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Abstract

Meaningful feature curves provide high-level shape representation of the geometrical shapes and are useful in various applications.
In this paper, we propose an automatic method on the basis of the quadric surface fitting technique to extract complete feature curve
networks (FCNs) from 3D surface meshes, as well as finding cycles and generating a high-quality segmentation. In the initial collection
of noisy and fragmented feature curves, we first fit the quadric surfaces of each curve and the corresponding neighbor vertices to filter
out non-salient or noisy feature curves. Then we conduct a feature extension step to address the curve intersections and form a closed
FCN. Finally, we regard circle curves as cycles in the complete FCN and segment the mesh into patches to reveal a highly structured
representation of the input geometry. Experimental results demonstrate that our algorithm is more robust for FCN extraction from
complex input meshes and achieves higher quality patch layouts compared with the state-of-the-art approaches. We also verify the
validity of extracted feature curve cycles by applying them to surface reconstruction.

Keywords: Shape analysis, Feature curve network, Segmentation.

1. Introduction

Nowadays 3D models are commonly represented by triangu-
lar meshes, which can be easily obtained via various acquisition
techniques for 3D geometry. Feature curve network (FCN) ex-
traction is one of the fundamental problems in computing com-
pact and faithful representations of 3D objects in geometry pro-
cessing. Extracting meaningful FCNs is useful in a variety of
downstream applications, such as reverse engineering [1], shape
abstraction [2, 3], remeshing [4, 5], shape modeling [6, 7], and
functional map computation [8], to name a few.

The feature curve here is defined as the intersection of two
geometric patches on the surface and FCN reveals the shape’s
key structural parts. The goal of feature curve extraction is to
preserve a set of connected segments that are not necessarily the
original mesh edges, which convey the maximum number of es-
sential characteristics of 3D shapes. Existing methods have ad-
dressed FCN extraction from two different aspects. Although
shape approximation approaches [9, 10] can segment models
to meaningful spatial parts, these methods are based on vertex
clustering or boundary detection techniques to determine patches
that meet certain regularity criteria. However, their greedy na-
ture tends to create redundant boundaries within weak feature
regions and obtain unsatisfactory results. Geometry-driven ap-
proaches produce detailed FCNs by extracting feature lines and
fitting local geometric primitives. The generated feature curves
are typically not connected in the regions where multiple surfaces
intersect due to the limitation of local shape properties.

Techniques for detecting crest lines typically use local shape
properties (e.g., curvature and normal voting tensor) to extract
ridge and valley lines [11, 12], and then the number of detected
feature curves are controlled using a filtering operation. Directly
using the detected feature curves for further analysis and appli-
cations is difficult because of their distribution on the model sur-

∗Corresponding author
Email addresses: jianwei.guo@nlpr.ia.ac.cn (Jianwei Guo),

xiaojun@ucas.ac.cn (Jun Xiao)

faces. To form a closed and efficient FCN, user interaction is re-
quired to connect the curves by using several strokes. However,
this is a challenging task for ordinary users.

In this study, we propose an automatic approach on the ba-
sis of the quadric surface fitting technique to extract complete
FCNs from 3D models, as well as finding cycles and generat-
ing high-quality segmentation results. As shown in Fig. 1, we
first present a valid method for filtering out non-salient feature
curves by combining the curvature and surface fitting error. Thus,
we can avoid determining high-frequency noise and weak fea-
tures as false positives. Then, we address the curve intersections
and missing curve by applying inward and outward feature ex-
tensions to create a connected 3D FCN. Finally, we can easily
find cycles of connected curves that bound surface patches. Our
approach can achieve high-quality FCNs and patch layouts. In
summary, the main contributions of this work are the following:

• We provide an efficient method for filtering the noise curves
from the initial curve network to preserve meaningful fea-
ture curves and extract complete FCNs from 3D models.

• We simultaneously find the curve cycles in the network
and generate high-quality patch layouts compared with the
state-of-the-art segmentation approaches.

• We obtain a compact high-level representation of 3D mod-
els that can be used for surface reconstruction.

With respect to our previous contribution [13], we have ex-
tended the following aspects:

(1) Improved feature extension by introducing the concept of
node point for long curve fitting optimization. Since the exten-
sion on a long curve composed of several short curves is not sat-
isfactory in [13], we find the node point which is the intersection
of more than two adjacent surfaces on the curve, and divide it
into short curves to achieve a better surface fitting and extension
effect.

(2) A new method for patch layout generation by detecting the
curve cycles. We find the curve cycles in the network after curve
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Figure 1: Our system takes as input a 3D surface mesh and fragmented feature curves and outputs a complete FCN. From the curve network, we detect cycles of
connected curves that bound surface patches. From left to right: the input, extracted network, exploded view of detected cycles, and patch layout.

breaking and merging operation and we take a correlation detec-
tion based on surface fitting for small patches to solve detailed
problems caused by the feature extension process. Eventually,
we can generate high-quality patch layouts and feature curve net-
work results.

(3) Extensive experiments are conducted to verify the effec-
tiveness of our approach. We have evaluated our method on more
complex 3D models with or without ground-truth segmentation
results, studied the resistance to noise, and conducted an abla-
tion study of feature curve filtering. We have also compared our
method with respect to state-of-the-art methods as well as our
previous work. Finally, we demonstrated the validity of the ex-
tracted feature curve cycles by applying it to surface reconstruc-
tion.

