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A Simple Push-Pull Algorithm for Blue-Noise
Sampling

Abdalla G. M. Ahmed∗, Jianwei Guo∗, Dong-Ming Yan, Jean-Yves Franceschi,
Xiaopeng Zhang, Oliver Deussen

Abstract—We describe a simple push-pull optimization (PPO) algorithm for blue-noise sampling by enforcing spatial constraints
on given point sets. Constraints can be a minimum distance between samples, a maximum distance between an arbitrary point
and the nearest sample, and a maximum deviation of a sample’s capacity (area of Voronoi cell) from the mean capacity. All of
these constraints are based on the topology emerging from Delaunay triangulation, and they can be combined for improved
sampling quality and efficiency. In addition, our algorithm offers flexibility for trading-off between different targets, such as
noise and aliasing. We present several applications of the proposed algorithm, including anti-aliasing, stippling, and non-
obtuse remeshing. Our experimental results illustrate the efficiency and the robustness of the proposed approach. Moreover,
we demonstrate that our remeshing quality is superior to the current state-of-the-art approaches.

F

1 INTRODUCTION

Point sets are ubiquitous in computer graphics. While
the desirable features in a point set possibly vary
from one application to another, isotropic point sets
with blue noise spectrum [1] are universal and suit
many applications, including dithering and stippling,
object distribution, meshing, and remeshing. The term
“blue noise” is characterized by low energy in low fre-
quencies, a sharp transition towards a peak frequen-
cy (corresponding to the average distance between
neighbor points), followed by a flat spectrum over
higher frequencies.

The spectral properties of blue noise are very im-
portant for rendering applications. In image sampling,
point sets with a “Poisson-disk” property, that is, a
large minimum separation between samples, are an
excellent choice [2], [3]. The blue noise spectrum of
such sets trades low-frequency aliasing for broad-
band noise, but avoids the excessive noise levels of
white noise. In light transport sampling [4], blue noise
properties present certain advantages for Monte Carlo
integration, as recently reported by Pilleboue et al. [5].

From the geometric point of view, the correspond-
ing point set for blue noise spectrum is “even but
not regular”. Evenness implies a uniform density of
points, with no noticeable clusters or holes (gaps) in
the point set since the presence of either suggests1
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1. While this is the common situation, it is not absolutely neces-
sary that clusters and holes imply low frequency energy (e.g. [6]).

low-frequency energy. Irregularity implies no notice-
able “harmony” between points, hence a flat high-
frequency spectrum (quickly decaying harmonics of
the primary peak). The presence of local clusters
is detected by a small minimum nearest neighbor
distance (dmin), also known as conflict radius (rf), or
Poisson-disk radius. The local presence of holes is
reflected in a large coverage radius (rc), which is the
largest distance between a location and the nearest
point. These measures are usually presented relative
to the measures of a triangular grid under the same
point density [7]. Finally, for an irregular point set,
equal area (capacity) of Voronoi cells implies global
evenness.

The classic approach in generating Poisson-disk
point sets is dart throwing, which was suggested by
Dippé and Wold [2] and Cook [8], and then greatly
improved thereafter [9], [10], [11], [12], [13], [14], [15],
[16], [17]. While perfectly isotropic, point sets obtained
by dart throwing are “noisy”, that is, they have large
holes and relatively small dmin, leading to relatively
narrow low-energy bands. To improve the Poisson-
disk radius, McCool and Fiume [18] proposed the
use of Lloyd’s algorithm [19] to “relax” the point
set towards a centroidal Voronoi tessellation (CVT). The
problem of CVT is that it is considerably regular:
energy is concentrated in a few harmonic frequencies,
which leads to aliasing. Over the last few years, many
optimization algorithms emerged as alternatives to
Lloyd’s method, and they offer various advantages;
these algorithms include Capacity Constrained Voronoi
Tessellations (CCVT) [20], Farthest Point Optimization
(FPO) [21], Capacity Constrained Delaunay Triangulation
(CCDT) [22], Kernel Density Model (KDM) [23], Blue
Noise through Optimal Transport (BNOT) [24], and S-
moothed Particle Hydrodynamics (SPH) [25].

