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In Section 1, we analyze the convergence behaviour of the Push-Pull algorithm. Then in Section 2, we
provide a detailed datasheet to analyze the influence of different target parameters. We also compare the
spectral and anti-aliasing properties of our method with that of alternative blue noise algorithms. Section 3
shows more surface remeshing results compared to previous work.

1 CONVERGENCE ANALYSIS

This section exposes our observations concerning the convergence of our algorithm. Unfortunately, we could
not find any theoretical results about its convergence behaviour (e.g., regarding its convergence zone or its
speed of convergence); therefore, the following remarks only rely on experimental results, which provide
however clear results.

Before beginning the convergence analysis, we will try to provide an intuition that could explain informally
why our algorithm converges in most of the cases, based on the obervation of the evolution of point sets
during its execution. Our algorithm is based on iteratively solving local constraints to finally obtain a point
set that satisfies globally these constraints. The push-pull strategy allows, when constraints are not locally
satisfiable, i.e., solving them for one point breaks these constraints for one of its neighbours, to randomly alter
the structure of the point set and move these local constraints to another location where it will be easier to
solve them. Thus, the algorithm globally changes the point set to another one satisfying the input conditions.
In most of the cases, if the input constraints are not too strong, this random walk is quickly stopped because
one of the numerous point sets satisfying these constraints has bee found. However, this does not hold if the
input constraints are strong (e.g. for rf close to 1), and we will try in the following to study the convergence
behaviour in this case.

1.1 Definition of Convergence
First, we have to find an experimental test that can attest that a configuration (rf , rc,∆) makes the algorithm
diverge. We define it for a given size of samples n: we say that a configuration is not achievable using our
algorithm if it does not converge on this configuration until a given number of iterations imax. imax is chosen
such that increasing it does not extend significantly the set of achievable configurations. For instance, for
n = 1024, imax can be set to 2500, as it will be shown later. The convergence zone, i.e., the set of achievable
configurations, induced by this convergence definition is experimentally valid: a run (without limiting the
number of iterations) of our algorithm on a non-achievable configuration will, in almost all cases, never
converge.

1.2 Shape of the Convergence Zone
Experimentally, for a fixed ∆, it turns out that the convergence zone is a square: all configurations (rf , rc,∆)
are achievable if and only if rf ≤ rlimf and rc ≤ rlimc . On the boundaries of this square, the convergence
behaviour is erratic, no configuration that does not respect these constraints is achievable.

This observation implies that the convergence zone, if a parameter r that is either rf or rc is fixed, does not
depend on the value of r, as long as this value is not close to rlim for a ∆ close to 0. The following study is
done for a fixed rc = 0.7; the results are similar for a fixed rf = 0.85.

• ∗Joint first authors with equal contributions.
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(a) The evolution of the minimum ∆ that is required for the algo-
rithm to converge.
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(b) Convergence Speed.

Fig. 1. Convergence analysis of the proposed Push-Pull algorithm.

To study this profile, we computed the evolution of the minimum ∆ that is required for the algorithm to
converge, for rf ∈ [0.9, 1], as shown in Figure 1 (a), and we repeated this experiment for several imax. It turns
out that the minimum ∆ required is very close to 0 for any rf that is less than some rlimf , and almost instantly
rise to 1 for rf = rlimf until the algorithm does not converge anymore for any given ∆.

These observations then provide a simple description of the convergence zone: all configurations with
rf < 0.93 and rc > 0.65 are achievable; if only one of these thresholds is not satisfied, then the algorithm still
converges as long as rf < 0.96 and rc > 0.63; if both are not satisfied, then the algorithm does not converge.
Actually, the convergence behaviour does depend on ∆, but the previous observations tend to show that the
importance of this parameter is negligible.

Please notice that rlimf is, as expected, an increasing funtion of imax; we can notice that, for imax high enough,
rlimf ≈ 0.965, which experimentally validates our convergence definition that relies on an invariance of the
convergence zone once imax goes past some high enough value.

1.3 Convergence Speed at the Boundaries of the Convergence Zone
What remains to do is to study how our algorithm behaves when rf is close to 1, or rc is close to 0.6. We
performed several experiments for a fixed ∆ that are shown in Figure 1 (b). Our observations indicate that all
configurations with rf < 0.9 and rc > 0.67 are achievable in around a hundred of iterations. If one of those two
parameters goes past its threshold, the number of iterations required for convergence increases very quickly
(from a hundred to 2500 for 1024 points), until the algorithm does not converge anymore. In this case, the
ratio of stable samples during the execution grows slowly until it remains stable.