2. Related work

Our technique aims to construct shape abstraction FCNs from
3D models. We present a brief overview of the various tech-
niques related to feature detection and FCN extraction.
Feature detection. Many studies have been conducted on de-
tecting feature lines in 3D models. A complete survey on feature
extraction is beyond the scope of this paper. Hence, we will only
describe a few representatives.

Several approaches are based on the detection of ridges and
valleys, which are the loci of points where the positive (negative)
variation of local properties such as normal and curvatures in the
direction of their maximal change attains a local maximum (min-
imum). These properties can be calculated through global [11]
or local [12, 14] surface fitting. Ohtake et al. [11] combine multi-
level implicit surface fitting and finite difference approximations
to extract accurate ridges and valleys, while [12, 14] show faster
computation by using the local estimation techniques to calculate
the local differential information. Lai et al. [15] extract ridges
and valleys via integral invariants of local neighborhoods with-
out approximation. Since the ridges and valleys are the extreme
points set of local attributes, the generated feature curves usually
contain many non-salient curves and are not connected in the re-
gions where multiple surfaces intersect.

Other types of line features have also been proposed by con-
sidering local geometry of the normal or curvature. Nomura and
Hamada [16] extract feature edges between the convex and con-
cave triangles based on normals. Weinkauf and Günther [17] ex-
tract salient edges by the topological analysis of principal curva-
tures. Due to the local geometry is affected where more than two
geometric surfaces intersect, these methods cannot detect con-
tinuous feature curves. Kim et al. [18] classify features into cor-
ners, sharp edges, and faces based on the normal tensor voting.
But they may create redundant feature lines at complex transition

surfaces. Several approaches [19, 20, 21] based on symmetry de-
tection have been proposed to extract feature curve templates and
complete missing data in noisy FCNs. However, some important
curves are still missed because they can only find the reoccur-
rences of curve templates.

Despite promising results, these methods usually can not de-
tect features on smooth and transition regions due to the limita-
tion of local surface properties. In contrast, we retain a maximal
set of salient feature curves by combining the curve curvature
and surface fitting error.
Curve network extraction. Many algorithms extract patch
boundaries from segmentation results for the generation of FCN.
Cohen-Steiner et al. [9] proposed the Variational Shape Ap-
proximation(VSA) to partition faces to planar patches based on
Lloyd’s clustering. Yan et al. [10] extend the VSA framework to
the sphere, cylinder, and other quadric patches. Nieser et al. [1]
grow patches around seeds where the maximal curvature of a
set of neighboring faces lies below a predefined threshold and
thicken the edges of the feature graph. Yamakawa et al. [22]
group triangles using a region-growing technique and extract
feature edges along the boundaries between the triangle groups.
Mehra et al. [2] generate hierarchical abstraction curve networks
by VSA and simplified by thresholding the reconstruction error
based on the curve smoothness and the normal deviation of the
resulting mesh approximation. De Goes et al. [3] define the con-
cept of exoskeletons to abstract the 3D model and reveal mean-
ingful perceptual parts, which are refined by employing VSA.
Gehre et al. [23] extract a scale conforming FCN, which pre-
serves the maximum set of prominent feature curves within a
prescribed scale from an initial set of feature lines. However,
the initial curve is discontinuous. Torrente et al. [24] adopt the
Hough transform to identify and localize feature curves on 3D
shapes. Sharma et al. [25] propose the ParSeNet to decompose a
3D point cloud into parametric surface patches. These patch lay-
outs are related to the number of clusters and usually do not trace
out weak features to generate a detailed FCN. Hu et al. [26] use
the multiscale patch clustering to learn contextual information
and segment 3D point clouds of indoor scenes into the meaning-
ful objects. One close work to ours is that of Cao et al. [27],
who take the curve length and curvature into account by filter-
ing a dense set of feature curves for salient and long curves to
generate the surface patches. However, this work, as well as
other existing approaches, perform FCN extraction by preserv-
ing small scale details and thresholding curvature based on local
surface properties. They are unable to get accurate feature curves
within transition regions with weak features. We will show our
superiority by comparing it to them.
Surfacing curve networks. Creating surfaces from 3D curve
networks is an important research topic in shape modeling and
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(a) (b) (c) (d) (e) (f)

Figure 2: The pipeline of our framework. (a) input mesh and feature curves; (b) salient feature curves after filtering; (c) feature curve extension result; (d) final FCN;
(e) exploded view of cycles; (f) patch layout after segmentation and boundary smoothing, where different patches are shown in different colors.