While many blue noise algorithms exist, each algo-
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Fig. 1. Top: Results for blue noise sampling with
isotropic spectrum and stipple drawing using a density
function. Bottom: our algorithm is applied in surface
sampling and non-obtuse remeshing.

rithm has its shortcomings in terms of speed, memory
footprint, coding complexity, and control of sample
count, among others. To our best knowledge, no single
algorithm can be considered ideal for all purpos-
es. Moreover, the corresponding point set profiles
include trade-offs in their properties. For example,
FPO reaches the highest known Poisson-disk radius
(no clustering whatsoever) but it leaves holes; CCDT
eliminates holes but leaves clusters; and CCVT and
BNOT are more even but their Poisson-disk radii are
not high, and so on.

Furthermore, the optimization targets of existing
blue noise algorithms are quite limited; for instance,
they only consider capacity constraints or maximized
minimum distances. Thus, the set of possible spatial
constraints remains incompletely covered, and find-
ing new blue noise algorithms displaying improved
properties remains possible. One example of such
algorithm is presented in this paper.

1.1 Contributions
We describe a simple and intuitive algorithm, called
push-pull optimization (PPO), to enforce spatial con-
straints, including a prescribed conflict radius, a
prescribed coverage radius, and equal capacity of
Voronoi cells. Apart from offering a practical and effi-
cient blue noise algorithm, our method supplements
several important contributions to research on blue
noise:

1) In many spatial and spectral measures, e.g.
conflict radius, coverage radius, and effective
Nyquist frequency νeff [6], our algorithm sur-
passes the best outcomes of known algorithms;
hence pushing the limits of realizable blue noise.

2) Enriching the set of blue noise profiles is useful
in investigating the correlation between mea-

surable properties and the actual performance
of point sets [5]. Our method involves three
tunable parameters, leading to a large ensemble
of profiles; cf. a single parameter for each of [26],
[23], and [25].

3) When applied in surface remeshing, our ap-
proach can effectively remove obtuse triangles,
and exhibits significantly better minimum and
maximum angles (θmin, θmax) in remeshing.

2 RELATED WORK

We briefly review the most related literature, which
falls into two categories.

2.1 Blue-Noise Sampling

The irregularity of blue noise makes algorithmic gen-
eration of blue noise difficult, and this phenomenon
explains the large number of published methods for
such purpose [7], [27]. A common principle, however,
underlies most of these methods. They typically start
from a random point set (flat spectrum), and energy
is attenuated in low frequencies by posing one or
another local constraint that leads to some correlation
between the close neighborhoods of points. Such con-
straints vary between a minimum separation distance
between points (dart throwing [8], sample elimina-
tion [28]), regular distribution of neighbors (CVT [18]),
equal area of Voronoi or power cells [20], [24], [29],
[30], equal area of Delaunay triangles (CCDT [22]),
maximized separation between points (FPO [21]), or
maximized aspect ratio of Voronoi cells [31]. These
algorithms generate similar but not identical point
sets, leading to different blue noise profiles usually
named with acronyms (e.g. CCVT, FPO, or BNOT
profile).

Instead of posing explicit spatial constraints, some
algorithms employ a simulation that implies sim-
ilar constraints; e.g. electrostatic equilibrium be-
tween charged particles representing the points [26],
statistical-mechanical interaction between kernels rep-
resenting the points (KDM [23]), mechanical equilibri-
um between springs representing the edges between
adjacent points ( [32], DistMesh [33]), or interaction
of particles representing the points in fluid hydrody-
namics simulations (SPH [25]).

In addition to their correlation enforcement mech-
anism, blue noise algorithms also explicitly or im-
plicitly incorporate a randomization mechanism to
prevent this local correlation from creeping to larger
neighborhoods and manifesting as regular structures
in a point set, or as strong harmonics in its spectrum.

Recently, [6], [34], [35], [36], [37] proposed sampling
methods that allow for better spectral control of the
resulting blue noise distributions.
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2.2 Sampling-Based Remeshing
In this section, we briefly discuss the most relevant
isotropic surface remeshing approaches based on sam-
pling techniques. More details can be found in the
survey paper of Alliez et al. [38].

Owing to the good distribution of a blue noise
point set, a new high-quality mesh (e.g. angle bounds
or edge-length bounds) can be extracted from the
samples. Maximal Poisson-disk Sampling (MPS) has
been demonstrated to be able to generate high-quality
2D triangulations [39], [40], surface remeshing [16],
[17], [41], and 3D tetrahedral meshes [42]. A typical
drawback of such dart-throwing-based approaches is
that one cannot explicitly control the number of the
sampled points, which is possibly important in certain
applications.