1.4 Relevance of the Combination Order of the Optimizations
The previous tests were done using a fixed combination of the three possible optimization algorithm (coverage,
conflict, and capacity optimization, in this order). It is worth noticing that the results obtained with other
combinations are extremely similar; it is therefore safe to state that the convergence zone of our algorithm as
well as its time efficiency is not very dependent on the way the optimizations are combined.

2 PARAMETER SELECTION AND COMPARISON

For comparison, we first give the mostly used spatial measures of state-of-the-art blue noise algorithms in
Table 1. Then we test our algorithm by varying the parameters rc and rf (∆ is always set as 0.0386) in Table 2.
Figures 2 and 3 show the power spectra and zone plate plots of other methods and our algorithm with fixed
rc = 0.67, respectively.
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Other Methods dmin davg rc β νeff Ω BOO

White 0.023 0.465 1.635 71.420 0.0 0.074 0.363

MPS [1] 0.780 0.821 0.781 1.0 0.655 2.168 0.388

BNOT [2] 0.738 0.872 0.744 1.008 0.855 1.994 0.427

CVT [3] 0.805 0.941 0.657 0.817 0.950 4.733 0.842

CCVT [4] 0.711 0.856 0.782 1.10 0.830 1.774 0.403

CapCVT [5] 0.755 0.895 0.772 1.022 0.905 2.957 0.661

KDM [6] 0.645 0.868 0.746 1.157 0.870 2.223 0.451

FPO [7] 0.925 0.933 0.869 0.939 0.900 4.628 0.428

TABLE 1
Statistics of the popular spatial measures of previous blue noise sampling patterns.
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Our target parameters Results

rc rf dmin davg rc β νeff Ω BOO

0.63

0.65 0.655 0.826 0.630 0.962 0.835 1.653 0.466

0.70 0.700 0.828 0.630 0.900 0.835 1.671 0.470

0.75 0.755 0.835 0.630 0.840 0.845 1.744 0.470

0.80 0.800 0.847 0.630 0.787 0.860 1.894 0.487

0.85 0.850 0.870 0.630 0.741 0.880 2.290 0.499

0.90 0.900 0.905 0.630 0.700 0.905 3.189 0.541

0.93 0.930 0.932 0.630 0.677 0.920 4.077 0.593

0.65

0.65 0.650 0.807 0.650 1.000 0.785 1.283 0.426

0.70 0.700 0.814 0.650 0.928 0.795 1.349 0.433

0.75 0.750 0.823 0.650 0.867 0.810 1.448 0.437

0.80 0.800 0.839 0.650 0.812 0.830 1.652 0.448

0.85 0.850 0.867 0.650 0.765 0.860 2.157 0.474

0.90 0.900 0.905 0.650 0.722 0.895 3.180 0.499

0.93 0.930 0.932 0.650 0.699 0.915 4.156 0.554

0.67

0.65 0.651 0.796 0.670 1.030 0.750 1.085 0.410

0.70 0.700 0.809 0.670 0.957 0.770 1.225 0.427

0.75 0.750 0.814 0.670 0.893 0.780 1.261 0.422

0.80 0.800 0.835 0.670 0.837 0.805 1.561 0.427

0.85 0.850 0.866 0.670 0.788 0.845 2.128 0.450

0.90 0.900 0.905 0.670 0.744 0.885 3.178 0.482

0.93 0.930 0.932 0.670 0.720 0.910 4.207 0.521

0.70

0.65 0.650 0.780 0.700 1.076 0.705 0.848 0.386

0.70 0.700 0.797 0.700 1.000 0.725 0.996 0.402

0.75 0.750 0.812 0.700 0.933 0.750 1.200 0.412

0.80 0.800 0.833 0.700 0.875 0.780 1.536 0.416

0.85 0.850 0.865 0.700 0.823 0.830 2.135 0.436

0.90 0.900 0.904 0.700 0.778 0.875 3.222 0.466

0.93 0.930 0.932 0.700 0.753 0.905 4.231 0.515

TABLE 2
Statistics of the popular spatial measures of our methods with different parameter selections.
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Fig. 2. Spectral and anti-aliasing analysis of previous blue noise methods. From left to right: distribution of 1024
points, power spectrum, radial means (top) and anisotropy (bottom), zone plate test function sampled by 5122

points.
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Fig. 3. Spectral and anti-aliasing analysis of our algorithm with fixed rc = 0.67. From left to right: distribution of
1024 points, power spectrum, radial means (top) and anisotropy (bottom), zone plate test function sampled by
5122 points.
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3 REMESHING EXPERIMENTS