computer-aided design (CAD). This task promotes the recov-
ery of full geometry from a set of curves spanning the surfaces.
Nealen et al. [28] present a system for automatically construct-
ing smooth surfaces by applying functional optimization with a
collection of 3D curves. Liu et al. [29] produce a closed surface
network that interpolates curve networks with arbitrary shapes
and topologies on cross-sections. Orbay and Kara [30] propose
a sketch-based modeling interface for creating smooth surfaces
from curve networks. Abbasinejad et al. [31] introduce a system
that supports the automatic generation of piecewise smooth sur-
faces from curve networks on the basis of linear algebra represen-
tation of surface patches. With similar motivation, Bessmeltsev
et al. [32] present a design-driven approach for quadrangulating
closed 3D curve networks. Zou et al. [33] present an algorithm
for triangulating 3D spatial polygons. Zhuang et al. [34] extract a
set of curve cycles in FCNs and produce smooth surfaces that in-
terpolate the input 3D curves or cycles. Xu et al. [35] design
a sketch-based modeling system (i.e., True2Form) that recon-
structs 3D curve networks from typical 2D design sketches. Pan
et al. [6] create freeform surfaces by exploiting the geometric
constraints of curvature flow lines. Stanko et al. [36] construct
triangle meshes with the solution of a new variational optimiza-
tion method based on mean curvature vectors. Our results can be
used as a valid input of 3D curves for these applications.

3. Overview

The input to our algorithm is a two-manifold triangular mesh
M consisting of a set of triangle facets {ti}mi=1 and vertices {vi}

q
i=1,

and an initial set of fragmented feature curves, which are com-
puted by the method of Yoshizawa et al. [12] due to its robust-
ness. Our goal is to extract complete FCNs and generate high-
quality patch layouts. Note that we first apply a remeshing proce-
dure if the input is a low-resolution mesh, where the target edge
length of the new mesh is computed on the basis of the total sur-
face area of the input mesh (more details can be found in [37]).

The main steps of our algorithm are illustrated in Fig. 2. First,
we filter out the short and unimportant feature elements on the
basis of the quadric surface fitting technique. Second, we map
the feature points in the remaining curves to the corresponding
closest vertices in the mesh and conduct a feature extension step
to form a complete FCN. Finally, we find cycles in the complete

FCN and obtain patch layouts to segment the input mesh, and re-
fine the curve network boundary by applying a smoothing oper-
ation [1]. We explain the details of each step in the next section.

4. Methodology

4.1. Feature Curve Filtering

We utilize the method in [12] to compute a set of initial
curves automatically, that is, ridge and valley lines. Each fea-
ture curve c, is represented by a set of ordered feature points,
{p0,p1, · · · ,pn}, on triangle edges (see Fig. 3 (a)). However, the
initially generated curves typically contain many short and non-
salient curves located on the geometric surfaces of the mesh due
to the limitation of ridge and valley lines. We present an efficient
approach to filter out these non-salient curves by combining the
curve curvature and surface fitting error.

Given a curve c = {p0,p1, · · · ,pn}, the feature points are gen-
erally not the vertices of the mesh. To simplify our calcula-
tion, we map these feature points to the closest mesh vertices
{v0, v1, · · · , vn}. We consider the curvature of mapped vertices as
the curvature of feature points. The curvature R for each feature
curve can be computed as follows:

R =

∑n
i=0 CRMS (pi)

n
,

CRMS (pi) =

√
k2

max(vi) + k2
min(vi),

(1)

where CRMS (pi) is the root mean square curvature of pi, and kmax
and kmin are the maximal and minimal principal curvatures of the
vertex vi which is nearest to pi. We use R to filter the non-salient
curves on the plane. We observe that the majority of salient
curves are located in the regions where two adjacent geomet-
ric surfaces intersect. Since the R of some curve lying on the
quadric surface is larger than certain intersecting curves, we can-
not avoid filtering these intersecting curves when we only use the
curve curvature. Therefore, we propose to use the surface fitting
error, E, to determine if one curve is the intersecting curve of the
adjacent surfaces. Our motivation for using fitting error is that
we can fit a proper surface inside the mesh. Otherwise, we could
observe a large fitting error on the local region of the intersection
curve of two surfaces.
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(a) (b) (c)

Figure 3: Illustration of our filtering process using R and E. (a) input mesh and
feature curves. (b) use parameter R = 0.005 to filter feature curves. (c) use the
parameter E = 3 ∗ 10−6 to filter other feature curves.

Hence, we adopt the concept of quadric surface fitting [10].
Since each feature curve cuts across the triangles ofM, we col-
lect these triangles as the initial seeding set {ti}. We then visit
each triangle in {ti}, and add their adjacent triangles to {ti} for
three-iterations. Accordingly, we can form the local surface re-
gion, P = {ti}ni=1, around this feature curve. We subsequently
fit the general quadric surface (including plane, sphere, cylinder,
etc.) forP. The implicit equation of the quadric surface f (x) = 0,
can be expressed as

f (x) = CT · F, (2)

where x = [x, y, z]T ∈ R3 is a 3D point, C = [c0, c1, ..., c9]T is the
vector of unknown coefficients for the quadric surface and F =
[1, x, y, z, xy, xz, yz, x2, y2, z2]T. Both of them are ten dimensional
vectors.

