Single Image Tree Reconstruction via Adversarial Network

Zhihao Liu®?, Kai Wu®?, Jianwei Guo®?*, Yunhai Wang?, Oliver Deussen®¢ and Zhanglin Cheng®*
o

“Shenzhen Institute of Advanced Technology, Chinese Acadeny of Sciences, China

b University of Chinese Academy of Sciences, China
“NLPR, Institute of Automation, Chinese Academy of Sciences, China
4Shandong University, China

¢ University of Konstanz, Germany

ARTICLE INFO ABSTRACT

Keywords:

tree reconstruction

single image reconstruction
adversarial network

Realistic 3D tree reconstruction is still a tedious and time-consuming task in the graphics community.
In this paper, we propose a simple and efficient method for reconstructing 3D tree models with high
fidelity from a single image. The key to single image-based tree reconstruction is to recover 3D shape
information of trees via a deep neural network learned from a set of synthetic tree models. We adopted

a conditional generative adversarial network (cGAN) to infer the 3D silhouette and skeleton of a tree
respectively from edges extracted from the image and simple 2D strokes drawn by the user. Based
on the predicted 3D silhouette and skeleton, a realistic tree model that inherits the tree shape in the
input image can be generated using a procedural modeling technique. Experiments on varieties of
tree examples demonstrate the efficiency and effectiveness of the proposed method in reconstructing
realistic 3D tree models from a single image.

1. Introduction

Many tree modeling methods have been developed in
the past years, including procedural tree modeling and tree
reconstruction from photographs or laser scans. Procedu-
ral tree modeling can synthesize virtual tree models, while
tree reconstruction methods generate faithful models of real-
world trees. In order to reconstruct realistic models for real
trees, even collecting input data is costly and time-consuming,
e.g., obtaining 3D point clouds using laser scanners or tak-
ing a lot of photos carefully from different views around
real trees. Single image-based tree reconstruction technique
takes only one image as input and drastically simplifies the
requirements of input data for real tree reconstruction, which
thus provides a feasible solution to generate a realistic tree
model only from a single image of the tree.

The key to single image-based tree reconstruction is to
recover 3D information from a single image. Previous single
image-based tree modeling methods generally infer the 3D
tree shape using some prior knowledge. For example, Tan
et al. [47] and Guénard et al. [12] transform 2D branches
into 3D with the assumption that the distance or projection
angle between branches is as large as possible, and Argudo
et al. [1] generates symmetrical 3D tree shape by inflating
2D silhouette. However, such 2D to 3D transformations are
artificially designed and are too simple to describe the true
projection between the 2D image and 3D model of a tree. It’s
difficult for these methods to generate 3D models with high
fidelity from the single image of a tree. Although accurate

*Jianwei Guo and Zhanglin Cheng are corresponding authors.

¥4 1iuzh96@outlook . com (Z. Liu); kai.wu@siat.ac.cn (K. Wu);
jianwei.guo@nlpr.ia.ac.cn (J. Guo); cloudseawang@gmail.com (Y. Wang);
oliver.deussen@uni-konstanz.de (O. Deussen); z1.cheng@siat.ac.cn (Z.
Cheng)

ORCID(S): 0000-0003-1099-5745 (Z. Liu); 0000-0002-1269-9918 (K.
Wu); 0000-0002-3376-1725 (J. Guo); 0000-0001-5803-2185 (O. Deussen);
0000-0002-3360-2679 (Z. Cheng)

Figure 1: Single image-based tree reconstruction. (a) Single
input image of a tree. (b) The reconstructed tree model ren-
dered at the same viewpoint as the input image. (c) The tree
model rendered at the side viewpoint.

3D reconstruction from a single image is ill-posed and im-
possible in general, we argue that it is possible to learn the
prior of 3D tree structures and recover 3D information to
some extent from the single image of a tree with the help of
a library of 3D tree models. Thus we try to use deep learn-
ing methods to learn the underlying 2D to 3D projections
and infer the 3D shape of trees from a single image. In this
paper, we use a conditional generative adversarial network
(cGAN) to recover the depth information of a tree from the
skeleton and silhouette image of the tree.

Most deep learning based object reconstruction methods
generally represent and predict 3D shapes as voxels or point
clouds, and are limited to reconstruct relatively simple and
smooth shapes, like cars or chairs. However, trees have more
complex and detailed tiny structures with abundant branches
and leaves, so that directly predicting the 3D tree models
is quite difficult. In this paper, we combine deep learning
and procedural tree modeling techniques to generate high-
quality tree models from a single image. A deep neural net-
work is used to predict the basic 3D shape of a tree, and then
detailed tree models are generated by procedural modeling
based on the predicted shape. We use two representations to
describe the basic 3D shape of a tree: one is skeleton, which

Liu et al. - Graphical Models

Page 1 of 13

Single Image Tree Reconstruction via Adversarial Network

is used for representing the main visible trunks; the other
is silhouette, which covers the outer shape of the tree using
a point cloud. Such skeleton and silhouette are encoded by
two kinds of depth images. Thus, the problem is cast into
an image-to-image translation task, instead of estimating the
3D shapes directly. We apply a cGAN architecture to infer
such depth images from an input image. We first draw a few
strokes to mark up the visible trunks and extract edges from
the tree image. The network takes as input the strokes and
edges and output corresponding depth images of skeletons
and silhouettes. Finally, based on the predicted skeleton of
main trunks, we apply the procedural modeling method [31]
to generate tree models within the shape defined by silhou-
ette. The procedural modeling method was also adopted to
generate numerous realistic tree models automatically as the
training set.

The main reason for taking edges instead of real photos
as input for generating 3D silhouette is that it is hard and
time-consuming to render the synthetic trees as realistically
as photographs with detailed textures, and therefore the net-
work trained on synthetic dataset is unable to accurately pre-
dict the depths from real photos. However, using edges can
solve this problem and also weaken the influence of texture
colors and other variable environmental factors such as light-
ing and shadows, which usually cause the convergence fail-
ure of network. Besides, the edges depict the local shapes of
trees as well as other important details like the inner holes
and the density of branches and leaves. The 3D silhouette
provides a relatively rough description for the overall tree
crown shape. To reconstruct faithfully the main trunk and
visible branches, we mark up the visible trunks using sev-
eral 2D strokes, and the cGAN network predicts the depth
of skeletons directly from such user-drawn strokes.

The main contribution of the paper is 3D tree reconstruc-
tion with high fidelity from a single image of the tree by
combing a deep learning method and procedural modeling.
The reconstruction can be done within seconds, in almost
real-time.

