thermore, we convert 21 room types in our RuralHomeData into 5 types shown

in [5] and use the U-net network without text detection branch to train the465
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Table 4: Ablation study of our joint neural network on three datasets. We report the experi-

mental results of our method and U-Net& SSD on elements recognition and text detection.

Dataset Methods
Pixel Prediction Text detection

Training time (min) Test time (s)
overall accu mean accu mean IoU mAP07 mAP12

RuralHomeData
Our 0.85 0.85 0.76 0.70 0.73 236 65

U-Net & SSD 0.86 0.84 0.77 0.69 0.73 230 & 171 54 & 39

R2v
Our 0.88 0.86 0.64 0.68 0.73 233 22

U-Net & SSD 0.87 0.86 0.65 0.67 0.72 205 & 172 19 & 16

CubiCasa
Our 0.84 0.77 0.58 0.59 0.63 233 79

U-Net & SSD 0.81 0.80 0.57 0.60 0.63 202 & 171 65 & 56

Table 5: Ablation study of the procedure of splitting an image into multiple blocks on Rural-

HomeData and the methods of combination module used in U-Net decoder.

Method
Elements Recognition Text Dection

overall accu mean accu mean IoU mAP07 mAP12

NoBlock 0.62 0.50 0.35 0.19 0.16

Block (concat) 0.82 0.84 0.73 0.70 0.74

Block (Eltw-sum) 0.83 0.82 0.72 0.70 0.73

Block (Eltw-prod) 0.85 0.85 0.76 0.70 0.73

Table 6: Ablation study of the effectiveness of text information for floorplan semantic seg-

mentation on RuralHomeData, where the U-Net is the room segmentation network without

text detection branch.

Method

Pixel Prediction

overall accu mean accu mean IoU

U-Net 0.63 0.64 0.52

Our 0.83 0.86 0.64

Our* 0.92 0.90 0.82

floorplan semantic segmentation. The experimental results show that we can

get more satisfactory results with text information, see Table 6.

Finally, we adjust these key parameters λ, α, and γ separately while keeping

other parameters with the default settings for training to prove their impact on

our model. As shown in Table 7, we can get the best elements recognition and470

text detection results at the same time when we use the default parameters.
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Table 7: Ablation study of three key parameters on RuralHomeData. Symbol - indicates the

default set of these key parameters: λ = 0.025, α = 0.75, and γ = 2.0.

λ α γ
Elements Recognition Text Detection

overall accu mean accu mean IoU mAP07 mAP12

0.01 - - 0.81 0.70 0.54 0.58 0.61

0.05 - - 0.74 0.62 0.50 0.61 0.61

- 0.25 - 0.77 0.64 0.51 0.70 0.70

- 0.5 - 0.82 0.70 0.58 0.61 0.66

- - 1.0 0.79 0.68 0.57 0.59 0.60

- - 3.0 0.78 0.67 0.56 0.70 0.67

- - 5.0 0.68 0.50 0.39 0.60 0.64

0.025 0.75 2.0 0.85 0.85 0.76 0.70 0.73

5.4. Applications

Room layout graph generation. Since we transformed the floor plan into

different rooms with accurate semantic information, it is easy to construct a

room layout graph from the room segmentation result, as shown in Fig. 11475

(c). From the graph, we can obtain various room attributes, such as type,

area, doors, and windows. Besides, we can also get the connection relationship

between two rooms, including the proportion of the coplanar wall, and the areas

of any doors, windows, walls, and other information.

3D Modeling. Furthermore, we use our floor plan recognition and room ex-480

traction results to reconstruct the 3D model based on the procedure of [35].

Two examples are shown in Fig. 11 (d). We can extract all room elements from

the layouts including stairs, and the reconstructed 3D model is consistent with

the 2D floor plan.

6. Conclusion and Future Work485

We have presented a new floor plan image dataset, called RuralHomeData.

To the best of our knowledge, it is the first dataset containing real-world floor

plans of rural residence. To further understand such residential buildings, we

also proposed a novel floor plan parsing framework that combines semantic
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Figure 11: Two examples of room layout graph and 3D modeling results. From left to right:

(a) input floor plan , (b) our room segmentation result, (c) room layout graph extracted from

(b), and (d) the corresponding reconstructed 3D model.

neural networks with a post-processed room segmentation. We demonstrated490

the advantages of our approach by comparing with the state-of-the-art methods

on our new dataset as well as previous benchmark datasets.

One limitation of our approach is that we cannot predict the semantic infor-

mation of the rooms missing text labels as we have explained in the comparison

results. In addition, the image blocks will lose global information, making it495

impossible to directly predict the semantic information of pixel room type.

In future work, we would like to predict those room types according to the

existed room information through the neural network using the room knowledge

graph. On the other hand, we will add the global feature to optimize the room

type pixel prediction result. Besides, we are also interested in exploring new500

data-driven techniques for automated floor plan generation for rural residential

buildings.
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[7] A. Kalervo, J. Ylioinas, M. Häikiö, A. Karhu, J. Kannala, Cubicasa5k: A

dataset and an improved multi-task model for floorplan image analysis, in:

Scandinavian Conference on Image Analysis, Springer, 2019, pp. 28–40.535

[8] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, L. Liu, Data-driven interior

plan generation for residential buildings, ACM Trans. on Graphics (Proc.

SIGGRAPH Asia) 38 (6) (2019) 1–12.

[9] P. Dosch, K. Tombre, C. Ah-Soon, G. Masini, A complete system for

the analysis of architectural drawings, International Journal on Document540

Analysis and Recognition 3 (2) (2000) 102–116.

[10] S.-h. Or, K.-H. Wong, Y.-k. Yu, M. M.-y. Chang, H. Kong, Highly auto-

matic approach to architectural floorplan image understanding & model

generation, Pattern Recognition (2005) 25–32.
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