To compute f (x), we minimize the fitting error between the
local surface region and the quadric surface. The fitting error E
is defined by combining L2 and L2,1 distance between a triangle
ti and f (x):

E(P) =
1
n

n∑
i=1

E(ti, f ) =
1
n

n∑
i=1

(Ed(ti, f ) + ωEn(ti, f )), (3)

where Ed measures the squared Euclidean distance (L2), En mea-
sures the normal deviation (L2,1) from ti to f , andω is the balance
weight (ω = 0.5 by default). In our implementation, Ed and En
are approximated by the following formula respectively:

Ed(ti, f ) =

∫
ti

f (x)2

| 5 f (x) |2
· dσ,

En(ti, f ) =

∫
ti
(
5 f (x)
| 5 f (x) |

− nti )
2 · dσ,

(4)

where nti is the unit normal vector of ti.
The detailed optimization algorithm used to fit the quadric can

be found in [10]. In short, we first compute an initial quadric
surface using the algorithm [38] which only takes the L2 compo-
nent into account. Then we reduce the optimization to a linear
least square problem by computing the gradient for each trian-
gle at the barycenter and use this one point approximation of the
gradient in Eq. 4. We solve the least square fitting by Cholesky
decomposition.

Since the calculation of surface fitting error is time-
consuming, we first compute the R measurements for each curve
to filter out most of the non-salient curves located on the flat ar-
eas. Then, we compute the surface fitting error E for the other

p9 9p
p0

c0

c1 c1

c0

c2

p
0

Figure 4: An example of curve optimization. Left: the input mesh with filtered
feature curves. Right: result after inward extension.

curves. If the average error E of a curve is smaller than a pre-
specified threshold, the curve is located inside the quadric sur-
face and must be filtered out. The result of this step is illustrated
in Fig. 3.

4.2. Feature Curve Network Extraction

After filtering, the preserved feature curves capture the bound-
ary information of geometric patches in the input mesh. How-
ever, these curves computed by [12] are not connected in regions
where multiple surfaces intersect and cannot be directly regarded
as the result of the FCN. Therefore, we use the surface fitting
equation and curvature direction to extend the preserved curves
and obtain the completed curve network.
Curve optimization. We observe that there exist some long fea-
ture curves that actually consist of several shorter curves. For ex-
ample, in Fig. 4, the curve c0 = {p0, · · · ,p9, · · · } should be split
into two curves at feature point p9. We denote feature point p9 as
the node point which is the intersection of more than two adjacent
surfaces. Note that a node point is similar to the notion of a cor-
ner in some other work. The principal curvature direction of such
a node point deviates from its adjacent feature points more than
30◦. First, we use the feature points and their normals of a curve
to fit a quadric surface and compute the average fitting error E(c).
If the fitting error E(c) is larger than the threshold α (1.5 times fil-
tering parameter E) or the number of feature points is more than
the threshold τ (τ = 50 by default), then we consider that this
curve may be a long curve and contains one or more nodes. Sec-
ond, we use an inward tracing scheme to find the node points.
As shown in Fig. 4, starting from the endpoint p0, we repeat-
edly visit the successive feature point until we encounter the node
point p9. We collect these feature points as similar points for the
endpoint p0 and form a new curve. However, if the number of
{p0,p1, · · · ,pi} is too small (e.g., i < 5), such as curve c1 shown
in Fig. 4, then we regard these points as noise and delete them.
By tracing inward from another endpoint of c0 in the same way,
we finally split this long curve into two real curves, c0 and c2,
see Fig. 4 (right)). At the same time, since an original curve may
have three endpoints in a T-shaped curve, we first find a com-
mon point for these curves from the three endpoints, and then di-
vide the original curve into three curves from the common point.

v1

v0

v2

v3

p0

Figure 5: Illustration of computing
the set of candidate vertices for the
outward extension.

Outward extension. We ex-
tend each curve outwards from
its two endpoints to complete
the FCN. By taking the end-
point p0 as an example (see
Fig. 5), we aim to find the op-
timal mesh vertex to which the
curve could extend. To this end,
we compute a candidate set of
mesh vertices, Cv, which is the
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subset of the one-ring neighbor-
ing vertices of v0 (v0 is the clos-
est mesh vertex of p0). We con-
sider each neighbor vk of v0,
if the angle between the vector
vk − v0 and the curve direction at p0 is less than 90◦. Then we
add vk to the set Cv. In this way, each vk in Cv does not deviate
from the curve direction too much or turn back to the endpoint
p0.

After building the candidate set, we define the extension cost
value F(vk) for each vertex vk ⊆ {Cv} to measure the possibility
of vk being selected for the extension. Thus, we add the can-
didate vertex vk with the minimal extension cost to the feature
curve. We use both the curvature direction and curve-fitting er-
ror to calculate the extension cost function F(vk) as follows:

F(vk) = E(vk) + λG(tmin(vk), tmin(v0)) (5)

where E(vk) is the curve fitting error defined above, G is the func-
tion to calculate the minimal principal curvature directions angle
between vk and v0, and λ is the balance weight that normalizes E
and G to the same scale.

To accelerate the extension speed, we collect the candidate
vertices of the curves and use a global priority queue to main-
tain them (the priority of each candidate is set to their extension
cost value). At each time, we pop the candidate vk with the least
cost from the queue and connect it to the corresponding curve
endpoint if the fitting error of vk is less than the threshold β (1.3
times the average curve fitting error that is computed before the
outward extension). If vk has been mapped to another curve, then
two feature curves are connected by vk. In this case, the current
curve will not extend in this direction anymore. The curve exten-
sion process is then performed by repeatedly popping candidates
with the least cost. Once a candidate is popped, the priority queue
is updated by updating the candidate vertex set and their cost val-
ues. Finally, we extract a complete FCN when the priority queue
becomes empty.