Another well-known remeshing approach is based
on CVT [43]. To compute CVTs on mesh surfaces,
one needs to compute the Voronoi diagram on sur-
faces, called Restricted Voronoi Diagram (RVD). Early
methods either use parameterization [44] or discrete
clustering [45] to approximate the RVD. The quality
of the consequent remeshing results is not very high
because of distortion or inexact computation. Recent
works of Yan et al. [46], [47] improved remeshing
quality and efficiency by using exact computation of
RVDs and a quasi-Newton solver [48] to compute
CVTs.

Most remeshing approaches cannot generate mesh-
es without obtuse triangles. To our best knowledge,
Li and Zhang [49] were the first (within the context
of graphics resampling) to propose an algorithm that
can generate non-obtuse meshes; however, this algo-
rithm could not simultaneously eliminate small an-
gles. More recent works [41], [50] present non-obtuse
remeshing results by using either CVT or MPS. In this
paper, we show how a simple push-pull approach can
further improve remeshing quality compared with the
state-of-the-art approaches.

3 METHODOLOGY

In this section, we illustrate our core idea of gen-
erating blue-noise sampling sets, X = {xi}n

i=1, with
a desired number of points, n, in a given sampling
domain, D. We discuss our algorithm in the 2D
case, where D is a unit square, [0, 1)2, with periodic
boundary conditions; however, this concept can be
applied directly to higher dimensions. Subsequently,
we extend this idea into 3D mesh surfaces.

3.1 Formal Definitions
As presented in the introduction, the description of a
blue-noise pattern is reflected directly in three spatial
measures: a large conflict radius, a small coverage
radius, and an equal area (capacity) of Voronoi cells.
For a given point set, X, in a toroidal domain, D, these
measures are formally defined as follows:

Conflict Radius: The smallest distance between any
pair of points in X:

rf = min
xi ,xj∈X,i 6=j

dT(xi, xj) (1)

where dT is the toroidal distance between two loca-
tions.
Coverage Radius: The largest distance between any
location in D and the nearest point in X:

rc = max
y∈D,xi∈X

dT(y, xi) (2)

A set of disks with radius rc, centered at each xi, covers
the entire domain; hence the name “coverage radius”.
Technically, the coverage radius is the largest distance
from a point in the set to the farthest corner of its
Voronoi cell.
Capacity: Assuming we use the sample set X to
construct a Voronoi diagram in D, then the capacity
of a sample point is defined as the area of its corre-
sponding Voronoi cell, optionally weighted by an un-
derlying density function for non-uniform sampling.

It is worth noting that these three geometric con-
straints have been previously studied individually.
Among them, conflict radius was the first addressed
in literature [2], [8], and is equivalent to the popular
Poisson-disk criterion in dart-throwing algorithms.
Capacity optimization has been addressed more re-
cently [20], [24], [29], [51], and has become increas-
ingly adopted in creating high-quality blue noise sets.
Most recently, the need to improve coverage has been
highlighted in [31], although the algorithm presented
by the authors does not provide explicit control over
rc. To our knowledge, however, no method so far
considers enforcing these three constraints simultane-
ously.

3.2 Push-Pull Algorithm
We propose a novel algorithm that involves three
steps to achieve the prescribed target values of the
spatial measures defined above. All steps are based
on Delaunay triangulation, and its dual, the Voronoi
diagram.

Given that these three constraints are defined for
each sample xi, the underlying mechanism of our ap-
proach should be similar to other optimization algo-
rithms (e.g., Lloyd’s algorithm, CCVT, FPO), which al-
low each visited point to choose an optimal placement
for itself relative to its neighbors. However, point-
by-point2 capacity enforcement seems impractical by
moving the visited points [52]. Therefore, we propose
a different approach: a visited point repositions its
neighbors rather than itself. This “move neighbors”
technique turned out to make much of a difference: a
full iteration gives each point a turn to optimize its lo-
cal neighborhood, contributing to global optimization.

2. There are effective ways, though, for capacity enforcement over
the whole set [24], [29].
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Fig. 2. Schematic of the strategy applied in repositioning neighbor points to enforce conflict, coverage, and
capacity constraints.

Optimization 1: Enforcing a conflict radius rf

1 Initial sample set X with n points;
2 Construct Delaunay triangulation DT(X);
3 repeat
4 foreach xi ∈ X do
5 foreach neighbor sample xj of xi do
6 ~d = xj − xi;

7 if
∣∣∣~d∣∣∣ < rf then

8 shi f t = (rf −
∣∣∣~d∣∣∣)× ~d∣∣∣~d∣∣∣ ;

9 apply shift to xj: xj = xj + shi f t;

10 update DT(X);

11 until no more points are moved;

Thus, after visiting each point, a part of the domain
is optimized, allowing higher convergence speed than
that when the point itself is simply moved.

