
Automatic and High-quality Surface Mesh Generation for CAD Models

Jianwei Guoa, Fan Dinga, Xiaohong Jiab,c,∗, Dong-Ming Yana

aNational Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
bKLMM, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

cSchool of Mathematical Science, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

In this paper, we present a fully automatic framework that tessellates industrial computer-aided design (CAD) models into high-quality
triangular meshes. In contrast to previous approaches that are purely parametric or performed directly in 3D space, our method is based
on a remeshing algorithm that can achieve accuracy and high-quality simultaneously. Given an input standard CAD model, which
is represented by B-rep format, we first rebuild the parametric domain for each surface patch according to an initial triangulation,
and then the boundaries of the parametric domain are retriangulated by exploiting the Constrained Delaunay Triangulation (CDT).
In the second stage, the 2D triangulation is projected back to the 3D space, and a modified global isotropic remeshing process is
applied, which further improves the regularity and angle quality of the tessellated meshes. Experiments demonstrate the validity of
the proposed approach and its ability to generate high-quality meshes. Moreover, we evaluate our technique and compare it with
state-of-the-art CAD model tessellation approaches.

Keywords: CAD Tessellation, High-quality mesh, Remeshing.

1. Introduction

Tessellating Computer-Aided Design (CAD) models into dis-
crete representations is important in various downstream applica-
tions [1, 2] ranging from engineering to scientific research, such
as numerical simulations, rapid prototyping, computational fluid
dynamics, and visualization, to name a few. The tessellation pro-
cess aims to generate a discrete mesh that approximates a CAD
model with simple discrete elements, e.g., triangles/quads for a
surface mesh and tetrahedra/pyramids/hexahedra for a volumet-
ric mesh. Among all types of tessellations, triangular surface
mesh generation attracts the most attention because of its sim-
plicity and flexibility, which is also a prerequisite for many volu-
metric tetrahedral meshing procedures [3].

Although numerous meshing methods are available, auto-
mated generation of high-quality meshes remains a challenge [4,
5]. Even with modern commercial software (e.g., Ansys and
Hypermesh) and open-source packages (e.g., NetGen [6] and
Gmsh [7]), generating correct and satisfying meshes is still a
time consuming process that involves an excessive amount of
human effort. As the complexity of the constructed CAD prod-
ucts increases, existing methods cannot always achieve accu-
rate output due to incorrect, degenerate or ambiguous geomet-
ric designs in the CAD system, as illustrated in Fig. 1. Even
post-processing with mesh repair algorithms (e.g., MeshFix [8]
and PolyMender [9]) experience difficulties in dealing with these
problems. Moreover, even some CAD models have correct topol-
ogy and geometry, and also contain many small-scale features
(e.g., tiny surfaces or thin blending strips, as shown in Fig. 13)
that do not contribute to downstream applications. Preserving
such small features creates dense triangulations locally.

From a practical point of view, the ability to generate high-
quality meshes is the key to the success of numerical analy-
ses [11]. A good mesh usually achieves balance between quality

∗Corresponding author
Email address: xhjia@amss.ac.cn (Xiaohong Jia)

(a) (b)

(c) (d)

Figure 1: (a) An input CAD model; (b) Tessellation result by using an open-
source toolkit called Open Cascade Technology (OCCT) [10]; (c) Tessellation
result of NetGen [6]; (d) Mesh repair result [9] taking (b) as input.

and computation time, whereas low-quality (extremely thin or
badly distorted) elements often hinder the solution convergence
and increase analysis errors. Furthermore, surface meshes are
used as input to volume mesh generators, thus considerably in-
fluencing the generation of quality volumetric meshes and fur-
thering the numerical results.

In this paper, we focus on generating isotropic surface meshes
from CAD models that enhance existing approaches in several
aspects. The goal is to obtain well-shaped tessellations of CAD
models with high accuracy, while considering the simplicity of
patch layout and feature preservation. On the one hand, the
system robustly handles complex CAD models even with the
(near)-degenerate cases (Sec. 4.1) that commonly occur in the
conceptual-to-early design of industrial products. We address
this issue by first detecting such configurations in an initial tri-
angulation and then removing non-manifold edges or inserting
“anchor points” in the parametric domain. Then the use of con-
strained Delaunay triangulation (CDT) can generate correct re-

Preprint submitted to Elsevier February 15, 2019

0 20 40 60 80 100 120 140 160 180

Triangles angles
0 0.2 0.4 0.6 0.8 1

Triangles qualities

Figure 2: Our algorithm converts an input standard CAD model (881 patches) into a high-quality triangular mesh. At the bottom, we show the histograms of the angle
(blue) and triangle quality (green) distributions.

sults. Moreover, we produce high-quality meshes for complex
geometric shapes with smooth sizing gradation control. In this
step, we first perform patch clustering and constraint simplifi-
cation to suppress undesired internal features that lead to low-
quality elements. Then, we exploit an improved version of a
real-time isotropic remeshing technique [12, 13] that applies a
series of local operators for mesh optimization. In summary, the
main contributions of this work include the following:

• an automatic and robust surface tessellation framework that
could generate correct surface meshes from complex in-
dustrial CAD models, especially by handling two common
cases of degeneracies encountered in many industrial CAD
geometries during mesh generation.

• improvement of a state-of-the-art remeshing approach to
generate high-quality surface meshes, particularly for an-
gles and regularity.

• introduction of simple yet effective heuristics to merge the
small patches and remove the internal feature boundaries,
which are basically irrelevant to an overall simulation of the
CAD model. Furthermore, this approach allows generating
a smooth geometry for improved meshing.

2. Related work

CAD mesh generation. Over the past decades, numerous tes-
sellation methods have been available for meshing analytical 3D
surfaces by different geometric primitives, e.g., triangles, quadri-
laterals or general n-sided polygons. In this section, we restrict
the discussion to the most related works, which focus on trian-
gular mesh generation. For more comprehensive discussions, we
refer the reader to the survey [14] and textbooks [15, 2, 16].

A recent survey by Shimada [17] discusses current trends and
issues in meshing and geometric processing for computational
engineering analyses. In general, these triangulation algorithms
can be categorized into three types:

(1) Direct approaches, which work directly on the 3D surface
in the physical space. The commonly used approaches include
Delaunay triangulation [18, 19, 20], Advancing Front Technique
(AFT) [21, 22, 23], and octree-based approaches [24, 25]. How-
ever, direct methods cannot guarantee the validity of the mesh,
e.g., Delaunay-based methods have difficulty in recovering sur-
face boundaries [26], whereas methods using AFT can encounter
problems associated with colliding fronts [27].

(2) Purely parametric approaches (also called indirect ap-
proaches) [28, 29, 30, 31, 32, 33]. This type of method utilizes
bijective mapping between the surface and a parametric domain.
The parametric space is triangulated by using any 2D mesh gen-
eration procedure, and then the mesh is mapped back onto the
original surface. However, this approach introduces size stretch-
ing and shape distortion of the elements in degenerated or badly
parameterized surfaces when the mapping is not affine.