In this section, we present surface remeshing comparisons between our push-pull algorithm and a wide range
of other remeshing techniques, including: Approximate Centroidal Voronoi Diagram (ACVD) [8], Maximal Poisson-
disk Sampling (MPS) [9] [10], Farthest Point Optimization (FPO) [11], Capacity Constrained CVT (CapCVT) [5],
Non-obtuse CVT (CVTnob) [12], Disk Density Tuning of MPS (DiskTuning) [13]. Table 3 lists the numerical statistics
of remeshing quality compared with previous methods. Figures 4 to 10 visualize the remeshing results of all
the models.
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Model Method |X| |t| |tobt| Qmin Qavg θmin θ̄min θmax θ<30o% θ>90o% V567% dRMS(× 10−3) dH(×10−2)

Venus

ACVD 3.0K 6.0K 466 0.25 0.84 14.4 47.6 146.3 0.36 7.77 98.4 0.86 0.69
MPS 3.0K 6.0K 0 0.67 0.85 32.7 48.6 90.0 0 0 100 0.73 0.67
FPO 3.0K 6.0K 377 0.57 0.85 34.2 50.8 107.1 0 6.29 99.7 0.71 0.67

CapCVT 3.0K 6.0K 1.0K 0.39 0.78 20.5 43.3 128.9 4.41 17.7 98.8 0.75 0.57
CVT 3.0K 6.0K 15 0.65 0.93 39.5 54.5 97.3 0 0.25 100 0.84 0.56

CVTnob 3.0K 6.0K 0 0.73 0.96 37.4 55.9 86.1 0 0 100 0.68 0.53
Our 3.0K 6.0K 0 0.74 0.87 44.6 50.9 87.9 0 0 100 0.60 0.56

Genus

ACVD 6.5K 13K 913 0.47 0.85 29.0 48.1 118.6 0.06 7.02 98.1 0.71 0.42
MPS 6.5K 13K 0 0.66 0.85 31.3 48.5 90.0 0 0 100 0.67 0.60
FPO 6.5K 12K 737 0.55 0.86 33.1 50.9 109.3 0 6.14 99.6 0.69 0.56

CapCVT 6.5K 12.5K 2.3K 0.38 0.78 16.8 42.6 130.0 5.91 18.3 98.6 0.64 0.61
CVT 6.5K 13K 27 0.66 0.94 38.7 54.6 96.8 0 0.21 100 0.76 0.49

CVTnob 6.5K 13K 0 0.72 0.95 36.0 55.6 88.9 0 0 100 0.31 0.23
Our 6.5K 13K 0 0.73 0.87 44.2 50.8 88.9 0 0 100 0.43 0.48

Fertility

MPS 8.5K 17K 2.6K 0.50 0.81 30.26 45.26 116.0 0 15.1 96.4 0.48 0.41
FPO 8.5K 17K 1.0K 0.52 0.86 32.8 50.8 113.6 0 6.16 99.5 0.98 0.33

CapCVT 8.5K 17K 508 0.52 0.88 30.02 51.3 113.5 0 2.98 99.8 0.42 0.28
CVT 8.5K 17K 0 0.66 0.94 40.2 54.9 96.4 0 0.05 100 0.41 0.29

CVTnob 8.5K 17K 0 0.77 0.94 40.4 54.8 83.4 0 0 100 0.98 0.34
DiskTuning 7.7K 15.5K 0 0.64 0.82 30.1 45.7 90.0 0 0 97.8 0.55 0.37

Our 8.5K 17K 0 0.74 0.87 46.3 51.1 87.5 0 0 100 0.29 0.31

Moai

MPS 12K 24K 3.6K 0.47 0.81 30.4 45.3 118.8 0 14.8 96.1 0.91 0.54
FPO 11K 22K 1.4K 0.54 0.86 32.6 50.9 110.3 0 6.08 99.5 0.56 0.51

CapCVT 11K 2.2K 2.3K 0.48 0.82 21.1 46.4 118.5 0.65 10.4 99.4 0.55 0.45
CVT 11K 22K 37 0.65 0.93 37.8 54.3 97.3 0 0.17 99.9 0.52 0.39

CVTnob 11K 22K 0 0.68 0.95 32.4 55.8 85.2 0 0 100 0.88 0.51
DiskTuning 11K 22K 3 0.64 0.82 30.1 45.6 90.0 0 0.01 97.8 0.95 0.60