Therefore, the basic model is serial: in each iteration,
each sample is given a turn to optimize the placement
of its immediate neighbors. As Illustrated in Fig. 2,
these three spatial constraints are achievable through
the following steps.
Conflict Optimization: Conflict optimization is the
most straightforward action. For each visited sample,
xi, we iterate through its neighbors, {xj}, (i.e. the
incident vertices in the Delaunay triangulation). If xj
conflicts with xi (i.e. closer than the target rf), then
xj is pushed by an appropriate offset, (rf −

∣∣xj − xi
∣∣),

beyond the conflict distance. We call this operation a
“push”. Algorithm “Optimization 1” summarizes this
step.
Coverage Optimization: For each sample, xi, we iter-
ate through its incident facets, {tj}, in the Delaunay
triangulation. If the circumscribed radius, r, of a facet,
tj, is larger than the target rc, we pull the two other
end-points of tj to the appropriate offsets, obtained
by scaling the edges by a factor of rc/r. We call

Optimization 2: Enforcing a coverage radius rc

1 Initial sample set X with n points;
2 Construct Delaunay triangulation DT(X);
3 repeat
4 foreach xi ∈ X do
5 foreach incident triangular face tj of xi do
6 if tj is obtuse then
7 skip tj;
8 else if tj’ circumradius r > rc then
9 set c as the circumcenter of tj;

10 r = |c− xi|;
11 set scale = rc/r;
12 for other two end points xk of tj do
13 ~d = xi − xk;
14 shi f t = (1.0− scale)× ~d;
15 apply shift to xk: xk = xk + shi f t;

16

17 update DT(X);

18 until no more points are moved;

this operation a “pull”. This step is illustrated in
Algorithm “Optimization 2”.
Capacity Optimization: This process is slightly more
involved. For each sample, xi, the Voronoi cell is
modeled as if it contains a fluid that needs to expand
or shrink, by pushing or pulling neighbor cells, in
order to attain the optimum volume. The fluid exerts
equal pressure, p, on the cell boundary, hence the
force, f j, on each cell edge is proportional to its length,
lj:

f j = p× lj . (3)

However, the gained (or lost) volume in displacing
an edge is also proportional to its length, therefore
the overall gain is:

∆ = p ∑
j

l2
j . (4)

By setting ∆ to the required difference in cell volume,
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Optimization 3: Enforcing the capacity constraint

1 Initial sample set X with n points;
2 Construct Delaunay triangulation DT(X);
3 repeat
4 foreach xi ∈ X do
5 Set A equal to area of Voronoi cell of xi;
6 Compute the deviation from average area:

∆ = A− Ā;
7 if |∆| < ∆max then
8 skip xi;
9 else

10 foreach neighbor sample xj of xi do
11 set lj equal to length of the Voronoi

cell edge between xi and xj;

12 compute the pressure per unit length on
the edges: p = −∆/ ∑

j
l2
j ;

13 foreach neighbor sample xj of xi do
14 compute the shift direction vector

~d =
xj−xi

|xj−xi| ;
15 compute the force exerted on xj:

f = p× lj;
16 set shi f t = 2× f × ~d;
17 apply shift to xj: xj = xj + shi f t;

18 update DT(X);

19 until no more points are moved;

we obtain p, hence the required offset of each edge.
Finally, the offset of the respective neighbor samples
is set to twice the offset of the corresponding Voronoi
cell edges. Evidently, there are small errors in these
calculations, but the order of magnitude of errors is
lower than that of expansions or contractions, hence
the algorithm could converge. Although the process
can be run to numeric precision, in practice we may
wish to set a maximum tolerance, ∆max, in capacities.
This condition represents the parameter that controls
this step. The detailed computation process is given
in Algorithm “Optimization 3”.