2. Related work

Procedural tree modeling. Grammar-based or rule-based
procedural modeling techniques provide an efficient way to
create complex plant models [7]. The popular L-system is
originally introduced by [23] to describe the multi-cellular
development, then extended in various ways to model the
geometry and structure of different plant types [36, 35, 34].
Another widely used procedural method models trees as re-
cursive branching structures characterized by a small num-
ber of geometric rules, such as branching angles and length
ratios of consecutive internodes [15], implicit functions [3],
fractal models [30], and narrow near-conical tubes [49]. De
Reffye et al. [40] also use a collection of rules to simulate
branching structures, but these rules are motivated by plant
growth models. Instead of directly writing generative rules,
Stava et al. [46] use a target polygonal model as constraints
and propose an inverse procedural method. They use Monte
Carlo Markov Chains (MCMC) to estimate the optimal pa-

rameters of a procedural model for producing plants similar
to the input. Recently, Guo et al. [13] utilize deep learning
to detect branching structures and propose an inverse proce-
dural modeling approach that learns 2D L-system represen-
tations of pixel images.

Considering the effects from the environment and between-

branch spaces, the space colonization algorithms [43, 2] are
proposed to produce more convincing tree forms. Pirk et
al. [33] present a dynamic tree modeling and representation
technique that allows complex tree models to interact with
their environment. Patubicki et al. [31] use the concept of
self-organization to adapt trees to the environment by sim-
ulating the competition of buds and branches for light and
space. Then Yi et al. [53] extend this method by integrating
various growth equations into the procedural tree modeling
process. These approaches typically require expert knowl-
edge and are manually intensive, providing indirect means
to control the tree modeling process.
Real-world tree modeling. To reduce the modeling effort,
researchers have developed many algorithms to capture and
reconstruct trees from real-world data. Laser scanning pro-
vides an effective tool for acquiring geometric attributes of
trees. From the obtained 3D point cloud, Xu et al. [51] and
Livny et al. [25] utilize the minimal spanning graphs to re-
cover the tree branches, then small twigs and leaves are ran-
domly added to form the crown geometry. Livny et al. [24]
present a lobe-based representation to approximate the ge-
ometry of given data and synthesize a full plant model by
instancing each lobe with predefined patches. Yan et al. [52],
Raumonen et al. [38] and Zhang et al. [32, 54] propose cylin-
der marching algorithms by locally fitting or searching cylin-
ders to achieve accurate tree modeling. In other works, Fried-
man and Stamos [9] infer shape grammars from the wavelet
transform of an input point cloud then reproduce the tree
structure using the grammars. Li et al. [22] capture a se-
quence of point clouds to analyze evolving parts of a devel-
oping plant.

Image-based techniques usually use multi-view images
to extract various representations of the tree geometry to
guide the modeling process, such as visual hulls [44], vol-
umetric representation [39] [28], point clouds obtained from
Structure From Motion (SFM) [37] [48] [4]. Some researchers
also attempt to produce tree models from video [8, 21]. The
most related to our approach is the single-image-based mod-
eling methods. In [47] the users draw at least two strokes
to identify the crown and the branches. Then the 2D strokes
are used to guide 3D tree synthesis by a growth engine. Gué-
nard et al. [12] propose to generate a 3D plant model us-
ing an analysis-by-synthesis method that combines informa-
tion from a single image and a priori knowledge of the plant
species. Argudo et al. [1] present a complete pipeline for
synthesizing and rendering detailed trees with minimal user
effort. The key is to create a rough estimate of the crown
shape by solving a thin-plate energy minimization problem,
and then add detail through a simplified shape-from-shading
approach.

Deep learning-based tree modeling methods have received

Liu et al. - Graphical Models

Page 2 of 13

Single Image Tree Reconstruction via Adversarial Network

cGAN

(a) Image

(c) Strokes

(d) Depth image

(e) Depth image

(f) Silhouette (h) Branches of front and side views
Procedural 5

Modeling

(g) 3D skeleton

(i) Final tree model

Figure 2: Overview of our tree reconstruction method. (a) The input image. (b) The
edges extracted by the Canny detector. (c) The user-drawn strokes for marking up the
main trunks. (d) and (e) Two depth images predicted by the cGAN. (f) and (g) The 3D
silhouette and skeleton recovered from two depth images. (h) The branching structure
generated by a procedural modeling algorithm. (i) The final 3D tree model with leaves.

some attention in the graphics community. Huang et al. [16]
propose to synthesize shapes from user sketches, where a
deep Convolutional Neural Network (CNN) is trained to map

sketches to procedural model parameters. However, this method

only works for synthesizing 2D trees. A recent work [17] es-
timates branch structures of 3D plants from multi-view im-

ages viaimage-to-image translation. They combine a Bayesian

extension of image-to-image translation and 3D aggregation
to generate a 3D branch probability map. In contrast to them,
we generate 3D tree models from a single image, and the in-
ferred depth information represents the branches more pre-
cisely than the probability map.

Image-to-image translation via GANs. The first genera-
tive adversarial network (GAN) [11] was proposed to solve
the image generation problem. After that, many researchers
try to solve traditional image-based tasks based on GAN. For
example, image-to-image translation is a building block of
modern image processing which maps a possible represen-
tation of the source image into the target image. Isola et
al. [18] present a pix2pix framework based on cGAN [27]
for learning image-to-image translation from paired images.
CycleGAN [55] and DiscoGAN [19] utilize cycle consis-
tency loss to achieve unpaired image-to-image translation.
Choi et al. [6] present starGAN to implement multi-domain
image translation problem using a single generator.

Deep learning for 3D objects. Due to the success in gen-
erating images, lots of methods try to apply deep learning
for 3D generation or reconstruction. Wu et al. [50] gener-
ate new 3D objects as voxels in 64 X 64 X 64 based on a
generative adversarial network. Girdhar et al. [10] present
a TL-embedding network, which contains a series of convo-
lutional and fully connected layers, to predict 20 x 20 x 20
voxels from a 2D image. Rezende et al. [41] adopt a condi-
tional generative model to infer 3D voxels from 2D images.
However, the voxel is a low precision representation for 3D
objects. Lun et al. [26] reconstruct 3D point cloud from

multi-view 2D sketches by a multi-view convolutional net-
work. SurfNet [45] reconstructs 3D shape surfaces directly
instead of voxels via a deep residual network. However, such
methods are limited to some artificial regular objects, like
cars, tables, beds, and chairs. Whereas tree models have
more complex structures with no continuous surface, which
consist of abundant leaves and branches. Our method can
generate high-quality tree models from a single image.