(3) Hybrid approaches. Considering the advantages and dis-
advantages of the previous approaches, recent algorithms utilize
3D geometric and 2D parametric information to produce high-
quality meshes. Starting from an approximated boundary rep-
resentation (using STL file format), Béchet et al. [34] propose
an adaptive surface mesh generating method. The principle used
to generate the mesh is based on the Delaunay method, which
is associated with refinement and smoothing operations. Wang
et al. [35] propose a remeshing-based algorithm, called EQSM,
to generate unstructured triangular meshes. An initial triangu-
lation of the points defining the intersection curves of each sur-
face region is generated in the parametric domain. These meshes
are then mapped onto 3D space and refined by basic remeshing
operations. However, the input of this method requires several
restrictions, e.g., the mapping of each patch should be bijective
everywhere, and the boundary should be closed. Marchandise et
al. [36, 37] present several different parameterization techniques
for quality surface remeshing, where the implementation of those
mappings, as well as the boundary conditions, have been pre-
sented in a comprehensive and unified manner. Aubry et al. [38]
present a novel parametric surface meshing technique, which in-
cludes semi-structured boundary-layer surface mesh generation
and advancing front point creation approaches. Thereafter, [39]
extends this approach to obtain a robust anisotropic tessellation
technique. However, this approach only handles NURBS-based
geometry. Our approach also falls into this category. Compared
with the aforementioned methods, our approach can deal with
more complex composite parametric surfaces, as well as achieve
higher quality.
Model repair. Although various mesh generation methods exist,
the tessellated CAD models may still exhibit topological or geo-
metrical defects. Thus, mesh repair, which converts an imperfect
CAD model into a clean and manifold closed triangular mesh,
is a highly important task. This topic has been extensively stud-
ied [40, 41, 42] and a website featuring freely obtainable imple-
mentations of several repairing methods is available at http://
www.meshrepair.org. According to the approach employed,
repairing algorithms can be distinguished by local correction or
global remeshing. Typical local approaches [43, 44, 45, 46, 8]

2

(a) Input CAD model (b) Initial triangulation (c) CDT in parametric domain (d) Global remeshing

Figure 3: The pipeline of our framework based on a two-stage remeshing approach.

are performed directly on the input tessellation and only modify
the mesh in a small region around individual defects and flaws.
By contrast, global methods [47, 48, 49] are typically based on a
complete remeshing of the input by using some intermediate data
structures (such as volume representation [50, 9, 51]). However,
no available approach can address all the defects because the type
of defects depends on the upstream and downstream applications
in a given scenario. Most repairing algorithms focus on certain
defect types and ignore or even introduce other flaws. Further-
more, they do not consider improving the triangle quality of the
output mesh, and usually a post-process is required in practical
applications.

3. Preliminaries and overview

In this section, we present an overview of the proposed ap-
proach. To precisely explain our techniques, we first provide the
related terminology used in the paper.

3.1. Definitions

In solid modeling systems, a CAD model is typically repre-
sented by a collection of trimmed parametric surface patches
{Pi}

n
i=1. Each patch Pi is represented by an analytically defined

mapping, denoted as S (u, v) = (x(u, v), y(u, v), z(u, v)), from a
bounded domain of R2, called parametric space, into a 3D coor-
dinate system R3, called object space. Furthermore, each patch
Pi is uniquely identified by its patch ID i and equipped with a
surface type Ci, such as plane, cylinder, sphere, and B-spline sur-
face.

To explore the topologic and geometric entities in the CAD
model, several third-party CAD kernels are available, e.g.,
OCCT [10], Computational Analysis Programming Interface
(CAPRI) [52]. In our implementation, we use OCCT to access
the geometry of shapes represented in B-rep format. It also pro-
vides access to the topology of the model, including the connec-
tivity information between different patches. However, to operate
our mesher, the user is not required to have a deep knowledge of
OCCT. The only parameter for OCCT that can be specified by
the user is the tessellation precision, and this parameter is set as
100 (the default value) in all our experiments.

3.2. Overview

The input to our framework is a standard CAD model, G =
{Pi}

n
i=1, which consists of n trimmed parametric surface patches

that can meet non-smoothly on boundaries. In addition, the user
is required to specify the target edge length, ltarget, as the desired

size of the approximation mesh. The output is a 2-manifold wa-
tertight triangular mesh M = {ti}mi=1, consisting of as much as
possible of quasi-equilateral triangles ti. As shown in Fig. 3, our
algorithm undergoes four main stages:

1. Initial triangulation: Initially, the CAD model G is con-
verted into a simple triangulation by using OCCT, where
the geometric fidelity (measured as approximation error) is
guaranteed.

2. (Near-)degeneracy handling (optional): We detect the in-
correct triangulation caused by poorly designed geometry
and repair them by removing non-manifold edges or insert-
ing “anchor points”, and then compute CDT in the paramet-
ric domain.

3. Parametric remeshing: Based on initial triangulation, we
rebuild the parametric domain for each patch and reapply
CDT to preserve the boundaries for each parametric do-
main. Then, the 2D triangulation is projected back to 3D
space.

4. Global remeshing: To improve the mesh quality, a global
isotropic remeshing process is applied. The user-specified
meshing size is also satisfied in this stage.

Each step involves a precise task while gathering enough in-
formation for the next step. Details of each step are given in the
following sections.

4. Methodology

4.1. Initial triangulation
The core idea of our algorithm is that we only perform surface

remeshing on a discrete model to achieve high efficiency because
the edges and facets that depict the discrete surface mesh have
linear equations. Therefore, a suitable initial triangulation is re-
quired, but it should be generated quickly, and the approximation
error should be small.

In our approach, we exploit OCCT to generate the initial tri-
angulation. Although this toolkit is designed to generate trian-
gles for visualization purposes only (leading to non-conforming
meshes at face boundaries) and has no gradation in element size,
it can control the distance between the initial tessellation and
the original analytical surfaces. Thus, geometric fidelity is pre-
served, i.e., the approximation error is small.

The initial triangulation is not closed yet because each patch
Pi is tessellated into a patch meshMi independently. This condi-
tion is favorable because our parametric remeshing stage is still
operated in a patch-wise manner. Besides, we collect the origi-
nal vertices of the input geometry from the B-rep model. These

3

vertices are then identified in the initial triangulation and marked
with a “locked” flag. Thus, if a vertex is marked as “locked”,
it remains fixed in later steps to preserve the geometric feature
unless its flag is changed at a certain stage. We explain this phe-
nomenon and the moment a feature vertex is unlocked in Sec. 4.3.
(Near-)degeneracy handling. As the precision of industrial
products increases, a complex CAD model usually contains a
large number of surface patches; for example, even the shell of a
cellphone can contain hundreds of patches (see Fig. 12). During
the construction of the CAD model some operations may gen-
erate small artifacts that may not be noticed by the designers.
Moreover, the incorrect CAD data arising from translation er-
rors between different CAD products and formats, or even from
limitations inside CAD kernels, can cause meshing failures. In
this paper, we address two cases of degeneracies encountered in
a wide range of complex CAD models in practical engineering
applications.