It is worth noting that our “pressure” metaphor is
closely associated with the computation of weights
in [24] and the CapVT energy gradient in [29]. Liu
et al [53] also used a similar approach, but for a
completely different application. We do not claim any
performance optimality with respect to these capacity
enforcement methods, but our approach is simple,
intuitive, and can be applied iteratively to individual
points, making it fit within one framework along
with conflict and coverage optimization; as discussed
below.
Combination: Given that the above mentioned three
steps are based on the same data structure, they can
easily be mixed by optimizing each target in turn
for each visited point. The conflict and coverage con-

straints do not provide a mechanism for distributing
points evenly in a large point set. They work well
when starting from an already even distribution (e.g.
jittered grid), but tend to leave some energy in low
frequencies when starting from a random distribution.
Moreover, the capacity optimization enforces global
evenness thanks to the capacity constraint, but does
not offer control over the aspect ratios of the Voronoi
cells. It is therefore constructive to combine the three
steps and gain the advantages of all the three: high rf,
low rc , and even density.

3.3 Discussion

The described algorithm works well and converges
reasonably fast in practice; thus, it is reasonable to
ask why it works, and how it compares with other
methods. At first glance, the conflict optimization
step might seem similar to DistMesh [33], since it
is based on the edges between adjacent samples.
There is, however, a fundamental difference: our al-
gorithm only considers conflicting neighbors, whereas
DistMesh pushes on all neighbors. Thus, DistMesh
is equilibrium-based, whereas ours is collision-based,
and it is this collision nature (broken mesh) that
supplements the randomization mechanism in our
algorithm and reduces its tendency to create regular
structures.

Moreover, our approach seems to be the first work
to explicitly optimize coverage radius. It is worth
noting that the gap processing framework of Yan and
Wonka [16] supports conflict and coverage optimiza-
tion, and they actually mention coverage. However,
our algorithm replaces the substantial overheads for
tracking the gaps with a simple trial-and-error logic
that seems to be more efficient.

The fact that our conflict and coverage optimization
steps are based on collision, not equilibrium, differ-
entiates them from many optimization algorithms.
Rather, we find our underlying logic closer to dart
throwing: we remove conflicting neighbors and re-
insert them in conforming positions from the perspec-
tive of the tested sample. They might then conflict
with other samples, but these samples will subse-
quently have their chance to move to a conflict-free
region. The algorithm terminates when all samples are
in conforming positions to all others. If the target rf
and/or rc are not very tough, then there are many
possible conforming layouts for the samples, and our
algorithm iteratively attempts to find one of them.

Within existing blue noise algorithms, there are
many which try to enforce equal capacity of Voronoi
or power cells, but these algorithms usually follow
indirect approaches: discretizing the underlying s-
pace [20], imposing weights on samples [24], en-
forcing equal capacity to Delaunay triangles [22], or
reducing an energy function associated with capac-
ity [29]. The only direct (point-by-point) approach
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we are aware of is described by Balzer [52], using a
downhill algorithm to find optimal shifts to points,
but this algorithm is prohibitively slow. In contrast to
previous methods, our “move neighbors” approach
makes it possible to immediately and explicitly en-
force the constrained capacity of each visited sample
in a single step.

4 IMPLEMENTATION AND EXTENSIONS

In this section, we first provide further details on
implementation and then analyze the runtime com-
plexity of the proposed algorithm. We subsequently
describe two important extensions: adaptive sampling
and surface sampling. Finally, we apply the proposed
push-pull optimization to surface remeshing, and re-
sult showed a surprisingly high remeshing quality.
We demonstrate that non-obtuse remeshing can be
guaranteed by tuning the ratio between rc and rf.

4.1 Implementation Details

The input in our algorithm includes the desired num-
ber of samples, n, as well as the three user-specified
spatial constraints: a target conflict radius, rf, a target
coverage radius, rc, and a target maximum deviation
of the cell capacities, ∆max. To render these param-
eters independent of n, we set rf and rc relative to

rmax =
√
(2/
√

3 n), which is the largest attainable
conflict radius, obtained when the samples form a
hexagonal lattice [7], [21]. Thus, rf should be within
the [0, 1] range. In contrast, rc can be larger than 1, but
for a decent blue-noise quality it should stay below 1.
Finally, we scale cell capacities by n so that ∆max is
relative to 1, independent of n. We will analyze the
influence of these parameters in Sec. 5.1.

Starting from any point set, X, which contains n
samples (e.g. random distribution or jittered grid), our
algorithm iteratively optimizes the positions of the
samples by enforcing these three spatial constraints.
In each iteration, the algorithm proceeds by repeat-
edly visiting each point and performing the above
three optimization steps, so as to move its conflicting
neighbors to suitable positions. Here, a full iteration
indicates that each sample in X is visited once. The
optimization performed by one point might undo
the optimizations of the points visited earlier, but
these points would have another turn in the following
iterations. The algorithm converges when no sample
is further moved in one iteration. In our experiments,
the order for conflict, coverage, and capacity enforce-
ment does not seem to make a significant difference
on the performance or the resulting distribution. In
the supplementary material we provide a more de-
tailed discussion about the convergence behavior of
the algorithm.