3. Overview

In this paper, we propose to reconstruct a 3D tree model
from a single image via deep convolutional networks. Our
framework consists of three concrete steps as shown in Fig. 2.
The core component of the proposed method is a conditional
GAN, which translates an image from one domain to an-
other. To train such a neural network, we automatically pro-
duce a large set of synthetic 3D tree models and generate
collections of image pairs as the training dataset. Based on
the training data, we propose a new loss function to optimize
the network parameters.

In the testing stage, given an input image, we first ex-
tract the edges using Canny detector [5], and draw several
simple strokes to mark up the main trunk, as shown in Fig. 2
(b) and (c). Then the trained cGAN takes as input the edges
and strokes and outputs two kinds of depth images (see Fig. 2
(d) and(e)). Such two depth images are particularly designed
for storing the geometric shape of a tree in two representa-
tions: the 3D silhouette and skeleton (see Fig. 2 (f) and (g)).
The 3D silhouette defines the growth space of a tree, while
the skeleton represents the 3D visible main trunk. Finally,
based on the reconstructed main skeleton, we adopt a pro-
cedural modeling method [31] to generate the full 3D tree
model within the space defined by the silhouette. In order to
generate a more natural tree shape, a direction map is com-
puted from the input image to guide the modeling process.
Fig. 2 (h) illustrates the front and side views of the branch-

Liu et al. - Graphical Models

Page 3 of 13

Single Image Tree Reconstruction via Adversarial Network

A training pair of skeleton

v

A: 2D strokes

3D skeleton

B: depth image

Figure 3: An example of 3D skeleton training pair.

ing structure generated by our method. The final tree model
with leaves is rendered in Fig. 2 (i).

4. Algorithm

4.1. Training data representation

To obtain numerous tree samples for training, we first
collect a set of 3D tree models automatically by using a pro-
cedural modeling approach [31]. The tree dataset contains
various tree species by using different modeling parameters.
After getting such tree models, we can generate the image
pairs for training our network. All images are set to size
256 x 256 and projected by using orthogonal projection. In
the following, we introduce the generation of image pairs for
predicting 3D skeleton and silhouette, respectively.
Skeleton training pairs. For predicting the 3D skeleton,
the input to our network is a collection of 2D strokes and the
output is the corresponding depth image (see Fig. 3). Given
a 3D tree model, the 2D strokes can be obtained directly by
rendering each branch with different colors, while the depth
image can be directly extracted from the depth buffer. Here
we use different colors to encode the branches because the
colors can indicate the relative positions of branches clearly
according to the intersections of different strokes. This ap-
proach also helps to improve the convergence of the neural
network. In our framework, the colors used to mark up dif-
ferent branches are fixed for each tree. Besides, all strokes
are set to 4 pixel width, because thinner strokes will make the
convergence difficult while wider strokes may cause heavy
occlusion between line segments. Finally, we set the render-
ing window size to 256 X 256 and use orthogonal projection
to render each image pair. In this situation, the depth value
lies in range [0, 1], where O is for the nearest plane and 1 is
for the farthest plane.
Silhouette training pairs. To estimate the 3D silhouette,
the network takes as input an edge image and outputs a spe-
cial depth image which is used for depicting the 3D shape of
the tree volume (see Fig. 4). In order to obtain edge images,
we first apply a Gaussian filter (kernel size = 5) to smooth the
image, then extract edges using a Canny detector, the high
and low thresholds of which are set to 0.8 and 0.4. To store
the 3D silhouette into a single image, we depict silhouette
using a dual depth image, encoding depth values for front
and back sides of the tree at the same time. As shown in
Fig. 5, the depths of two opposite views D; and D, are ob-

A training pair of silhouette

3D tree model

A: edge image B: depth image

Point cloud recoverd "
from image B ﬁ

Side view of silhouette

1
i
1
i
i
i
1
i
i
1
i
i
|
i
i
1
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
i
1
i
i
i
i
i
i
i
i
! 5
1

! Front view of silhouette

Figure 4: An example of 3D silhouette training pair. In the
bottom row, the red and green points represent the 3D depths
of front and back views, respectively.

Plane a Plane b
L] [)
L] L]
.L.: °Z.2
z
[] I G L]
L[] °
P ° °
/y [] []
front view D1. ¢ D2 back view
LN]
Figure 5: lllustration of casting 3D silhouette to a depth
image.

tained under orthogonal projection. To match the pixel pairs
correctly, D, should be mirrored horizontally first. For the
final dual depth image, we use the red channel (R) to store
the depths of front view, and use green channel (G) to store
the depth intervals between front and back views, that is

{ &2l M)

Gx,y = (1 - ZZ,X,y) - Zl,x,y

where R, , and G, , denote the values of red and green
channels at pixel (x, y) in the final dual depth image. z; , ,
and z, , ,, € [0, 1] are respectively the depths in images D,
and D,. The term (1 — z, , ,) is to make two depths in the
same coordinate system since they are obtained from oppo-
site views. Note that a way that seems more intuitive is to
directly use the depths of back view as G channel. However,
the output of neural network usually contains noise so that
the predicted back points might be located before the front
points. By comparison, since the predicted values of depth
intervals are always positive, it ensures the back points must
be always behind the front points. Finally, we apply Gaus-
sian filter (kernel size = 5) to each channel of the dual depth
image to smooth the silhouette, which can effectively im-
prove the convergence of network. Fig. 4 shows an exam-
ple of the silhouette training pair (top) and its corresponding
point cloud (bottom).

Liu et al. - Graphical Models

Page 4 of 13

Single Image Tree Reconstruction via Adversarial Network

LT,

SRILE]
N

— 128

3D tree model Input (edge or strokes)

. Convolutional layer . Fully connected layer

64
AN 256
S o512
Real / Fake <= [16.33 o412
1 .

Generator (G)

\gatteu Output (depth image)

—

128

sigmoid

131072 Discriminator (D)

Figure 6: Adversarial network architecture for recovering depth information.