Figure 6: Illustration of our improved curve extension algorithm. Left: the initial
feature curves; middle: the extension result of [27]; and right: our result.

A similar extension strategy has been used in [27]. How-
ever, they only use the curvature and principal direction. Thus
this method is unsuitable for the smooth regions with unclear
features. Fig. 6 shows the comparison of our improved curve
extension result and those in [27].
Breaking and merging curves. This feature extension step gen-
erates many joining points that connect several original curves. If
one joining point is not a node point and it connects two curves,
then we must consider the following cases shown in Fig. 7 (a):
(1) The joining point pi is one endpoint of one curve c2 but is
the middle point of another curve c1. We then break the curve c1
into two curves; (2) The joining point p0 is the endpoint for both
curves c1 and c3 and the corresponding curvature directions are
similar. Finally, we combine these two curves into one feature
curve (see Fig. 7 (b)).

c1

2c
c1

c2c3

pp
p0

i i

(a) (b)

Figure 7: Curve merging: (a) initial curve extension result. (b) complete FCN
after curves breaking and merging.

4.3. Patch Generation via Cycles Detection

A set of curve cycles are easily extracted from the com-
plete FCN, then the input model can be segmented into different
patches by the cycles.
Connectivity recovery. Due to the mesh irregularity, the con-
necting line of two adjacent feature points on the ridge and valley
lines may not be located on a triangle. Therefore, when we map
feature points {pi} to the closest mesh vertices {vi}, the mapped
vertex set and their edges between these vertices construct an
undirected graph that may have more than one connected compo-
nent, thus we cannot find the vertex set surrounded by the feature
lines. In this step, we first examine and recover the connectivity
of each mapped graph.

For each mapped graph, we use the inward tracing scheme
again. First, we put the vertex v0 mapped by the endpoint p0 into
a queue. Second, we iteratively pop out the first vertex in the
queue and put its adjacent vertex vk ⊆ {vi} which are not visited
into the queue each time. Finally, if all vertices in {vi} are visited
when the queue is empty, the mapped graph is connected. Oth-
erwise, we need to recover the connectivity of this graph. If the
traversed v j is not adjacent to the other remaining vertices {vr},
then we find the nearest vertex vp ⊆ {vr} and add the vertices in
the shortest path between v j and vp to {vi}. This step is repeated
until the last mapped vertex vn.
Cycles detection and patch generation. Given that the com-
plete FCN captures the boundary information of geometric
patches in the input mesh, we generate patches by detecting the

(a) (b) (c)

Figure 8: Patches generation: (a) the result of curve cycles. (b) primary patches
with many zigzags on boundaries. (c) final patch layout after boundary smooth-
ing.
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Figure 9: A gallery of examples generated by our framework. For each model, we show the input noisy feature lines, complete FCNs, exploded view of curve cycles,
and patch layouts.

curve cycles from FCN. Here a curve cycle is defined as a con-
tinuous set of curves, which can be used as the boundary of a
patch.

In order to find the curve cycles, we construct a graph, G =
(Vg,Ug), whose nodes Vg are the endpoints of the feature curves
and edges Ug are the feature curves in FCN. In general, a node’s
shortest loop L, which consists of a set of curves, is the bound-
ary of a geometric patch in the input mesh, and a feature curve
appears twice in all patch boundaries. Therefore, we iteratively
find the shortest loop L in G to generate patches and delete the
edge in G while the corresponding feature curve appears twice in
the generated patches. Note that for sphere and cylinder surfaces,
the curve on these surfaces may be a circle curve without node
points. We directly regard such a circle curve as a cycle.

Since the vertex set V mapped by a curve cycle Lc is con-
nected, the input mesh is divided into two parts and we can eas-
ily obtain the patch surrounded by Lc. For example, we add the
vertex v0, an adjacent vertex of V that has not been assigned to a
patch, into a queue. Then we iteratively pop out the first vertex
of the queue, place it into the vertex set S , and put its adjacent
vertex vk which does not belong to V into the queue. If vk lies on
the curve ci < Lc, these vertices in S are located outside Lc and
we clear the queue and S , then we add another unvisited vertex
v j adjacent to V to the queue and continue traversal. Finally, we
obtain the new patch whose vertex set S is surrounded by Lc. No-
tably, there are patches with two or more boundary cycles, such
as the cylinder patch. For such patches, we cannot directly find it
by a curve cycle. Therefore, we first find each patch surrounded
by a curve cycle, and then the undetected patches are the patches
with two or more curve cycles. Here to find the undetected patch,

we start from a curve cycle to traverse the adjacent mesh ver-
tices. When encountering the adjacent curve cycles, the vertices
surrounded by these curve cycles are the vertices of a patch with
two or more curve cycles.

Since our filtering algorithm retains more salient curves and
leads to finer segmentation in the transition area, it is necessary
to calculate the relationship between these patches and merge
similar adjacent patches. To do that, we assume that the patch
with vertices less than 5% of the total mesh vertices may need
to be merged. We first find adjacent patches based on the curve
cycle in the original patch Pi and add patches whose number of
vertices exceeds Pi to obtain an adjacent patch set

{
P j, · · · , Pk

}
.