To eliminate redundant processing we maintain a
list of “stable” points in each iteration, and skip them

in the following iteration. A point is stable if it did not
move in the last iteration, nor did any of its immedi-
ate neighbors. The algorithm starts slowly, where all
points are processed, and speeds up dramatically in
subsequent iterations.
Parallel Implementation: Instead of applying the
push/pull forces immediately, a parallel variant of the
algorithm is obtained by aggregating the forces acting
on each sample point. Notably, the optimizations are
then based on different elements of the Delaunay
triangulation: vertices for capacity, edges for conflict,
and faces for coverage. Our observation is that the
parallel algorithm demonstrates better qualities (less
regular point sets), and it is faster per iteration, but it
is slower overall (needs more iterations), and fails to
converge for some tough targets that are attainable by
the serial version. Thus, we will not further consider
the parallel algorithm in this paper.
Runtime Complexity: We now consider the runtime
complexity of each iteration. Similar to FPO [21], a
dynamic global Delaunay triangulation, DT(X), is
first constructed in our implementation. Then in each
optimization step, the triangulation is updated locally
by moving the points one at a time. On average,
the local update of DT(X) requires T1 = O(1) time.
For each visited sample, we have to move no more
than all its neighbors, so the runtime for visiting one
sample is T2 = O(g), where g is the average number
of neighbors of each point in the triangulation. As a
result, the runtime complexity for a full iteration is
T = n × T2 × T1 = O(ng). Since g = O(1) is true
for large classes of well-distributed point sets [21],
the overall runtime is linear in the number of points:
T = O(n). By contrast, the best time required for one
iteration in FPO is O(n log n).

4.2 Adaptive Sampling

Our algorithm can be modified to achieve adaptive
sampling by applying a density function, ρ(x), to the
sample properties. The density function can be de-
rived from the sizing function I(x) (such as the inten-
sity value of a a gray scale image) with ρ(x) ∝ I(x)−

1
n .

In adaptive sampling, the sample density changes
spatially according to ρ(x), which indicates the local
edge length. To generalize our algorithm to adaptive
sampling, we can use the warp method introduced
in [54] to map the non-uniform domain to a uniform
one. To obtain better results, however, we developed
our own exact algorithm for computing the weighted
distances (for conflict and coverage) and areas (for
capacity). First, we normalize the grayscale values so
that the average pixel value is 1, as suggested in [54].
Then, for any line segment, L, the weighted length is
computed as

|L|w = ∑
k

√
ρk (L ∩ Ak) , (5)
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where ρk is the (normalized) density of the kth pixel,
and Ak is the area covered by that pixel. Please note
that the density function applies to areas, and we take
its square root to scale distances, as discussed in [55].

Similarly, the weighted capacity of a polygon, Q, is
computed as

|Q|w = ∑
k

ρk (Q ∩ Ak) . (6)

We accelerate the computations by pre-computing the
accumulated pixel densities along the scan lines [56],
so that the processing time is linear (instead of
quadratic) in the width of polygons. Note that our
density mapping algorithm is different from [57]
which produces approximate values, and is more effi-
cient than [24], where individual pixels are assigned to
the polygonal power cells. The overall running times,
however, remain comparable to those in [24], since our
method requires many more iterations to converge.
We implemented our density mapping algorithm as
a generic density integrator, and we will provide the
code in the supplementary material.

Whereas applying the weighted metrics for conflict
and capacity is straightforward, the coverage opti-
mization may be problematic for some configurations,
because more than two points are involved in com-
puting the distances. We experimented with a few
alternatives (e.g. average density in triangles), and we
managed to obtain good results (see Fig. 6), but the
optimal weighting for coverage optimization is still
an open question.

4.3 Surface Sampling and Remeshing

We extend our method to surface sampling and
remeshing. Now the sampling domain, D, becomes
a curved surface, M = {F, V}, where M is a two-
manifold triangular mesh consisting of a set of ver-
tices, V, and triangle facets, F. The goal is to optimize
the locations of the samples on the surface and to ex-
tract a primal mesh from the optimized samples that
satisfies certain properties. For non-uniform remesh-
ing, the sizing function I(x) is typically defined by
the local feature size [58], which is a popular choice
in the literature.