4.2. Network for predicting depth

In this paper, we extend the neural network proposed
by [18] that successfully solves the image-to-image transla-
tion problem using a conditional GAN (cGAN). Our cGAN
takes as input the edges (or strokes) extracted from a single
image, and outputs the depth image for silhouette (or skele-
ton). Fig. 6 illustrates the detailed cGAN architecture. As
described above, the input for predicting 3D silhouetteis a 1-
channel edge image and the output is a 2-channel silhouette
image. For skeleton, the network inputs a 3-channel stroke
image and outputs a 1-channel depth image.
Generator G. The core of our cGAN is a generator G, which
takes as input an image of one domain and translates it into
another domain. We adopt U-Net [42] as the generator, which
is a popular choice in many 2D image based tasks. The U-
Net is an encoder-decoder structure with skip connections
between mirrored layers in the encoder and decoder stacks,
as shown in Fig. 6. The structure of the encoder and decoder
are symmetrical, both consisting of a series of convolutional
layers. All convolutions use 4 x4 filters with stride of 2. The
intermediate layers use batch normalization and adopt leaky
ReLU as activation function. For the last layer in decoder, a
convolution is performed to get the final output image, fol-
lowed by a tanh activation.
Discriminator D. The discriminator D is trained to distin-
guish the fake images produced by generator G from the real
depth images as well as possible. The architecture of dis-
criminator is also composed of a series of convolutional lay-
ers. The intermediate convolutions also use batch normal-
ization and leaky ReLU. All convolutions use kernel size
of 4 and stride of 2. After the last convolutional layer, we
adopt a fully connected layer and sigmoid activation func-
tion to map to a 1 dimensional output, which indicates the
probability how the output image looks like the real ones.
Loss function. We adopt a cGAN loss to describe the rivalry
game between the generator G and discriminator D, which

can be defined as:
L.gan (G, D) = E, [log D(y|x)]—E,[log(D(G(x)|x)], (2)

where x is the input image, y is the corresponding ground-
truth depth image. During the training process, generator G
tries to minimize this function whereas discriminator D tries
to maximize it.

Moreover, we add a depth loss L gy, to measure the per-
pixel differences between output depth and ground-truth us-
ing L-1 distance. Unlike most of image translation tasks, we
do not care about the pixels in background. Thus, we add a
binary mask to compute the depth loss as:

Laegn(G) = Y, my||d, =, | - 3)
p

where m), is the binary mask value for pixel p, which is 1
for foreground and 0 for background. d, and d, , denote the
ground-truth and predicted depth respectively. To sum up,
our final loss function L can be expressed as:

L = LCGAN (G, D) + ALdepth (G) . (4)

The typical value of A is set to 100. For efficient network
training, we alternately optimize the parameters of discrim-
inator and generator using Adam optimizer [20].

4.3. Tree reconstruction

Depth image denoising. After generating the depth images
by using our network, we can easily recover 3D point clouds
of the silhouette and skeleton. However, the direct predicted
point clouds are usually not clean and contain noise. By
observing the zoomed-in depth images and predicted point
clouds, we find that most of noise points are located at the
boundary between foreground and background, e.g., the light-
colored pixels in Fig. 7. Thus we perform denoising on the
inferred depth images.

Liu et al. - Graphical Models

Page 5 of 13

Single Image Tree Reconstruction via Adversarial Network

We first mark all the pixels located at the boundary as
noises because their depth values are not accurate. Next,
we process each channel of the depth image as follows. For
each pixel pk (k = R, G, B) in foreground, we compute the
average distance d* between p* and all of its neighbors pf‘:

DA A)

iEN(pk)

k_ 1
N(pk)

where i € N(p¥) and N(p¥) denotes the 2-ring neighbors
of pk. For each neighbor pixel, we also compute its average
distance dik using the same way. Then, the pixel p¥ is con-

sidered as a noise if the variance of all average distances d lk
in its neighborhood is larger than a given threshold:

ZieN (o) <d,-k - dfug>2
N (p*)

2=

> €, ©6)

k —
avg

of d lk , and € is the threshold with default value 0.019. Then,
all of noise pixels are filled with the average depth value of
its neighbors. Fig. 8 (a) shows the optimized point cloud of
the silhouette after depth image denoising.

where d #pk) zieN(pk)(dk - dik) represents the mean

Visible branches tracing. To reconstruct the visible branches,

we organize the skeleton points as a connected graph struc-
ture. We apply the breadth-first search for traversing pixels

Figure 7: Noises are often located at the boundary between
foreground and background.

Without optimization With optimization

(b)

/

\

Tree skeleton

point cloud (front) Without optimization

Figure 8: Data processing for point cloud denoising and visible
branches tracing.

of the skeleton depth image from the root which is the lowest
position. We use a queue g to store the pixels to be visited
and a list / to record the branches that have been found. The
branches are identified by their colors, and each maintains a
list of nodes. In the beginning, g is initialized with the root
position, and a start branch is added into /. We then search
pixels along eight directions in the image with a step of 4
(which is the default stroke width). For each pixel in g, we
form a new node by computing the centroid position of its
neighbors with radius of 4, and push the node back into g and
its corresponding branch in /. If encountering a new color,
we add a new branch into /. The algorithm ends when the
queue g becomes empty. Finally, the connected tree struc-
ture can be formed according to the pixel adjacency and the
3D distances between the endpoints of each branch. Fig. 8
(b) shows the optimized connected tree skeleton after depth
image denoising and branches tracing.

e
R

Iteration 24 Final model

Point cloud Initial Skeleton Iteration 8

Figure 9: Procedural growth guided by the 3D silhouette and
skeleton.

Procedural modeling with direc-

tion field. Constrained by the 3D sil- 2Topt
houette and skeleton, we grow trees o |l
automatically using the procedural e
modeling method [31]. The core

of the method is space colonization, o
which simulates the competition of
growing branches for space. The

space for growth is represented by a U

set of marker points. In our work,

markers are generated within the tree volume defined by the
predicted 3D silhouette with uniform random distribution.
Beginning with the reconstructed visible skeleton, we attach
buds to the last few branches. Whether a bud will produce a
new shoot depends on the availability of space. The method
assumes that each bud is surrounded by a spherical occu-
pancy zone of radius p and has a conical perception volume
characterized by the perception angle 6 and radius r (see the
insert above). At the beginning of each growth iteration, all
buds remove markers within their occupancy zones. A bud
can develop into a shoot if there remain markers within its
perception volume. The optimal growth direction of a bud
Uopt €an be written as:

N

- 1 ©-

Bopt =)5 (7
i

where U; is a normalized vector formed by the bud and its
neighboring markeri. N is the number of the markers within

Liu et al. - Graphical Models

Page 6 of 13

Single Image Tree Reconstruction via Adversarial Network

Figure 10: The effect of using attraction direction. (a) The
input image. (b) Branches without attraction. (c) Branches
with attraction. (d) Final tree model.

its perception volume. The tree grows iteratively within the
silhouette until there is no space available for buds to com-
pete. Fig. 9 shows the resultant tree models at different iter-
ations guided by the point cloud.