(c)

C

(D) EA B
(b)

FG
C

D EA B

FG

(a)

P1

P2

Figure 4: 2D illustration of degeneracy caused by tangency.

(1) Tangency case: Non-manifold vertices and edges usually
appear due to patch tangency, in which an intersection between
the inner and outer boundaries occur. Fig. 4(a) shows such tan-
gency degeneracy, which has barely attracted attention in pre-
vious methods. In this case, a planar patch P1 is tangent to
a cylindrical patch P2. At the position of P1 where the in-
ner and outer boundaries are tangent, two vertices that coincide
or are very close exist, as shown in segment BD in Figs. 4(b)
and 4(c). As a result, this intersection forms non-manifold tri-
angles because OCCT cannot distinguish the inner and outer
regions at this position. To avoid such non-manifold triangles
while keeping the shape boundaries, we first detect the planar
patch P1 where the tangency happens by sorting out the origi-
nal vertices that are linked to multiple (more than two) bound-
ary edges. Then segment BD is removed from the constraints
when building CDT for this patch, so that only one outer bound-
ary A − B − C − D − E − F −G − A exists. In other adjacent
patches P2 and P3, segment BD is retained to preserve the
boundary. Therefore, they can form a closed manifold mesh in
the later stage.

(a) (b) (c)

A

B

C

A

B

C

D

Figure 5: Solution to problem caused by curve proximity.

(2) Curve proximity case: Another common case is that one
point of the patch is too close to one curve, as shown in Fig. 5(a).

B-spline patch Parametric space

Figure 6: An example of a highly distorted initial parametric space.

Although this case is not a type of degeneracy, it results in in-
tersecting triangles when the boundary sampling rate is sparse
(Fig. 5(b)). Thus, it requires dense but unnecessary samples to
overcome this problem. In our approach, we calculate the Eu-
clidean distance between a concave point A on one border and
its nearest border edge to avoid such dense sampling. If the dis-
tance is shorter than a threshold (we set it to be 0.04ltarget where
ltarget is the target edge length), we insert an “anchor point”, D,

on curve
_

BC, which is the closest point to point A (Fig. 5(c)).
With the help of this “anchor point”, an edge AD prohibits the
generation of intersecting triangles.

4.2. Parametric remeshing
As each patch Pi has a 2D parametric representation as de-

signed, therefore a straightforward way to tessellate is to mesh
the 2D domain in this parametric space and then map it back
to the 3D object space. However, in many cases, such surface
mesh generation is easily corrupted. The reason is twofold: (1)
the patches in a CAD model are often not topologically con-
nected [53], i.e., small gaps or overlaps between the neighbor-
ing patches exist, and the parametrization may be different along
one common boundary. These conditions will result in non-
conformal triangles; and (2) the parametric space of one patch
can be highly/extremely distorted (see Fig. 6). Therefore, a valid
mesh in the parametric space may be invalid or at low quality
when mapped in a 3D space [54].

To address these problems, we apply a planar parameteriza-
tion method to rebuild the parametric domain based on the initial
triangulation. Thereafter, we recover the boundary edges cor-
responding to the original curves and perform edge sampling.
Finally, the CDT is used to finish the 2D triangulation. Our para-
metric remeshing is detailed as follows.
Patch reparameterization. We first rebuild a one-to-one map-
ping from each patch mesh Mi to a simple 2D domain, using
the Scalable Locally Injective Mappings (SLIM) parameteriza-
tion [55]. The result is a pair of parameter coordinates (u, v) for
each vertex of the initial triangulation. SLIM is robust and fast by
efficiently minimizing a nonlinear, conformal or isometric distor-
tion energy. It is guaranteed to produce optimized maps without
any flipped triangles. Furthermore, it corresponds to a locally
injective mapping with a free border. Therefore, it is suitable
for our method because a complex patch mesh with arbitrarily
shaped borders can be parameterized.
Boundary curve recovery and sampling. From the initial tri-
angulation, we recover the 3D boundary edges that correspond
to the original curves of the input CAD model. This step aims

4

Algorithm 1: Boundary curve recovery

1 Input: a coarse patch meshMi ;
2 Output: recovered boundary curves set, C = {ci}

n
i=1 ;

3 foreach halfedge h do
4 if h is a border edge and its vertex is marked as

”locked” then
5 construct an empty boundary curve ci = ∅;
6 halfedge h′ ←− h;
7 do
8 add h′ into ci;
9 h′ ←− previous halfedge of h′ ;

10 while the vertex of h′ is not marked as ”locked”;

11 add ci into C;

to preserve the geometry of boundaries in the final mesh. For
each patch meshMi, we use a tracing scheme for recovery. Here
we suppose that the mesh is represented by the half-edge data
structure. As shown in Fig. 7, starting from a half-edge h1 whose
vertex is marked as “locked”, we recursively visit its previous
border half-edge, until another half-edge whose vertex has a flag
of “locked” is met. Then these piecewise linear segments form a
boundary curve ci = {h1, ..., hk}. After processing all half-edges,
we collect a set of boundary curves, C = {ci}

r
i=1. The pseudo-

code of this step is illustrated in Algorithm 1.

h1

h2

h3

h4

h5

h6
h7

(a) (b)

(c) (d)

P1

P2

h1

h2

h3

h4

h5

h6
h7

h1

h2

h3

h4

h5

h6
h7

Figure 7: Our tracing scheme for recovering boundary edges. (a) An input para-
metric curve formed by two points; (b) Half-edge data structure for this curve
(we show only one side); (c) Half-edge h1 whose vertex is marked as “locked”
is first identified, shown in red; (d) Other half-edges belonging to this curve are
recursively traced until h7 is met.

Currently, each curve c of the input geometry has been iden-
tified in its two incident patch meshes (the neighboring relations
between different patches have been stored in advance in the ini-
tial triangulation), corresponding to ci and c′i , respectively. How-
ever, one curve can be discretized differently in different patches
because OCCT tessellates each patch independently (see Fig. 8).
As a result, this discretization causes gaps or overlaps when
merging adjacent patch meshes. To achieve consistent discretiza-
tions for each shared curve c, we produce the same number of
uniform samples on ci and c′i , respectively. We denote the length

(a) Coarse triangulation (b) Parametric remeshing

Figure 8: (a) Initial triangulation using OCCT causes gaps or overlaps between
neighboring patch meshes. (b) Our boundary curve recovery and sampling could
generate consistent vertices along the shared curves.

of curve c as lc, and the curve sampling interval as δ = αltarget
(α is set to 0.6 − 0.8). Thus, the number of points to be sam-
pled is N = max(2,

⌈
lc
δ

⌉
), where the max(a, b) function returns

the greater value of a and b. Finally, we generate N samples
uniformly on the piecewise linear segments of ci and c′i . The
parameter coordinates (u, v) of each sample is interpolated using
the values defined on the vertices of ci and c′i .
Triangulation. Based on the rebuilt parametric space and re-
covered boundary curves, we now refine each patch mesh of the
coarse triangulation by a parametric remeshing approach. In the
2D space, we organize the sampled points on boundary curves
into a bounded region, which is defined by a Planar Straight
Line Graph (PSLG). The segments of the PSLG are considered
as constraints and are fed to our algorithm to build a CDT. Then,
an improved mesh is obtained by invoking the Delaunay refine-
ment method with default shape and size criteria1 (default shape
criterion B = 0.125, size criterion s = 0.5). We do not need to
tune the criteria because we will satisfy the user-specified mesh-
ing size in the global remeshing stage. Finally, the 2D mesh of
each patch is mapped back to the 3D space, and an improved tes-
sellation with correct conformity is obtained, as shown in Fig. 8
(b).