We use the exact Restricted Voronoi Diagram (RVD)
and Restricted Delaunay Triangulation (RDT) [46] as
basic data structures to sample various surfaces, as
used in many studies [16], [17], [59]. Similar to the 2D
case, we iteratively visit each sample and optimize its
neighbors, wherein we constrain the samples to move
only on the input surface. When moving one sample,
we also update the RVD and RDT locally. It has
been demonstrated that the runtime of one movement
is O(1) [59]. Therefore the time required for one
iteration is still O(n). Fig. 3 shows the remeshing
results and spectral properties of both uniform and
adaptive blue-noise sampling on a mesh surface.

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20
0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250
−20

−15

−10

−5

0

5

10

15

20

Fig. 3. Surface samplings of a cow model, with uni-
form (top, 4500 samples) and adaptive (bottom, 6000
samples) point distributions. On the right we show
the respective plots of differential domain analysis (D-
DA) [54].

Once we have obtained a well distributed point
set, we are ready to extract the high-quality mesh
from the samples by applying the mesh extraction
algorithm presented in [46] to compute the remeshing.
It is easy to understand that the conflict radius rf
bounds the shortest edge length in the remeshing. The
coverage radius rc bounds the largest empty Delaunay
circumcircle. The works of [31], [60] utilize the Central
Angle Theorem to analyze the mathematical relation
between the angle and the ratio β = rc/rf. They
provide a formal theoretical proof that one can always
get a non-obtuse remeshing if β < 1/

√
2 ≈ 0.71.

In Sec. 5.3, we provide evidence for this observation
using various input surfaces with arbitrary topologies.

5 EXPERIMENTAL RESULTS

This section presents a series of experimental results
that demonstrate the effectiveness and validity of
the proposed algorithm. First, we compare the main
characteristics of our sampler with those of other blue
noise sampling patterns. We then present spectral
analysis and zone plate plots to demonstrate the
performance of our optimized point sets for anti-
aliasing. Finally, we study the performance of surface
remeshing by comparing to state-of-the-art remeshing
techniques with respect to the meshing quality. Our
algorithm is implemented in C++. We use the CGAL
library [61] for computing the Delaunay triangulation.
All the results presented in this paper are obtained on
a PC with Intel i7-3770, 3.40 GHz CPU, 16GB memory,
and a 64-bit Windows 7 operating system.

5.1 Sampling Evaluation
In the following, we present several characteristics of
our resulting point sets, and we discuss the influence
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Method dmin davg rc β νeff Ω BOO

Random 0.023 0.465 1.635 71.420 0.0 0.074 0.363

MPS [15] 0.780 0.821 0.781 1.0 0.655 2.168 0.388

BNOT [24] 0.738 0.872 0.744 1.008 0.855 1.994 0.427

CVT [19] 0.805 0.941 0.657 0.817 0.950 4.733 0.842

CCVT [20] 0.711 0.856 0.782 1.10 0.830 1.774 0.403

CapCVT [29] 0.755 0.895 0.772 1.022 0.905 2.957 0.661

KDM [23] 0.645 0.868 0.746 1.157 0.870 2.223 0.451

FPO [21] 0.925 0.933 0.869 0.939 0.900 4.628 0.428

Push-pull-1 0.800 0.847 0.630 0.787 0.860 1.894 0.487

Push-pull-2 0.900 0.905 0.650 0.722 0.895 3.180 0.499

Push-pull-3 0.920 0.922 0.620 0.674 0.920 3.718 0.597

TABLE 1
Comparison of the main characteristics of different
blue noise sampling patterns. Here dmin(= rf) and
davg are the minimal and average nearest-neighbor

distance, β = rc/rf is the aspect ratio of Voronoi
cells [31], νeff is the effective Nyquist frequency [6], Ω

is the radial-power oscillation [6], BOO is the bond
orientation order [6].

of the target parameters on performance and conver-
gence behavior.

Table 1 summarizes the mostly used measures in
the blue noise literature, and we thorough compare
them with the state-of-the-art sampling patterns. We
use Push-pull-{1, 2, 3} as our samplers with different
parameters, which will be explained later.