However, the distribution of above branches may be not
consistent with the real photographs. As shown in Fig. 10
(b), the reconstructed branches are intricately filled in the
dashed box area rather than growing downward as the in-
put image. To solve this problem, we add an additional at-
traction direction . for each marker based on a direction
map. Given a tree image, we first treat each foreground pixel
of this image as a 2D point so that a sparse 2D point cloud
can be obtained. We then apply Dijkstra’s shortest path al-
gorithm to compute the shortest paths from the root to all
other points. These points can be clustered into preliminary
bins based on the length of the shortest paths (Fig. 11 (b)).
We subsequently divide each bin for the second time (Fig. 11
(c)) based on the graph adjacency and a given interclass min-
imal spacing. A 2D path can be formed by connecting the
centroids of adjacent bins (Fig. 11 (d)). Finally, the 2D di-
rection of each pixel can be computed by averaging the di-
rections of its neighbor branches based on the 2D skeleton.
Fig. 11 (e) shows the final 2D direction map. To generate
a 3D attraction direction for each marker, we simply rotate
the 2D direction map around the central axis of the image to
the plane where the marker is located. The attraction direc-
tion Uy, of each marker can be represented by the average
direction of its neighborhood. After considering both the di-
rection U, and Gy, the final growth direction of each bud
can be expressed as:

N

- . 1 R -

Utinal = Uopt T aﬁ Z Utrac T ﬁvgravity (®)
i

-

where Uiy = (0,—1,0) is a tropism vector. The default
values of « and g are set to 0.6 and 0.2. Fig. 10 (c) and

MARMNU NS5 N
LR R R R R RS T
AR R R R

+
i
b
I
%
X

oL

Figure 11: The process of computing the direction map. (a)
The input image. (b) Preliminary bins. (c) Bins after the
second time division. (d) The path formed by connecting the
centroid points of adjacent bins. (e) The direction map.

(d) shows the effect of using the attraction direction. The
branches in dashed box area tend to grow downward as the
input image.

Geometry construction and leaf population. The polygo-
nal meshes of branches are reconstructed by a set of general-
ized cylinders. The branch diameters are computed basipetally
and accumulated along the stem axes [31]. All branches are
finally smoothed by cubic Hermite interpolation. To obtain
the full tree models, we attach leaves on branches accord-
ing to specified tree species. The users can also adjust the
leaf/trunk textures and the parameters of procedural genera-
tion to enhance visual appearance according to the photos.

5. Experimental Results

In this section, we conduct a number of experiments on
various examples to demonstrate the efficacy of our approach.
We first evaluate the result of 3D shapes predicted by cGAN
and then conduct experiments by reconstructing tree models
from real images. We finally provide a comparison to the
state-of-the-art approaches. All shown results are obtained
on a desktop computer equipped with an Intel i7-7700HQ
processor clocked at 2.8GHz, 8GB of RAM.

Training settings. Offline training runs on an NVIDIA GeForce
GTX 1080 Ti (11GB memory) GPU. We implemented our

depth inference algorithm in PyTorch and Python. We trained
our network using 20k image pairs for both skeletons and sil-

houettes. By using different parameters of procedural mod-

eling [31], we generate 20 species of trees, such as pines,

maples, oaks, etc. Each tree species contains 1000 mod-

els with rich structural variations. 90% of the tree exam-

ples are deciduous trees while the rest are coniferous. Some

species that cannot be synthesized by our procedural model-

ing algorithm, such as palms are not included in the dataset.

The training process takes about 4 days, while in the testing

phase, generating one depth image needs only about 0.07

seconds through our network.

Liu et al. - Graphical Models

Page 7 of 13

Single Image Tree Reconstruction via Adversarial Network

Side view of 3D
reconstructed skeleton

Ground-truth Output

\{p \\/L \/\(l .

Final reconstructed model

Input: 2D strokes Front view Side view

~“=
<

Figure 12: Examples of reconstructing 3D skeletons and mod-
els from input 2D strokes.

Depth map Side view of silhouette

Input: Edge image Ground-truth Output Ground-truth Output

Figure 13: 3D silhouettes reconstruction (from left to right):
the input edges, depth images (top is our two view representa-
tions and bottom is the depth image of front view with color
coding), side view of reconstructed 3D silhouettes.

5.1. Evaluation

To evaluate the accuracy of the inferred 3D structure, we
also generate 2K testing images from above 20 species (100
images per species) where the branching parameters are dif-
ferent from those used in the training dataset. These testing
examples provide the ground truth branches for both quali-
tative and quantitative evaluation.

Fig. 12 shows two examples of 2D input strokes and their
reconstructed skeletons. By observing the branches from
side view (second column), we find that the output branches
faithfully keep their original relative positions as the ground
truth. Fig. 13 illustrates some results of the 3D silhouettes
predicted from input edges. The second column shows the
depth images of silhouettes (top) and the color coding depth
images of front view (bottom). The bottom color coding
depth images only visualize the depths of red channel (front
part of silhouette), which can help to compare the depth dif-

Figure 14: Reconstructing trees with a few leaves (a) and
even no leaves (b). From left to right: photograph, input
strokes, reconstructed models under front view and side view,
and rendered models under the front view.

ferences more clearly. The color coding depth image and the
side view of silhouettes demonstrate that the fluctuation of
the silhouette can be kept roughly by our algorithm. That
is to say, the network can keep the skeletons and silhouettes
consistent well with ground truth from the front view, and
give a reasonable and approximate predicted depth. Besides,
the holes in the silhouette can be recovered and maintained,
and the branches and foliage regions are easy to distinguish.

Next, we evaluate the outputs against the ground truth
using two quantitative measures: depth error and Hausdorff
distance. The depth error is the average depth differences
between the output depth images and ground truth depths.
The average depth error over 2K testing images for skeleton
and silhouette are 0.032 and 0.041, respectively (The depths
lie in range [0, 1]). In addition, we adopt Hausdorff distance
to measure the similarity between the reconstructed skele-
ton and ground-truth, where we take as input two point sets
formed by the tree nodes of reconstructed and real skele-
tons. The average Hausdorft distance over the testing dataset
is 0.098. The values of depth error and Hausdorff distance
indicate our method is effective to maintain the branching
fidelity of trees.

5.2. Modeling abilities

To further demonstrate the modeling abilities of our method,

we conduct experiments on a set of real-world images by us-
ing the same cGAN model trained on the synthetic dataset.
Our method can be effectively applied to reconstruct a va-
riety of tree species (see Figs. 14 and 15). Two trees with
a few or even no leaves are shown in Fig. 14. The network
only takes as input 2D user-drawn strokes to recover plau-
sible branching structures. Fig. 15 shows the reconstructed
results of various species of leafy trees such as pines, maple
trees, etc. All the resulting trees resemble the target photos
faithfully. Fig. 15 (b) shows a maple tree with uneven den-
sity of foliage, where the leaves in the left part are denser
than the right. Our method produces rightful distribution
of leaves and branches since the messy lines in the left of
edge image can reflect this feature well. Fig. 15 (d) shows
a Sophora japonica tree, the side view of which preserves a

Liu et al. - Graphical Models

Page 8 of 13

Single Image Tree Reconstruction via Adversarial Network

Figure 15: Modeling results of our method using real-world images. From left to right:
photographs, extracted 2D edges and strokes, reconstructed branch structures, and the
final full tree models rendered from front and side views.