4.3. Global remeshing
Although 2D Delaunay refinement is performed, the quality

of parametric remeshing is still unsatisfied. To improve the regu-
larity and angle quality of the final mesh, another high-quality
remeshing is required. In our approach, we leverage a real-
time isotropic remeshing technique inspired by [12] to refine the
mesh. Besides, an industrial CAD product contains many small
surfaces and internal “feature” boundaries because it is usually
modeled via various Solid Boolean Operations, translations or
corrections. Thus, before remeshing, we first remove these small
geometric features, in which most unintended discontinuities re-
side. This global patch-independent remeshing can achieve bet-
ter quality elements by ignoring the internal CAD patch limita-
tions.
Patch mesh clustering. As illustrated in Fig. 9, a complex CAD
model often contains many small surface patches that is not re-
lated to the geometry of the model, thus, the arrangement of these
patches can not reflect the intention of the designer. The proxim-
ity features among these patches lead to low quality elements

1http://doc.cgal.org/latest/Mesh 2/

5

(a) (b)

Figure 9: Illustration of how clustering approach provides us a mesh that is sim-
pler than merely mimicking the CAD topology: (a) patch meshes before group-
ing, and (b) patch meshes after grouping.

around them because they contribute to constraining the result-
ing mesh. To suppress these features, we cluster such patches
into more desirable subregions using a hierarchical agglomera-
tive clustering algorithm. First, for each patch meshMi consist-
ing of a list of triangles {t j}, we compute its weighted centroid
qi =

∑
|t j|bt j/

∑
|t j| and weighted normal ~ni =

∑
|t j|~nt j/

∑
|t j|, by

averaging the facet barycenter bt j and normal ~nt j of each triangle
with area |t j|. Then, we group neighboring patch meshes within a
close distance and with similar normals. Specifically, two patch
meshes,Mi andM j, are grouped together iff:∥∥∥qi − q j

∥∥∥ < εD,

~ni · ~nj > εA,
(1)

where · is the dot product between two normal vectors. We set
εD = 2 and εA = 0.8 by default.

After this step, all patch meshes are assembled by merging
common vertices to yield a single mesh. In this merging process,
each triangle edge shared by two groups is marked by a “feature”
flag.
Constraint simplification. The above clustering approach only
works well for small patches. Many undesired internal con-
straints remain between large patches, which lead to stretched
triangles. To remove them, we consider all the “feature” edges
along one common boundary between two groups, and compute
the dihedral angle between the two incident triangles of each
“feature” edge. If all of the dihedral angles are lower than a
threshold (default value is 5◦), then the “feature” edges on this
boundary, as well as their “locked” vertices, are released.
Isotropic remeshing. The general pipeline of our global opti-
mization is similar to that in [12, 13], but we further improve the
quality of this algorithm, especially for CAD models. To make
the paper self-contained, each local operation is outlined sequen-
tially as follows (? indicates the newly added or improved oper-
ations):

• Edge split. Given a target edge length ltarget, we split all
edges at their midpoint that are longer than 4

3 ltarget.

• Angle optimization?. We flip an edge if the sum of its
two opposite angles are larger than 180◦. This operation
is performed because the initial tessellation forms many
edges that are considerably longer than ltarget. As a result,
the above edge split operation generates entangled triangles
around these long edges (see Fig. 10), which can lead the
algorithm to be stuck in a loop of edge collapsing and split-
ting. By contrast, our angle optimization could generate

Figure 10: Results before (left) and after (right) edge flipping by angle. Green
circles indicate the entangled triangles caused by splitting long edges.

better shaped triangles to avoid this problem and could fur-
ther accelerate the entire remeshing process. This operation
is only performed in the first iteration, because the inputs
to later iterations are already well-shaped. Therefore, this
operation will not conflict with the following valence opti-
mization in later iterations.

• Edge collapse. We collapse all edges shorter than 4
5 ltarget.

• Valence optimization for inner vertices?. A non-feature
edge is flipped if this operation meets two conditions: (1)
decreases the squared difference of the valences of the four
vertices of the two incident triangles to their optimal value
6 (assuming that no border edges for closed CAD models
exist); (2) does not increase the projection distance from
the midpoint of this edge to the input CAD model. The
former improves valence regularization whereas the latter
maintains the approximation error.

• Valence optimization for feature vertices?. Since the fea-
ture edges cannot be flipped, it is difficult to improve the
valence of the vertices on feature edges. Thus, we propose
valence optimization for feature vertices. We observe that
a low-quality triangle with one obtuse angle is usually situ-
ated around a feature vertex with valence smaller than 6 (ac-
tually, the valence is 4 or 5, because valence 3 is impossible
on feature edges). Besides, a feature vertex with a valence
larger than 6 results in small angles. To improve the valence,
we propagate the valence optimization of feature vertices to
inner vertices by edge splitting and collapsing. Fig. 11 illus-
trates our solution. Vertex A is a feature vertex with non-6
valence and its two incident half-edges h1 and h2 are on the
same side of A. We denote θ as the angle between h1 and
h2, nt as the number of triangles between h1 and h2. The de-
sired number of triangles is computed as nt

′ = b θ
60◦ + 0.5c.

Then two cases are considered: (1) If nt < nt
′, as shown

in Fig. 11 (a) where θ = 180◦, nt = 2, nt
′ = 3, we split

the opposite edge BD of A. The reason for selecting BD is
that the squared difference between the valence of vertex C
and the optimal value 6 is smaller than that of E. However,
splitting introduces another vertex G with valence 4, thus,
a local edge flip is performed to improve the valence of G
(see Fig. 11 (b)). (2) If nt > nt

′, as shown in Fig. 11 (c)
where nt = 4, nt

′ = 3, we collapse the opposite edge CD of
the smallest angle iteratively until nt = nt

′. But note that the
case of nt > nt

′ is rare because above edge collapse and va-
lence optimization for inner vertices can largely prevent this
case from happening. Finally, after processing each side of
the feature vertices, we can significantly improve the mesh
quality near feature edges.