Then we traverse each adjacent patch in the set, and expand from
the shared curves with Pi to find the same number of triangles
with Pi, then form a new local region with Pi to fit a quadric
surface and calculate the fitting error. When the smallest fitting
error with adjacent patch Pk is smaller than 1.1 times the fitting
error of Pi, we consider that Pi and Pk belong to the same patch
and merge them. Otherwise, Pi is independent and will not be
merged. Finally, we generate patches for the input mesh. The
examples of cycles and patches are shown in Figs. 8 (a) and 8
(b).
Smoothing boundary. Since the patch boundaries are typically
not smooth due to mesh discretization, we need a post-processing
step to smooth the boundaries. We apply the iterative energy
minimization method introduced in [1] to smooth the boundary
curves as follows:

E(c) =

∫
c

(
〈ċ, X〉
‖ ċ ‖ ‖ X ‖

)2

ds (6)
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where X is the field of maximal principal curvature directions.
By minimizing this energy, the boundary curve c is aligned to the
field of principal curvature directions. An example of a smoothed
patch layout is illustrated in Fig. 8 (c).

5. Experimental Results

In this section, we conduct a number of experiments on var-
ious input models to demonstrate the efficacy of our approach.
First, we generate meaningful complete FCNs, cycles, and sur-
face segmentation results from dense and discrete feature curves.
Second, we evaluate the quality and validity of the filtering pa-
rameters of R and E. We also test our algorithm on noisy data
to further demonstrate the robustness of our approach. Third, we
compare our approach with state-of-the-art methods using qual-
itative and quantitative evaluations. Finally, we prove the use-
fulness of the extracted FCN by reconstructing the surfaces. We
implement our algorithm in C++ by using a desktop computer
equipped with an Intel i7-7700k processor with 4.2 GHz and 16
GB of RAM.

5.1. Evaluation

FCN extraction. We evaluate our method on a wide range of 3D
models with different complexities, ranging from CAD compo-
nents to building models. Fig. 9 shows the results of extracting
complete FCNs from surface meshes. The input initial curves
(ridges and valleys) are automatically computed by [12], and they
are fragmented and discretely distributed on the surfaces. With
the majority of parameters set to default, we only tune the R and
E to achieve effective filtering results and the final patch layouts.
With our approach, we can determine both sharp and smooth fea-
ture curves that capture the main geometric characteristics, such
as mesh boundaries and fading features. We then obtain the com-
plete FCNs by extending and connecting the preserved curves, as
shown in the second row of Fig. 9. The last two rows show our
detected cycles of closed curves and the resulting surface seg-
mentation of the input mesh. Thus we decompose the surface
into structural parts.

(a) (b) (c)

Figure 10: Feature curve filtering result (top) and the corresponding patch layouts
(middle) and cycles (bottom). (a) R = 0.004 without E. (b) R = 0.007 without E.
(c) R = 0.004 and E = 1.6 ∗ 10−7.

(a) (b) (c) (d)

Figure 11: Comparison of models with different noise levels. From top to bottom:
noisy models, results of VSA [9], results of FASCC [39], our results.

Feature curve filtering. The feature curve filtering algorithm
described in Sec. 4.1 aims to obtain meaningful and salient fea-
ture curves from noisy and fragmented input. Parameters R and E
in the filtering process have a direct effect on the result of filtering
FCNs and surface segmentation. As shown in Fig. 10, we com-
pare the influence of R and E with the result of curve filtering,
patch layouts, and cycles. Although a low R parameter reserves
some additional curves on quadric surfaces, a higher R parameter
filters out several salient curves and results in unsatisfactory seg-
mentation. By contrast, the parameter E removes the additional
curves after filtering with a low R and achieves more satisfactory
segmentation. For different input models, we tune both R and E
parameters to obtain effective feature curve filtering results.
Robustness against noise. The robustness of our method is
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demonstrated in Fig. 11 by comparing the difference in patch
layouts between several synthetic noisy models with the original
model. We also compare these to VSA [9] and FASCC [39]. We
select a clean model and generate the patch layout using these
algorithms (see Fig. 11 (a)). Then we randomly add Gaussian
noise to mesh vertices with a standard deviation of 0.2%, 0.3%,
and 0.6% (see Fig. 11 (b), 11 (c), 11 (d)) of the length of the
bounding box diagonal. The initial curves computed with the
noisy data are more crooked and discontinuous compared with
those computed with the clean model. We successfully gener-
ate similar patch layouts for the noisy models by adjusting the
parameters as shown in Table 1. Although the patch boundaries
are more jagged when the noise intensity increases, we can still
produce better results than VSA [9] and FASCC [39].

| D | 0 0.2 0.3 0.6
R 0.0001 0.008 0.01 0.016
E 3 ∗ 10−8 5.8 ∗ 10−7 1.15 ∗ 10−6 4.1 ∗ 10−6

Table 1: The parameter configurations for our method on noisy models. | D | is
the standard deviation of the noise, | R | is the curve curvature filtering parameter,
| E | is the surface fitting error filtering parameter.