Liu et al. - Graphical Models Page 9 of 13

Single Image Tree Reconstruction via Adversarial Network

Table 1

Time (in second) for modeling trees in Figs. 15 and 14. We
report the time cost in each of the following steps: stroke draw-
ing by users, skeleton and silhouette depth image generation,
procedural tree modeling.

No. Stroke Skeleton Silhouette Tree
Drawing Depth Depth Modeling
Gen. Gen.

Fig. 14(a) 28.43 0.065 N/A 0.01
Fig. 14(b) 19.20 0.071 N/A 0.01
Fig. 15(a) 2.17 0.073 0.066 1.62
Fig. 15(b) 10.80 0.069 0.061 1.53
Fig. 15(c) 17.13 0.083 0.058 1.22
Fig. 15(d) 11.80 0.076 0.072 1.07
Fig. 15(e) 9.85 0.066 0.077 1.29
Fig. 15(f) 6.01 0.070 0.066 1.04

similar bent shape as its front view. That indicates our net-
work is capable of extracting the underlying shape informa-
tion from a single image. For the oak tree in Fig. 15 (e), an
obvious inner hole is also well kept in the final tree model.
Moreover, in Table 1 we report the computational time of
each step for modeling the trees in Figs. 14 and 15. Infer-
ring 3D skeleton and silhouette via cGAN is quite efficient,
and procedural modeling to generate a full tree only needs
about 1 ~ 2 seconds. The supplemental video shows all the
3D reconstructed results in detail.

@) © o
T
J |
%w",

T

Figure 16: Different inner details can make effect on the
tree structure. The trees are respectively with (a) no inner
strokes, (b) two large holes, (c) some messy strokes. For each
tree, we show the extracted edges, inferred depth image, and
reconstructed model.

Fig. 16 illustrates the effect of different inner edge details
on the tree structure. The clean outline edges will produce a
leafy tree model as shown in Fig. 16 (a). Then we gradually
add details into the edge image to observe the changes of re-
constructed tree models. For the tree in Fig. 16 (b), two large
holes in the edge image cause no branch or leaves generated
in the corresponding region of the tree. In Fig. 16 (c), the
density of branches and leaves is affected by the small messy
lines in the middle of the edge image, since such lines infer
discontinuous depth values which cause no adequate space
(markers) for branches to grow.

In addition to the real-world images, our method can

be used to model more complicated examples, as shown in
Fig. 17. Our output trees faithfully reflect the shapes de-
signed by the user. It demonstrates the generalization ability
of our method.

Figure 17: Ornamental tree models created from the shapes
designed by a user.

5.3. Comparison to the state-of-the-art

In Fig. 18 we compare our method with a recent work [14].
This method applies procedural modeling approach to gen-
erate tree models from the real point cloud that are recon-
structed from multiple view images. First, to generate the
modeling result shown in Fig. 18 (b), they take a long time
(about 15 minutes) to compute 3D dense point cloud by ex-
ploiting a binocular stereovision approach. Our method takes
as input the strokes and edges shown in Fig. 18 (c) and can re-
construct the corresponding tree models (Fig. 18 (d)) within
seconds. Besides, due to lacking explicit branch control, [14]
gets a wrong branch structure in the red box region. By com-
parison, our method can recover the visible main branches
as the real image from the input strokes. We note that, since
the strokes are encoded in different colors, the relative posi-
tions of reconstructed branches in the red box region are also
consistent well with the input image.

We now compare with a single image based tree model-
ing method [47], which takes about 20 minutes to reconstruct
the branches on a PC with 2.4GHz CPU, whereas our method
only takes a few seconds with a 2.8GHz CPU. Since [47]
only takes the outer boundary of a tree into account, their
method doesn’t perform well for the trees with sparse leaves
or inner holes, while our method can adapt to such com-
plex cases better. Fig. 19 compares the modeling result of
a sparse tree between [47] and our method. Our method
estimates the 3D silhouette and skeleton by using a neural
network trained on a dataset, so that the side view is change-
able. However, the tree generated by [47] always looks simi-
lar between front and side views. Moreover, to get 3D visible
branches from 2D strokes, the methods of [47] and [29] sim-
ply rotate the branches with assumption that the distance be-
tween branches is as large as possible, which is too simple to
describe the real skeletons. Our method can infer more accu-
rate 3D skeleton from 2D strokes by using the network.Our
method can also handle harder cases as shown in Fig. 17.
The first row shows the tree reconstructed from a heart shape.
The second row shows the tree with several inner heart holes.
It is difficult for [47] to model such cases.

Liu et al. - Graphical Models

Page 10 of 13

Single Image Tree Reconstruction via Adversarial Network

Figure 18: Comparison with Guo et al. [14] which generates tree models from multiple
view images. Note that our method can more accurately recover the relative positions
of the visible branches in the red box. (a) The input image. (b) Tree model generated
by [14]. (c) The input strokes and edges of our method. (d) Our modeling result from
front view. (e) Side view of our result.

Figure 19: Comparison with Tan et al. [47]. (a) Real tree image. (b) Modeling result
of [47]. (c) Edges and strokes. (d) Front view of our result. (e) Side view of our result.

(®)

(D

Figure 20: Modeling results of some difficult cases. (a) A tree with very sparse leaves
and twigs. (b) A weeping willow. (c) A Delonix tree composed of various types of leaves.
(d) A failure case of a palm tree, the species of which wasn't included in the training set.

Liu et al. - Graphical Models Page 11 of 13

Single Image Tree Reconstruction via Adversarial Network

5.4. Limitations

We successfully reconstruct large sets of tree models com-
prising a high variation of species from a single image us-
ing the proposed approach. However, our method also has
some limitations. First, the procedural modeling algorithm
is hard to recover the full details of some trees with special
forms, especially for those that do not exist in the training set.
Fig. 20 (a) shows a tree with very sparse foliage. In this ex-
ample, the procedural generation cannot faithfully propagate
small twigs and leaves in accordance with the target image.
Moreover, for the weeping tree in Fig. 20 (b), it is difficult
to make the drooping branches grow entirely accorded with
the input image.