• Tangential Laplacian smoothing. To optimize vertex dis-
tribution, we relocate the positions by computing the Opti-

6

B F
h

A
(a) (b)

C D

1 h2

E

B F
h

A

C D

1 h2

E

G

B F
h

A
(c) (d)

C E

1 h2

G
D

B F
h

A

C E

1 h2

G

Figure 11: Illustration of the valence optimization for feature vertex.

mal Delaunay Triangulation (ODT). Each vertex is moved
to the average pi of the barycenter bt j of its incident trian-
gles t j ∈ T , weighted by the triangle area:

pi =

∑
t j∈T
|t j|bt j∑

t j∈T
|t j|

, (2)

Then the new position pi can be optionally projected back
onto the original surface patch to decrease approximation
errors. Since projecting any 3D point back to the underlying
surface patch is very slow in OpenCASCADE, to achieve
a good balance between the meshing speed and approxima-
tion error, we only apply the projections in the first iteration.

Typically, 4−8 iterations are enough to achieve a good tradeoff
between the mesh quality and the performance of the algorithm.
Finally, after all iterations, we again perform edge flipping by
angles. We found that this operation improves the angle quality,
without violating the valence regularization.

4.4. Adaptive mesh generation

In engineering and scientific computation, an adaptive tessel-
lation is preferred because the mesh size is smaller near the small
features to achieve high geometrical accuracy and is larger else-
where to avoid increasing mesh counts unnecessarily. Our algo-
rithm can be modified to generate adaptive meshes by applying
a sizing function, ρ(x), that defines a target element size at every
point on the model. The sizing function can be specified by the
user input, or derived from geometrical features. In the remesh-
ing literature, the preference is local feature size (the distance to
the medial axis of the model) or curvature. However, the local
feature size is suitable for smooth shapes, whereas most CAD
models are inherently non-smooth. Thus, we use the curvature
controlled metric to generate adaptive surface mesh.

In our pipeline, we only need to modify the isotropic remesh-
ing stage by replacing the constant target edge length with the
adaptive sizing field ρ(x) that is sensitive to local curvatures. To
compute the local target edge length (for edge split and collapse)
and weighted areas (for tangential smoothing), we apply a warp
method for mapping. First, we compute the average value E(ρ)
of the sizing field. Then, for any edge e = (xa, xb), the desired
local target edge length is defined as:

l′target =
2E(ρ)

ρ(xa) + ρ(xb)
ltarget. (3)

For the tangential relaxation, the barycenter computation in Eq. 4
is replaced by:

pi =

∑
t j∈T
|t j|w(bt j)bt j∑

t j∈T
|t j|w(bt j)

, (4)

where w(bt j) =
ρ(xa)+ρ(xb)+ρ(xc)

3E(ρ) is the sizing field at the barycenter
bt j of triangle t j = (xa, xb, xc).

5. Experimental Results

In this section, we first present a number of experimental re-
sults that demonstrate the effectiveness of the proposed algo-
rithm. Then we provide a complete comparison with state-of-the-
art approaches in terms of the meshing validity and quality. Our
algorithm is implemented in C++ using the CGAL library [56]
for CDT in 2D domain. All results presented in this paper are ob-
tained on an Intel i7-3770, 3.40 GHz desktop with 16 GB mem-
ory.

5.1. Tessellation results

We have evaluated our method on a wide range of CAD mod-
els of different complexities, ranging from CAD components to
mechanical assemblies. Figures 2, 3, 12, and 13 illustrate some
selected tessellation results, as well as the histograms of the an-
gle and triangle quality distributions. The quality of a triangle
t is measured by Q(t) = 6

√
3

S t
ptht

, where S t is the area of t, pt is
the half-perimeter of t and ht is the longest edge length of t [57].
More numerical statistics of the meshing quality are presented in
Table 1. Here Qavg is the average triangle quality in the triangula-
tion; θmin and θmax are the minimal and maximal angles, and θ̄min
is the average of the minimal angles of all triangles; θ<30◦% is the
percentages of triangles with angles smaller than 30◦; θ>90◦% and
θ>120◦% are the percentage of triangles with angles larger than
90◦ and 120◦, respectively; ξ = 1

n
∑n

i=1 |δi − 6| is the measure of
mesh regularity, where δi represents the valence of the ith vertex.
The value of ξ is positive, and a smaller value indicates a more
regular triangulation. dRMS is the root mean square distance, and
dH is the Hausdorff distance between the output mesh and input
CAD model, measured with the Metro tool [58]. Here the input
CAD model is approximated with a dense triangular mesh.

From these results, we observe that our approach is robust to
tessellate CAD models and to generate high-quality triangular
meshes. Furthermore, we can remove the internal feature bound-
aries to achieve better quality, as shown in Fig. 13. Notice that
the output meshes may still have a few low-quality triangles.
The reason is that a complex CAD model usually contains vari-
ous features that affect surface mesh quality, i.e., short curves,
curve proximities and small input angles. An ill-shaped and
jagged boundary will result in poor quality mesh elements [59].
This result is unavoidable because the features formed by in-
put boundaries cannot be fully suppressed by our clustering ap-
proach. Cleaning such features on the geometry level is another
topic about CAD defeaturing [60], which is beyond the scope of
this paper. However, histograms of the angle and triangle qual-
ity distributions demonstrate that we can generate high-quality
meshes generally.
Performance evaluation. Our algorithm can achieve greater ef-
ficiency than approaches that directly work on smooth surfaces,
because most of our geometry computations are performed on
the discrete model. Specifically, the processing time mainly
comprises three components: initial triangulation, parametric
remeshing, and global remeshing. Thanks to OCCT, the first step

7

Suspension Component Seat

Gear

Cellphone

Component

0 0.2 0.4 0.6 0.8 1

Triangles qualities

0 20 40 60 80 100 120 140 160

Triangles angles

0 0.2 0.4 0.6 0.8 1

Triangles qualities

0 20 40 60 80 100 120 140 160 180

Triangles angles

0 0.2 0.4 0.6 0.8 1

Triangles qualities

0 20 40 60 80 100 120 140 160 180

Triangles angles

0 0.2 0.4 0.6 0.8 1

Triangles qualities

Mini Servo

0 20 40 60 80 100 120 140 160 180

Triangles angles

0 0.2 0.4 0.6 0.8 1

Triangles qualities

Helicopter Cockpit

0.2 0.4 0.6 0.8 1
0

Triangles qualities

0 20 40 60 80 100 120 140 160

Triangles angles

0 20 40 60 80 100 120 140 160

Triangles angles

0 20 40 60 80 100 120 140 160 180

Triangles angles

0 0.2 0.4 0.6 0.8 1

Triangles qualities

Figure 12: A gallery of examples generated by our framework. For each model, we show the input CAD geometry, tessellation result, zoom-in views, and histograms
of the angle (blue) and triangle quality (green) distributions.

Table 1: Our tessellation qualities. |P| is the number of surface patches in the input; |M| is the number of triangles in the output. The other measurements are explained
in Sec. 5. We use ? after the model name to indicate that the timing also includes the time cost of degeneracy repair.