Our 11K 22K 0 0.74 0.87 45.6 51.1 87.7 0 0 99.9 0.43 0.46

Homer

ACVD 7.5K 15K 2.7K 0.04 0.80 2.11 44.4 174.1 6.18 17.7 94.4 0.82 0.31
MPS 7.5K 15K 1.6K 0.56 0.82 30.1 46.4 105.8 0 10.8 99.8 0.61 0.28
FPO 7.7K 15.6K 1.2K 0.49 0.85 31.0 49.6 117.5 0 7.99 99.2 0.45 0.30

CapCVT 7,5K 15K 1.6K 0.37 0.83 21.3 46.2 131.1 0.98 10.66 95.8 0.42 0.20
CVT 7.5K 15K 56 0.65 0.93 38.1 54.0 98.2 0 0.37 100 0.57 0.20

CVTnob 7.5K 15K 0 0.69 0.94 33.7 54.5 85.4 0 0 100 0.36 0.17
DiskTuning 3.8K 7.8K 1 0.51 0.82 21.3 45.0 90 1.64 0.01 97.3 1.21 0.57

Our 7.5K 15K 0 0.68 0.90 34.4 51.8 89.5 0 0 100 0.40 0.23

Bunny

ACVD 8.0K 16K 3.3K 0.10 0.77 4.76 42.4 165.9 9.96 20.5 92.2 0.97 0.55
MPS 7.8K 15.4K 755 0.62 0.83 32.0 47.4 97.9 0 4.89 99.8 0.77 0.46
FPO 8.0K 16K 1.6K 0.50 0.84 30.0 48.6 116.3 0 9.92 98.0 0.81 0.42

CapCVT 8.0K 16K 1.4K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.71 0.24
CVT 8.0K 16K 10 0.64 0.93 34.8 54.2 98.8 0 0.06 99.9 0.87 0.35

CVTnob 8.0K 16K 0 0.72 0.94 36.3 54.4 89.4 0 0 100 0.94 0.35
DiskTuning 5.8K 12K 0 0.50 0.82 19.89 45.2 90.0 0.88 0 97.8 1.55 0.52

Our 8.0K 16K 0 0.71 0.87 37.1 51.1 89.5 0 0 99.8 0.44 0.52

Kitten

ACVD 9.8K 16K 3.3K 0.10 0.77 4.76 42.4 165.9 9.96 20.5 92.2 0.61 0.59
MPS 7.9K 15.8K 2.4K 0.42 0.81 25.3 45.3 125.4 0.29 15.3 96.0 0.78 0.96
FPO 9.5K 19K 1.3K 0.53 0.85 32.0 50.0 111.6 0 6.89 99.4 0.53 0.29

CapCVT 9.8K 19.6K 1.4K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.29 0.21
CVT 9.8K 19.6K 6 0.67 0.94 39.2 54.8 95.6 0 0.03 99.9 0.39 0.20

CVTnob 9.8K 19.6K 0 0.71 0.95 33.6 55.3 87.1 0 0 100 0.27 0.20
Our 9.8K 19.6K 0 0.71 0.90 37.3 52.1 88.9 0 0 100 0.26 0.27

TABLE 3
Comparison of remeshing quality with previous techniques. The best result of each measurement is marked in
bold font. |X| is the number of vertices; |t| is the number of triangles; |tobt| is the number of obtuse triangles;
Qmin is the minimal triangle quality, where the quality of a triangle is Q(t) = 6√

3
St

ptht
, where St is the area of t,

pt is the half-perimeter of t and ht the the longest edge length of t [14]; Qavg is the average of the triangle
qualities; θmin is the minimal angle; θ̄min is the average of minimal angle of each triangle; θmax is the maximal
angle, θ<30o% is the percentage of triangles with angles smaller than 30o; θ>90o% is the percentage of obtuse
triangles; V567% is the percentage of the valence 5, 6, and 7 vertices; dRMS is the root mean square distance,
and dH is the Hausdorff distance between the remesh and the input surface, which is measured by Metro [15].
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[MPS] [FPO] [Pushpull]

Fig. 4. Uniform remeshing results of the Venus model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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[Input] [ACVD]

[CapCVT] [CVT] [CVT_nob]

[MPS] [FPO] [Pushpull]

Fig. 5. Uniform remeshing results of the Genus model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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Fig. 6. Uniform remeshing results of the Fertility model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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Fig. 7. Uniform remeshing results of the Moai model. The obtuse triangles are shown in pink, and triangles with
θmin < 30 are shown in blue.
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Fig. 8. Adaptive remeshing results of the Bunny model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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Fig. 9. Adaptive remeshing results of the Homer model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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Fig. 10. Adaptive remeshing results of the Kitten model. The obtuse triangles are shown in pink, and triangles
with θmin < 30 are shown in blue.
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