Second, the cGAN network only predicts the overall 3D
tree shapes, but no more further details on tree species and
foliage textures. For the Delonix tree in Fig. 20 (c), which
has both red and green leaves, our method cannot effectively
recover the actual textures of its foliage. In addition, Fig. 20
(d) also shows a failure case when trying to reconstruct a
palm tree, however, the species of which is not included in
the training set.

6. Conclusion and Future Work

We have presented a new approach to reconstruct real-
istic tree models from a single image. The core idea of our
method is the combination of deep learning and procedu-
ral modeling. We utilize two parallel representations to de-
scribe the geometric shape of one tree: a 3D silhouette de-
fines an approximate space that covers the whole tree, while
a 3D skeleton represents the visible trunk precisely. By rep-
resenting such two shapes as two depth images, we formu-
late the 2D-to-3D inference problem as solving an image-to-
image translation task using a cGAN network. Based on the
predicted 3D skeleton, the full tree model can be generated
in the space defined by the 3D silhouette using procedural
modeling techniques. What’s more, it is easy to extend our
approach into an interactive sketch-based tree modeling sys-
tem, i.e., users can generate various tree models by drawing
the silhouette or skeleton strokes interactively without input
images. We have shown the effectiveness of our method in
reconstructing convincing 3D tree models by various input
tree images. Compared with previous single image based
modeling methods, our approach is much faster and more
robust for modeling trees with different types.

Several problems remain open for future research. We
would like to develop an integrated neural network that can
predict not only the 3D shapes but some information on tree
species. Furthermore, an important extension would be au-
tomatic extraction of the textures and visible trunks.

Acknowledgment

This work is partially funded by the NSFC (61972388,
61761003, 61802406), Shenzhen Basic Research Program
(JCYJ20180507182222355), the Leading Talents of Guang-
dong Program (00201509), and the CAS grant (GJHZ1862).

References

[1] Argudo, O., Chica, A., Andujar, C., 2016. Single-picture reconstruc-
tion and rendering of trees for plausible vegetation synthesis. Com-
puters & Graphics 57, 55-67.

[2] Benes, B., Andrysco, N., §t’ava, 0., 2009. Interactive modeling of
virtual ecosystems, in: Proceedings of the Fifth Eurographics confer-
ence on Natural Phenomena, pp. 9-16.

[3] Bloomenthal, J., 1985. Modeling the mighty maple. SIGGRAPH
Comput. Graph. 19, 305-311.

[4] Bradley, D., Nowrouzezahrai, D., Beardsley, P., 2013. Image-based
reconstruction and synthesis of dense foliage. ACM Trans. on Graph-
ics (Proc. SIGGRAPH) 32, 74.

[5] Canny,J., 1986. A computational approach to edge detection. IEEE
Trans. on Pattern Analysis and Machine Intelligence , 679-698.

[6] Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J., 2018. Star-
gan: Unified generative adversarial networks for multi-domain image-
to-image translation, in: IEEE Computer Vision and Pattern Recog-
nition (CVPR), pp. 8789-8797.

[7] Deussen, O., Lintermann, B., 2006. Digital design of nature: com-
puter generated plants and organics. Springer Science & Business
Media.

[8] Diener, J., Reveret, L., Fiume, E., 2006. Hierarchical retargetting of
2d motion fields to the animation of 3d plant models, in: Proceedings
of the 2006 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, Eurographics Association. pp. 187-195.

[9] Friedman, S., Stamos, 1., 2013. Automatic procedural modeling of
tree structures in point clouds using wavelets, in: International Con-
ference on 3D Vision, IEEE. pp. 215-222.

[10] Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A., 2016. Learn-
ing a predictable and generative vector representation for objects, in:
European Conference on Computer Vision, Springer. pp. 484—499.

[11] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley,
D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversar-
ial nets, in: Advances in neural information processing systems, pp.
2672-2680.

[12] Guénard, J., Morin, G., Boudon, F., Charvillat, V., 2013. Reconstruct-
ing Plants in 3D from a Single Image Using Analysis-by-Synthesis,
in: Advances in Visual Computing. volume 8033 of Lecture Notes in
Computer Science, pp. 322-332.

[13] Guo,J., Jiang, H., Benes, B., Deussen, O., Zhang, X., Lischinski, D.,
Huang, H., 2020. Inverse procedural modeling of branching structures
by inferring 1-systems. ACM Trans. on Graphics 39, 1-13.

[14] Guo, J., Xu, S., Yan, D.M., Cheng, Z., Jaeger, M., Zhang, X., 2018.
Realistic procedural plant modeling from multiple view images. IEEE
Trans. on Vis. and Comp. Graphics 26, 1372-1384.

[15] Honda, H., 1971. Description of the form of trees by the parameters
of the tree-like body: Effects of the branching angle and the branch
length on the shape of the tree-like body. Journal of Theoretical Bi-
ology 31, 331 — 338.

[16] Huang, H., Kalogerakis, E., Yumer, E., Mech, R., 2017. Shape syn-
thesis from sketches via procedural models and convolutional net-
works. IEEE Trans. on Vis. and Comp. Graphics 23, 2003-2013.

[17] Isokane, T., Okura, F., Ide, A., Matsushita, Y., Yagi, Y., 2018. Proba-
bilistic plant modeling via multi-view image-to-image translation, in:
IEEE Computer Vision and Pattern Recognition (CVPR).

[18] Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A., 2017. Image-to-image
translation with conditional adversarial networks, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp.
1125-1134.

[19] Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J., 2017. Learning to
discover cross-domain relations with generative adversarial networks,
in: Proceedings of the 34th International Conference on Machine
Learning-Volume 70, JMLR. org. pp. 1857-1865.

[20] Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 .

[21] Li, C., Deussen, O., Song, Y.Z., Willis, P., Hall, P., 2011. Modeling
and generating moving trees from video. ACM Trans. on Graphics
(Proc. SIGGRAPH Asia) 30, 127:1-127:12.

Liu et al. - Graphical Models

Page 12 of 13

[22]

(23]

[24]

(25]

[26]

(27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

(36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

Single Image Tree Reconstruction via Adversarial Network

Li, Y., Fan, X., Mitra, N.J., Chamovitz, D., Cohen-Or, D., Chen, B.,
2013. Analyzing growing plants from 4d point cloud data. ACM
Trans. on Graphics (Proc. SIGGRAPH Asia) 32, 157:1-157:10.
Lindenmayer, A., 1968. Mathematical models for cellular interactions
in development. ii. simple and branching filaments with two-sided in-
puts. Journal of Theoretical Biology 18, 300-315.