Type Model |P| |M| Qavg θmin θ̄min θmax θ<30◦% θ>90◦% θ>120◦% ξ dRMS dH(×10−2) Time(s)

Uniform
Gear (Fig. 12) 229 77K 0.87 2.42 48.81 157.25 0.43 1.68 0.03 0.28 0.017 0.074 8.5

Helicopter Cockpit (Fig. 12) 72 18K 0.88 7.05 50.23 153.63 1.45 0.68 0.21 0.27 0.006 0.236 5.2
Component? (Fig. 12) 183 42K 0.87 2.55 49.39 168.08 0.29 1.54 0.04 0.34 0.005 0.649 5.9

Adaptive

Car (Fig. 2) 881 93K 0.81 0.15 45.32 178.67 1.28 3.05 0.07 0.41 0.074 0.575 15.7
Cover (Fig. 3) 130 48K 0.86 0.78 48.22 130.82 0.32 1.85 0.01 0.31 0.037 0.146 5.6

Suspension Component (Fig. 3) 249 37K 0.85 3.08 47.60 156.53 0.53 2.75 0.02 0.30 0.102 0.512 6.8
Seat? (Fig. 12) 257 23K 0.84 0.01 46.92 178.88 0.44 2.76 0.04 0.33 0.029 0.217 10.2

Mini Servo (Fig. 12) 168 35K 0.86 0.88 48.13 176.04 0.27 2.18 0.03 0.32 0.036 0.232 4.5
Cellphone? (Fig. 12) 985 58K 0.83 0.63 45.42 177.81 1.58 3.91 1.04 0.43 0.031 0.177 20.1

Heart (Fig. 13) 93 26K 0.87 0.01 49.05 177.42 1.62 1.19 0.05 0.32 0.006 0.227 8.2

Table 2: Comparison of graded tetrahedral meshing qualities. The best result of each measurement is marked in bold font. |P| is the number of input patches; |M| is
the number of surface triangles; |τ| is the number of generated tetrahedra.

Model Method |M| |τ| Time(s)
Triangle Mesh Tetrahedral Mesh

Qavg θ̄min θ<30◦% ξ dRMS dH(×10−2) ϑmin ϑmax ϑ̄min κmin κ̄ ϑ<10◦% ϑ<20◦%

Receiver (Fig. 14),
|P| = 112

NetGen 26K 146K 16.5 0.824 45.52 3.36 0.35 0.084 0.339 2.17 173.27 69.58 0.005 0.75 0.11 1.38
Gmsh 20K 106K 34.8 0.829 46.82 2.15 0.61 0.017 0.045 0.67 177.91 69.65 0 0.73 0.14 1.51
Ours 26K 142K 7.6 0.827 46.28 1.01 0.31 0.013 0.161 1.98 172.64 70.04 0.018 0.77 0.09 1.24

Airplane bracket (Fig. 15),
|P| = 228

NetGen 55K 136K 18.3 0.799 44.14 3.1 0.32 0.165 0.796 0.07 179.28 69.68 0 0.72 0.35 1.71
Gmsh 63K × 89.5 0.631 38.14 16.28 0.76 0.128 0.473 × × × × × × ×

Ours 49K 125K 9.8 0.817 45.78 2.61 0.34 0.031 0.136 0.27 178.89 69.54 0 0.76 0.29 1.41

8

Figure 13: Tessellation results without (middle) and with (right) the operations of patch mesh clustering and constraint simplification.

can be performed very efficiently. Parametric remeshing is the
most time consuming step in our framework, because if we pro-
cess each surface patch one-by-one, the total processing time is
linear with the number of input surface patches. Fortunately, we
found that our parametric remeshing works on each patch mesh
independently. Thus this step can be parallelized. We use the
OpenMP library for threaded parametric remeshing.

In the last step, although we have to carefully deal with the
sharp features that are common in CAD models, our algorithm
is still considerably faster by utilizing real-time remeshing algo-
rithms [12, 13]. Table 1 lists the timings for tessellating each
model. In addition, performance can be further improved by dis-
abling the back-to-surface projection without considerable loss
of quality.

5.2. Comparisons

Comparison with open-source methods. We now compare our
approach with two popular open-source software, NetGen [6]
and Gmsh [7], which are both readily available and widely used
in the meshing and simulation community. For fair comparison,
we tune the parameters of each algorithm to generate surface
meshes with a similar number of vertices and triangles. In ad-
dition, the sizing function used in all methods is defined based
on the curvature. First, we compare the robustness of these three
methods. As shown in Fig. 1, NetGen cannot handle the degen-
eracy caused by tangency. While Gmsh is able to deal with such
a case, it easily generates intersecting triangles near very narrow
sharp features, as illustrated in Fig. 14. By contrast, our algo-
rithm is more robust in obtaining correct tessellation results by
carefully handling tangency degeneracy and performing bound-
ary curve recovery before global remeshing.

Next, we conduct a comparison in terms of tessellation qual-
ity. Besides using surface mesh quality metrics, we also evaluate
these three methods by generating tetrahedral meshes. Then we
compute two criteria for evaluating the quality of a tetrahedral
mesh: dihedral angle ϑ, and radius ratio κ. The radius ratio, κ,
is defined as κ = 3rin

rcir
, where rin and rcir are the inscribed and

circumscribed sphere radius of a tetrahedron, respectively. In
our approach, we use TetGen [61] to generate tetrahedral meshes
from each surface mesh. Figures 14 and 15 present the com-
parison for tetrahedral meshing. The quality is listed in Table 2,
where NetGen runs by default in parallel mode. Comparison re-
sults verify that our tessellation technique yields higher quality
surface and tetrahedral meshes. Furthermore, NetGen and Gmsh
often lead to high-density triangles (marked with green circles)
around tiny features, which are undesirable in practical simula-
tion.

Input Gmsh

NetGen

Ours

Figure 14: Comparison with NetGen [6] and Gmsh [7] on the “Airplane bracket”
dataset. From the output of Gmsh, we failed to generate a tetrahedral mesh. For
NetGen and our method, we show the surface mesh, cutaway view of tetrahedral
meshing, and livers with dihedral angles smaller than 10◦.

Finally, to demonstrate the effectivity of our improved remesh-
ing approach, we compare it with original real-time adaptive
remeshing (RAR) method [13]. Fig. 16 shows the remeshing
results, in which we use the same initial triangulation and 5 it-
erations for our method and RAR. We achieve a higher quality
mesh, especially near the feature boundaries, due to our opera-
tions of angle optimization and valence optimization for feature
vertices. Besides, the values of ξ of our method and RAR are
0.35 and 0.48, respectively.

Comparison with commercial meshers. Many commer-

9

Gmsh

NetGen

Ours

Figure 15: Comparison on “Receiver”. Each row shows the surface mesh, cut-
away view of tetrahedral meshing, and slivers with dihedral angles smaller than
10◦.