5.2. Comparison

We compare our method with previous approaches using
different mesh segmentation strategies, including VSA [9],
QSE [10], FGL [1], Papercafts [40], FASCC [39] and DFN [27].
Fig. 12 and Fig. 13 respectively illustrate the comparison results
on four examples with ground-truth segmentation and three other
complex models without ground-truth. We manually segment the
model in Fig. 12 according to their geometric patches (”Toy” and
”Sword”) and the ground-truth segmentation results (”Lamp”
and ”Vase”) in a 3D mesh segmentation benchmark [41]. We
tune the parameters of all compared methods to obtain fair and
satisfactory results. The numerical statistics on the patch layouts
are presented in Table 2 and Table 3.

First, both VSA [9] and QSE [10] use primitive-fitting and
cluster facets in the best-fitting regions to reduce the fitting er-
ror. Their fitting errors are generally smaller than those of other
methods (Table 2). VSA [9] only utilizes planes for fitting and
often create additional boundaries in large curvature variation re-
gions such as sphere and cylinder (Fig. 12 (b)). QSE [10] ap-
plies quadric surface fitting and improves the quadric surface
segmentation results, but their segmentation results are unsta-
ble and may miss some essential boundaries (see Fig. 12 (c)).
FGL [1] adopts the region-growing algorithm to obtain the patch
layout and generate a set of curves, while Papercafts [40] con-
siders the pruned feature lines as boundaries and merges the
small patches. Figs. 13 (c) and 13 (d) demonstrate that FGL [1]
and Papercafts [40], respectively, miss many important feature
curves, obtain unsatisfactory patch layouts, and produce addi-
tional patches due to curvature variation in the quadric surface.
Second, FASCC [39] merges a watershed over-segmentation and
provides an interactive interface to improve the patch layout.
However, the result of mesh segmentation is affected by the qual-
ity of input FCN. As shown in Fig. 13 (e), their method fails to
bridge feature curves and further separates in the blending re-
gions.

Finally, since our method is partially motivated by DFN [27],
which includes feature filtering and curve extension, we compare
our curve network results to those of DFN [27] (see Fig. 12 (g)

Models | f | Methods | C | | P | | E | T(s)

Toy 59996

Ground-truth 47 26 0.0802 0
VSA [9] 136 50 0.1125 1.776
QSE [10] 116 45 0.0242 5.294
FGL [1] 30 14 0.1646 0.169
Papercafts [40] 51 26 0.1014 0.315
FASCC [39] 29 16 0.0872 3.579
DFN [27] 30 17 0.1211 0.128
Our 40 23 0.0671 0.319

Sword 10042

Ground-truth 56 23 0.0057 0
VSA [9] 75 28 0.0055 0.656
QSE [10] 35 18 0.0166 1.516
FGL [1] 33 17 0.0137 0.582
Papercafts [40] 38 16 0.0147 0.486
FASCC [39] 35 17 0.0123 1.417
DFN [27] 42 18 0.0190 0.079
Our 50 21 0.0064 0.316

Lamp 27100

Ground-truth 60 20 0.0329 0
VSA [9] 102 32 0.0374 0.895
QSE [10] 91 30 0.0189 8.783
FGL [1] 27 9 0.1090 0.184
Papercafts [40] 48 20 0.1505 0.31
FASCC [39] 54 16 0.1549 1.371
DFN [27] 84 18 0.0439 0.117
Our 64 23 0.0502 0.326

Vase 40000

Ground-truth 79 32 0.0136 0
VSA [9] 93 32 0.0224 1.264
QSE [10] 68 26 0.0119 6.393
FGL [1] 3 4 0.1106 0.198
Papercafts [40] 44 21 0.0401 0.353
FASCC [39] 51 22 0.0283 1.607
DFN [27] 51 18 0.0236 0.145
Our 63 25 0.0197 0.439

Table 2: Evaluation and comparison of models with ground-truth. | f | is the
number of triangles in each model, | C | is the number of preserved curves in the
final network, | P | is the number of generated patches, and | E | is the hybrid
distance between the fitting surfaces and the input mesh, and T is the running
time, respectively. The best result of each measurement closest to the ground-
truth is marked in bold font.

Models | f | Methods | C | | P | | E | T(s)

Anouk 99790

VSA [9] 178 64 0.0614 5.445
QSE [10] 82 39 0.0585 20.745
FGL [1] 367 134 0.0358 2.083
Papercafts [40] 460 164 0.0317 2.829
FASCC [39] 435 155 0.0344 123.251
DFN [27] 509 186 0.0218 1.39
Our 591 206 0.0203 6.45

Bell 100464

VSA [9] 2892 988 0.1597 10.982
QSE [10] 273 101 0.9660 36.983
FGL [1] 1603 573 0.2638 9.239
Papercafts [40] 2284 793 0.2559 10.194
FASCC [39] 1871 653 0.2535 20.623
DFN [27] 1059 368 0.4459 2.21
Our 1918 660 0.3116 7.781

House 195728

VSA [9] 1448 491 0.0650 10.131
QSE [10] 285 106 0.1836 19.013
FGL [1] 205 91 0.2295 1.391
Papercafts [40] 804 306 0.0953 0.758
FASCC [39] 699 263 0.1547 34.918
DFN [27] 443 158 0.0766 1.906
Our 1067 377 0.0674 5.219