Livny, Y., Pirk, S., Cheng, Z., Yan, F., Deussen, O., Cohen-Or, D.,
Chen, B., 2011. Texture-lobes for tree modeling, in: ACM Trans. on
Graphics (Proc. SIGGRAPH), p. 1.

Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., El-Sana, J., 2010.
Automatic reconstruction of tree skeletal structures from point clouds.
ACM Trans. on Graphics (Proc. SIGGRAPH) 29, 151.

Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., Wang, R., 2017. 3d
shape reconstruction from sketches via multi-view convolutional net-
works, in: International Conference on 3D Vision (3DV), pp. 67-77.
Mirza, M., Osindero, S., 2014. Conditional generative adversarial
nets. Computer Science , 2672-2680.

Neubert, B., Franken, T., Deussen, O., 2007. Approximate image-
based tree-modeling using particle flows. ACM Trans. on Graphics
(Proc. SIGGRAPH) 26.

Okabe, M., Owada, S., Igarash, T., 2005. Interactive design of botan-
ical trees using freehand sketches and example-based editing. Com-
puter Graphics Forum (Proc. EUROGRAPHICS) 24, 487-496.
Oppenheimer, P.E., 1986. Real time design and animation of fractal
plants and trees. SIGGRAPH Comput. Graph. 20, 55-64.

Palubicki, W., Horel, K., Longay, S., Runions, A., Mech, R.,
Prusinkiewicz, P., 2009. Self-organizing tree models for image syn-
thesis. ACM Trans. on Graphics (Proc. SIGGRAPH) 28.

Pfeifer, N., Gorte, B., Winterhalder, D., et al., 2004. Automatic re-
construction of single trees from terrestrial laser scanner data, in: Pro-
ceedings of 20th ISPRS Congress, pp. 114-119.

Pirk, S., Stava, O., Kratt, J., Said, M.A.M., Neubert, B., Méch, R.,
Benes, B., Deussen, O., 2012. Plastic trees: Interactive self-adapting
botanical tree models. ACM Trans. on Graphics (Proc. SIGGRAPH)
31, 50:1-50:10.

Prusinkiewicz, P., Hammel, M., Hanan, J., Mech, R., 1996. L-
systems: from the theory to visual models of plants, in: Proceedings
of the 2nd CSIRO Symposium on Computational Challenges in Life
Sciences, pp. 1-32.

Prusinkiewicz, P., James, M., Méch, R., 1994. Synthetic topiary, in:
Proceedings of the 21st Annual Conference on Computer Graphics
and Interactive Techniques, pp. 351-358.

Prusinkiewicz, P., Lindenmayer, A., 1990. The Algorithmic Beauty
of Plants. Springer-Verlag New York, Inc., New York, USA.

Quan, L., Tan, P,, Zeng, G., Yuan, L., Wang, J., Kang, S.B., 2006.
Image-based plant modeling, in: ACM Trans. on Graphics (Proc.
SIGGRAPH), pp. 599-604.

Raumonen, P., Kaasalainen, M., Akerblom, M., Kaasalainen, S.,
Kaartinen, H., Vastaranta, M., Holopainen, M., Disney, M., Lewis,
P., 2013. Fast automatic precision tree models from terrestrial laser
scanner data. Remote Sensing 5, 491.

Reche-Martinez, A., Martin, 1., Drettakis, G., 2004. Volumetric
reconstruction and interactive rendering of trees from photographs.
ACM Trans. on Graphics (Proc. SIGGRAPH) 23, 720-727.

de Reftye, P., Edelin, C., Fran¢on, J., Jaegerl, M., Puech, C., 1988.
Plant models faithful to botanical structure and development. ACM
SIGGRAPH 22, 151-158.

Rezende, D.J., Eslami, S.A., Mohamed, S., Battaglia, P., Jaderberg,
M., Heess, N., 2016. Unsupervised learning of 3d structure from im-
ages, in: Advances in Neural Information Processing Systems, pp.
4996-5004.

Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional
networks for biomedical image segmentation, in: International Con-
ference on Medical image computing and computer-assisted interven-
tion, Springer. pp. 234-241.

Runions, A., Lane, B., Prusinkiewicz, P., 2007. Modeling trees with
a space colonization algorithm, in: Proceedings of the Third Euro-
graphics Conference on Natural Phenomena, pp. 63-70.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Shlyakhter, 1., Rozenoer, M., Dorsey, J., Teller, S., 2001. Reconstruct-
ing 3d tree models from instrumented photographs. IEEE Comput.
Graph. Appl. 21, 53-61.

Sinha, A., Unmesh, A., Huang, Q., Ramani, K., 2017. Surfnet: Gener-
ating 3d shape surfaces using deep residual networks, in: IEEE Com-
puter Vision and Pattern Recognition (CVPR), pp. 6040-6049.
Stava, O., Pirk, S., Kratt, J., Chen, B., Mech, R., Deussen, O., Benes,
B., 2014. Inverse procedural modelling of trees. Computer Graphics
Forum 33, 118-131.

Tan, P., Fang, T., Xiao, J., Zhao, P., Quan, L., 2008. Single image
tree modeling. ACM Trans. on Graphics (Proc. SIGGRAPH Asia)
27, 108:1-108:7.

Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L., 2007. Image-based
tree modeling, in: ACM Trans. on Graphics (Proc. SIGGRAPH),
p- 87.

Weber, J., Penn, J., 1995. Creation and rendering of realistic trees,
ACM. pp. 119-128.

Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J., 2016. Learn-
ing a probabilistic latent space of object shapes via 3d generative-
adversarial modeling, in: Advances in neural information processing
systems, pp. 82-90.

Xu, H., Gossett, N., Chen, B., 2007. Knowledge and heuristic-based
modeling of laser-scanned trees. ACM Trans. on Graphics 26, 19.
Yan, D.M., Wintz, J., Mourrain, B., Wang, W., Boudon, F., Godin,
C., 2009. Efficient and robust reconstruction of botanical branching
structure from laser scanned points, in: Proc. 11th IEEE Int. Conf.
CAD/Graph. Comput., pp. 572-575.

Yi, L., Li, H., Guo, J., Deussen, O., Zhang, X., 2018. Tree growth
modelling constrained by growth equations, in: Computer Graphics
Forum, Wiley Online Library. pp. 239-253.

Zhang, X., Li, H,, Dai, M., Ma, W., Quan, L., 2014. Data-driven
synthetic modeling of trees. IEEE Trans. on Vis. and Comp. Graphics
20, 1214-1226.

Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-
to-image translation using cycle-consistent adversarial networks, in:
IEEE International Conference on Computer Vision (ICCV), pp.
2223-2232.

Liu et al. - Graphical Models

Page 13 of 13