0 20 40 60 80 100 120 140 160 180
0 20 40 60 80 100 120 140 160 180 0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Ours RAR Ours RAR

Angles Tri. Quality

Figure 16: Remeshing comparison with RAR [13] on “Iron man mask”. The top
row (from left to right) is the input CAD, our remeshing result, and RAR’s result.
The red color indicates obtuse triangles and the green color shows triangles with
θmin < 30◦. The bottom row shows histograms of the angle (left) and triangle
quality (right) distributions.

cial software, such as Altair HyperMesh2, Pro/ENGINEER3,
MeshGems4, are available in the market. These software pack-
ages are fully optimized and provide various state-of-the-art sur-
face meshing algorithms to generate high-quality meshes. How-
ever, they fail when handling complex models with degenera-
cies, as shown in Fig. 17. In this example, for the tangency case
(labeled by (1) in the figure), MeshGems and HyperMesh gen-
erate degenerate triangles. Although Pro/ENGINEER can cor-
rectly handle this tangency case, it fails to tessellate the model
where the curve proximity is met, as labeled by (2) in the fig-
ure. Compared with these packages, our tessellation framework
is much simpler, and it outperforms them by successfully tessel-
lating this complex model. Therefore, our algorithm can be used

2http://www.altairhyperworks.com.au/product/HyperMesh
3https://www.ptc.com/en/products/cad/pro-engineer
4http://www.meshgems.com/

as a drop-in replacement for the task involving CAD tessellation.

5.3. Limitations

Although the tessellation results of our algorithm satisfy the
requirements for most simulation applications, we have not tack-
led the exact approximation errors. We hope to address this is-
sue by integrating another parameter (approximation tolerance)
into the remeshing stage in the future. Next, the SLIM param-
eterization method we used only grants local injectivity, thus a
global overlap could still happen depending on the shape of the
patch. Although we did not meet this case in our experiments, it
remains problematic. We would like to explore other more ad-
vanced parametrization techniques. In addition, since our frame-
work does not involve any geometry repair mechanism, we can-
not handle geometry errors existing in original CAD models, e.g.,
self-intersection. Thus, designers are required to modify the ge-
ometry manually or automatically by using other repairing algo-
rithms.

6. Conclusion and Future Work

This paper has proposed a novel method for automated mesh
generation for CAD models. Our algorithm relies on two clas-
sical remeshing approaches to improve the regularity and angle
quality of the mesh. Robustness has been emphasized through
the entire meshing process, and by taking care of the degen-
eracies, unintended construction artifacts, and shape boundary
preservation. The experiments on a variety of complex models
and the comparison with the state-of-the-art tessellation pack-
ages, demonstrate that our approach is simple yet efficient in gen-
erating high-quality surface meshes.

In our future work, we would like to extend our approach to a
mesh generator that can control anisotropy and directionality via
a metric tensor field. We are also interested in exploring more ac-
curate sizing functions rather than the simple curvature to define
adaptive mesh with smoothed gradient of element scales. Lastly,
although we considered filtering small features, we indeed did
not distinguish between important and unimportant features. One
good research topic is to recognize such important features (e.g.,
tight radius fillets, turbulators, and flow diversion devices) and
preserve them properly during mesh generation.

Acknowledgements

This work is partially funded by the National Natural Sci-
ence Foundation of China (61802406, 61872354, 61772523
and 61620106003), the Beijing Natural Science Foundation
(4184102), the Open Funding Project of State Key Laboratory
of Virtual Reality Technology and Systems of Beihang Univer-
sity (Grant No. BUAA-VR-17KF-06), and the Open Projects
Program of National Laboratory of Pattern Recognition (NLPR)
(Grant No. 201700020).
[1] B. M. Klingner, B. E. Feldman, N. Chentanez, J. F. O’Brien, Fluid anima-

tion with dynamic meshes, ACM Trans. on Graphics (Proc. SIGGRAPH)
25 (3) (2006) 820–825.

[2] P. J. Frey, P.-L. George, Mesh generation: application to finite elements,
ISTE, 2007.

[3] P.-L. George, H. Borouchaki, Delaunay triangulation and meshing.
[4] T. J. Baker, Mesh generation: Art or science?, Progress in Aerospace Sci-

ences 41 (1) (2005) 29–63.
[5] Y. Ito, Challenges in unstructured mesh generation for practical and effi-

cient computational fluid dynamics simulations, Computers & Fluids 85
(2013) 47–52.

10

OursInput Pro/ENGINEER MeshGems HyperMesh(1)

(2)

Figure 17: Comparison with some commercial meshers. The green lines represent border edges, while red points represent the vertices of degenerate triangles.

[6] J. Schöberl, Netgen an advancing front 2d/3d-mesh generator based on ab-
stract rules, Computing and visualization in science 1 (1) (1997) 41–52.

[7] C. Geuzaine, J.-F. Remacle, Gmsh: a three-dimensional finite element
mesh generator with built-in pre- and post-processing facilities, Interna-
tional Journal for Numerical Methods in Engineering 79 (11) (2009) 1309–
1331,.

[8] M. Attene, A lightweight approach to repairing digitized polygon meshes,
The Visual Computer 26 (11) (2010) 1393–1406.

[9] T. Ju, Robust repair of polygonal models, ACM Trans. on Graphics (Proc.
SIGGRAPH) 23 (3) (2004) 888–895.

[10] Open Cascade Technology, http://www.opencascade.com.
[11] Q. Du, D. Wang, L. Zhu, On mesh geometry and stiffness matrix condition-

ing for general finite element spaces, SIAM Journal on Numerical Analysis
47 (2) (2009) 1421–1444.

[12] M. Botsch, L. Kobbelt, A Remeshing Approach to Multiresolution Mod-
eling, in: Eurographics Symposium on Geometry Processing, 2004, pp.
189–196.

[13] M. Dunyach, D. Vanderhaeghe, L. Barthe, M. Botsch, Adaptive remeshing
for real-time mesh deformation., in: Eurographics (Short Papers), 2013, pp.
29–32.

[14] S. J. Owen, A survey of unstructured mesh generation technology, in: In-
ternational Meshing Roundtable, 1998, pp. 239–267.

[15] M. Bern, P. Plassmann, Mesh Generation, Elsevier Science, 2000.
[16] D. S. Lo, Finite element mesh generation, CRC Press, 2014.
[17] K. Shimada, Current issues and trends in meshing and geometric processing

for computational engineering analyses, ASME Journal of Computing and
Information Science in Engineering 11 (2) (2011) 021008.

[18] J. C. Caendish, D. A. Field, W. H. Frey, An apporach to automatic three-
dimensional finite element mesh generation, International journal for nu-
merical methods in engineering 21 (2) (1985) 329–347.

[19] B. Lévy, Y. Liu, Lp centroidal Voronoi tesselation and its applications,
ACM Trans. on Graphics (Proc. SIGGRAPH) 29 (4) (2010) 119:1–11.

[20] B. Lévy, N. Bonneel, Variational anisotropic surface meshing with Voronoi
parallel linear enumeration, in: Proceedings of the 21st International Mesh-
ing Roundtable, 2012, pp. 349–366.

[21] K. Nakahashi, D. Sharov, Direct surface triangulation using the advancing
front method, in: 12th Computational Fluid Dynamics Conference, 1995,
p. 1686.

[22] T. Lan, S. Lo, Finite element mesh generation over analytical curved sur-
faces, Computers & Structures 59 (2) (1996) 301–309.

[23] J. R. Tristano, S. J. Owen, S. A. Canann, Advancing front surface mesh
generation in parametric space using a riemannian surface definition., in:
International Meshing Roundtable, 1998, pp. 429–445.