Table 3: Evaluation and comparison of models without ground-truth. The largest
| C | and | P | and smallest | E | and T of each measurement are marked in bold
font.

and Fig. 13 (f)). Although both our method and DFN [27] di-
rectly extend and connect pruned feature curves, DFN [27] typ-
ically removes more curves by only using the curve length and
curvature without cycle information in the network. By contrast,
we preserve additional salient curves to produce a satisfactory
curve network by combining the curvature and surface fitting er-
ror. DFN [27] uses VSA [9] to further generate the patch lay-
out and solve this problem. However, VSA [9] is unsuitable for
quadric surfaces. We detect cycles in the network, fit the quadric
surface again for each patch, and compute the hybrid distance
between the fitting and input surfaces by equation (3) to measure
the patch quality. Thus, we can generate additional reasonable
patch layouts, and our patches have smaller fitting errors com-
pared with DFN (see Table 2 and Table 3).
Comparison to our conference work [13]. As shown in Fig. 14
(a), our new approach can find the node points in the long curve
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(d) (e) (f)(a) (b) (c) (g) (h)

Figure 12: Comparison with previous methods on models of ”Toy”, ”Sword”, ”Lamp” and ”Vase” with ground-truth segmentation. From left to right: ground-truth
segmentation (a), VSA [9] (b), QSE [10] (c), FGL [1] (d), Papercafts [40] (e), FASCC [39] (f), DFN [27] (g), and our method (h), respectively.

(d) (e) (f)(a) (b) (c) (g)

Figure 13: Comparison with previous methods on models of ”Anouk”, ”Bell” and ”House” without ground-truth segmentation. From left to right: results of VSA [9]
(a), QSE [10] (b), FGL [1] (c), Papercafts [40] (d), FASCC [39] (e), DFN [27] (f), and our method (g), respectively.

to divide it into short curves and refit them for the curve exten-
sions, so we can extend the curve along their direction and get a
better patch layout. Meanwhile, in [13], some ridges and valley
lines exist in the transition regions, which cannot be effectively
filtered, resulting in some undesired small patches. In this pa-
per, after expanding these curves, we can avoid them through our
merging operation, see in Fig. 14 (b) and (c).

5.3. Application: Surface Reconstruction
To further verify the validity of FCN extracted by our method,

we generate surfaces from the extracted cycles by using the al-
gorithm introduced in [34]. Fig. 15 shows two results of the re-

constructed surfaces. Fig. 15 (a) demonstrates several transition
regions where two quadric surfaces intersect in the input model.
We can extract the mesh boundary and form the curve loop for
each quadric surface. We then directly take the curve loop in
Fig. 15 (b) as the input of [34]. Finally, the reconstructed sur-
faces are illustrated in Fig. 15 (c), and the blending areas are
removed from the model. Note the building in Fig. 15(c) has
additional creases that are not at all visible in the input model.
The reason is that we only take the obtained curve cycles as the
input to [34] without other constraints, and [34] may generate
additional creases on the reconstructed surface.
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(a) (b) (c)

Figure 14: Compared with our conference work [13]. From top to bottom: input
models with feature curves, patch layouts of [13], and our results.

(a) (b) (c)

Figure 15: Surface reconstruction: (a) input models with smoothing areas; (b)
extracted cycles; (c) reconstructed surface result using the algorithm of [34].

5.4. Limitations

We successfully extract complete FCNs from various 3D mod-
els. Given that our feature filtering and extension operations only
function on individual curves, we disregard the distance or rela-
tionships between different curves. Thus, our results miss the
global information of shapes, such as symmetry, parallelism, and
coplanarity. In our method, the validity of FCN from meshes
with low sampling resolution is uncertain because of its poor
sensitivity to mesh scales or triangle shapes. Fig. 16 (a) shows
that the input resolution is too low to obtain acceptable ridge and
valley lines especially near the boundary features and the patch
layout is also unsatisfactory. We can get a satisfying result af-
ter subdividing the mesh (Fig. 16 (b)). Furthermore, our method
may produce insignificant results for organic shapes because of
the lacking semantic information (see Fig. 16 (c)).

(a) (b) (c)

Figure 16: (a) A low-resolution mesh and the corresponding patch layout; (b) a
high-resolution mesh and the corresponding patch layout; (c) a hand model and
the patch layout. Here (a) and (c) show the unsatisfactory results of our method.

6. Conclusion and Future Work

In this paper, we propose a new method to address the problem
of extracting cycle-aware FCNs from 3D models. We success-
fully solve this problem by utilizing operations of feature curve
filtering, feature curve extension, and cycle detection. The pro-
posed algorithm, which is robust to noisy data, can detect both
strong and weak features and connect them to valid and complete
FCNs. We demonstrate our approach on a variety of examples,
including simple mechanical parts to complex 3D building mod-
els.

In future investigations, we can integrate global shape con-
straints into our framework. Furthermore, we can extend our
approach to other shape analysis applications, such as finding
repeated feature instances in the curve network as well as fitting
and editing a subdivision or spline surface by manipulating cer-
tain feature curves.
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