[24] M. A. Yerry, M. S. Shephard, Automatic three-dimensional mesh genera-
tion by the modified-octree technique, International Journal for Numerical
Methods in Engineering 20 (11) (1984) 1965–1990.

[25] A. A. Shostko, R. Löhner, W. C. Sandberg, Surface triangulation over in-
tersecting geometries, International journal for numerical methods in engi-
neering 44 (9) (1999) 1359–1376.

[26] Y. Liu, S. Lo, Z.-Q. Guan, H.-W. Zhang, Boundary recovery for 3d delau-
nay triangulation, Finite Elements in Analysis and Design 84 (2014) 32–43.

[27] J. R. Shewchuk, Delaunay refinement mesh generation, Tech. rep., DTIC

Document (1997).
[28] X. Sheng, B. E. Hirsch, Triangulation of trimmed surfaces in parametric

space, Computer-Aided Design 24 (8) (1992) 437–444.
[29] J.-C. Cuillière, An adaptive method for the automatic triangulation of 3d

parametric surfaces, Computer-Aided Design 30 (2) (1998) 139–149.
[30] H. Borouchaki, P. Laug, P.-L. George, Parametric surface meshing using

a combined advancing-front generalized delaunay approach, International
Journal for Numerical Methods in Engineering 49 (1-2) (2000) 233–259.

[31] Y. Zheng, N. P. Weatherill, O. Hassan, Topology abstraction of surface
models for three-dimensional grid generation, Engineering with Comput-
ers 17 (1) (2001) 28–38.

[32] R. J. Cripps, S. Parwana, A robust efficient tracing scheme for triangulating
trimmed parametric surfaces, Computer-Aided Design 43 (1) (2011) 12–20.

[33] P. Laug, Some aspects of parametric surface meshing, Finite Elements in
Analysis and Design 46 (1) (2010) 216–226.

[34] E. Béchet, J.-C. Cuilliere, F. Trochu, Generation of a finite element mesh
from stereolithography (stl) files, Computer-Aided Design 34 (1) (2002)
1–17.

[35] D. Wang, O. Hassan, K. Morgan, N. Weatherill, Eqsm: An efficient high
quality surface grid generation method based on remeshing, Computer
Methods in Applied Mechanics and Engineering 195 (41) (2006) 5621–
5633.

[36] E. Marchandise, J.-F. Remacle, C. Geuzaine, Quality surface meshing using
discrete parametrizations, in: Proceedings of the 20th International Mesh-
ing Roundtable, Springer, 2011, pp. 21–39.

[37] E. Marchandise, J. Remacle, C. Geuzaine, Optimal parametrizations for
surface remeshing, Engineering with Computers 30 (3) (2014) 383–402.

[38] R. Aubry, B. K. Karamete, E. L. Mestreau, S. Dey, A three-dimensional
parametric mesher with surface boundary-layer capability, Journal of Com-
putational Physics 270 (2014) 161–181.

[39] R. Aubry, S. Dey, E. L. Mestreau, B. K. Karamete, D. Gayman, A robust
conforming nurbs tessellation for industrial applications based on a mesh
generation approach, Computer-Aided Design 63 (2015) 26–38.

[40] T. Ju, Fixing geometric errors on polygonal models: a survey, Journal of
Computer Science and Technology 24 (1) (2009) 19–29.

[41] M. Campen, M. Attene, L. Kobbelt, A practical guide to polygon mesh
repairing., in: Eurographics (Tutorials), 2012.

[42] M. Attene, M. Campen, L. Kobbelt, Polygon mesh repairing: An applica-
tion perspective, ACM Computing Surveys (CSUR) 45 (2) (2013) 15.

[43] G. Turk, M. Levoy, Zippered polygon meshes from range images, in: Pro-
ceedings of the 21st Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’94, ACM, 1994, pp. 311–318.

[44] P. Borodin, M. Novotni, R. Klein, Progressive gap closing for meshrepair-
ing, in: Advances in Modelling, Animation and Rendering, Springer, 2002,
pp. 201–213.

[45] P. Liepa, Filling holes in meshes, in: Proceedings of the 2003 Eurograph-
ics/ACM SIGGRAPH symposium on Geometry processing, Eurographics
Association, 2003, pp. 200–205.

[46] M. Campen, L. Kobbelt, Exact and robust (self-) intersections for polygo-
nal meshes, in: Computer Graphics Forum, Vol. 29, Wiley Online Library,
2010, pp. 397–406.

[47] C. Andújar, P. Brunet, D. Ayala, Topology-reducing surface simplification

11

using a discrete solid representation, ACM Trans. on Graphics 21 (2) (2002)
88–105.

[48] S. Bischoff, D. Pavic, L. Kobbelt, Automatic restoration of polygon models,
ACM Trans. on Graphics 24 (4) (2005) 1332–1352.

[49] Q.-Y. Zhou, T. Ju, S.-M. Hu, Topology repair of solid models using skele-
tons, IEEE Trans. on Vis. and Comp. Graphics 13 (4).

[50] F. S. Nooruddin, G. Turk, Simplification and repair of polygonal models
using volumetric techniques, IEEE Trans. on Vis. and Comp. Graphics 9 (2)
(2003) 191–205.

[51] S. Bischoff, L. Kobbelt, Structure preserving CAD model repair, in: Com-
puter Graphics Forum (Proc. EUROGRAPHICS), Vol. 24, Wiley Online
Library, 2005, pp. 527–536.

[52] R. Haimes, Capri: Computational analysis programming interface. a solid
modeling based infra-structure for engineering analysis and design. revision
2.0, Massachusetts Inst. of Technology, Cambridge, MA.

[53] F. Dassi, A. Mola, H. Si, Curvature-adapted remeshing of cad surfaces,
Engineering with Computers.

[54] A. Loseille, Unstructured mesh generation and adaptation, Handbook of
Numerical Analysis 18 (2017) 263–302.

[55] M. Rabinovich, R. Poranne, D. Panozzo, O. Sorkine-Hornung, Scalable
locally injective mappings, ACM Trans. on Graphics 36 (2) (2017) 16.

[56] CGAL, Computational Geometry Algorithms Library, http://www.cgal.org.
[57] P. Frey, H. Borouchaki, Surface mesh evaluation, in: 6th Intl. Meshing

Roundtable, 1997, pp. 363–374.
[58] P. Cignoni, C. Rocchini, R. Scopigno, Metro: measuring error on simplified

surfaces, Computer Graphics Forum 17 (2) (1998) 167–174.
[59] J. R. Shewchuk, Mesh generation for domains with small angles, in: Pro-

ceedings of the sixteenth annual symposium on Computational geometry,
ACM, 2000, pp. 1–10.

[60] K. Inoue, T. Itoh, A. Yamada, T. Furuhata, K. Shimada, Face clustering
of a large-scale cad model for surface mesh generation, Computer-Aided
Design 33 (3) (2001) 251–261.

[61] H. Si, Tetgen, a Delaunay-based quality tetrahedral mesh generator, ACM
Trans. Math. Softw. 41 (2) (2015) 11:1–11:36.

12