The first two columns, dmin and davg, show the
minimal and average nearest-neighbor distance [21].
They also roughly measure how uniformly distributed
the points are: a high dmin indicates that points do
not cluster anywhere, and a high davg means that
the points are evenly spaced. dmin also seems to be
correlated with regularity, but their relationship is
not linear. It was previously speculated that pushing
dmin beyond 0.85 would introduce regular config-
urations [7], but Schlömer et al. [21] subsequently
introduced FPO, which reaches dmin ≈ 0.93 with
regularity-free point sets; and the authors suspected
the possibility of reaching even higher dmin without
introducing regular structures. Our algorithm can
reach dmin > 0.96, but regular structures are observed
for dmin > 0.93; agreeing with their assumption. It is
worth noting that dmin ≈ 0.93 is coincident with dmin
of a regular grid.

Heck et al. [6] have established two targets for a
blue-noise point set used in sampling: high effective
Nyquist frequency νeff (a wide low-energy band) to
reduce noise, and low oscillation Ω in the spectrum
at higher frequencies to reduce aliasing. An ideal
blue noise should have high νeff with low Ω, but
unfortunately high νeff tends to come with high Ω. It
is evident, and understandable, that dmin is positively
correlated with νeff; but once again the relation is not
linear. Unfortunately, dmin seems also to correlate with

Ω. Thus, even though FPO reaches a much higher dmin
than all other blue noise methods, it achieves only a
small increase in νeff, and at the cost of much stronger
oscillation. Since increasing dmin was the only known
way to increase νeff, there was no way to increase
νeff without increasing Ω. In contrast, besides directly
controlling dmin, our method offers another handle
to increase νeff through reducing rc. Thus, unlike the
single combinations for classic methods, or the single
curve for [25], our method can achieve a larger set
of combinations of νeff and Ω (see the analysis in the
supplementary materials).

Ebeida et al. [31] have considered the contribution
of coverage to the quality of point sets, and offered
an algorithm to improve coverage; however, their
algorithm optimizes the ratio β = rc/rf, rather than
handling rc and rf individually. While they observed
that their algorithm “starts to lose blue noise between
β = 0.75 and β = 0.7”, our method could reach β as
low as 0.67 while maintaining blue noise properties,
thanks to our dual-parameter configurations.

To quantify irregularity, we compute the bond-
orientational order (BOO) [62] in the last column,
which measures the similarity of a point distribution
to a hexagonal arrangement. A value of 1 means
a perfect hexagonal grid. In general, BOO < 0.6
indicates a point set to be irregular. From this table,
we can see that except the CVT method, other blue
noise point sets are irregular in this sense.
Parameter Selection: In summary, three main pa-
rameters are used in our approach. A wide range
of combinations of parameters are attainable. For
capacity optimization, by setting the capacity devi-
ation tolerance ∆max = 0 the capacity constraint
can be enforced up to numerical precision, but we
found that this is not needed in practice. Instead,
we set ∆max ≈ 3.86× 10−2, which is the typical value
achieved by CCVT [63]. If not explicitly specified, we
use this default setting in our results.

Thus, we only need to tune rf and rc. To il-
lustrate the influence of these two parameters, we
provide a detailed “datasheet” in the supplemen-
tary materials. In Table 1, Push-pull-1 represents
the sampler with {rf = 0.80, rc = 0.63}, Push-pull-
2 with {rf = 0.90, rc = 0.65}, and Push-pull-3 with
{rf = 0.92, rc = 0.62}, respectively.
Performance and Convergence: We now evaluate
the performance and convergence behavior of our
algorithm. Fig. 4(a) compares the running time of our
algorithm to previous methods, using a varying num-
ber of sample points. In this example, we use a mod-
erate parameter configuration {rf = 0.85, rc = 0.67}.
We see that although our algorithm is slower than
MPS [15], we are faster than all the other iterative-
based optimization methods. Compared to MPS, we
have better sampling quality in many spectral and
spatial measures, as shown in Table 1.

Fig. 4(b) analyzes our convergence speed with d-
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Fig. 4. Performance and convergence analysis. (a) Running time (in log scale) dependency on the number of
points. (b) Convergence curves of our method with different parameter configurations. (c) Convergence curves
of our method with the same parameters, but using different initialization methods.

ifferent parameter selections. We compute the ratio
of stable samples in relation to the number of it-
erations. Both increasing rf and reducing rc needs
more iterations to converge. Even though we have
no theoretical proof of convergence, we found, ac-
cording to our extensive testing, that our combined
algorithm converges reasonably fast for all combina-
tions of rf <= 0.9 and rc >= 0.65, for any ∆max,
leading to superior blue-noise quality. If one of these
thresholds is not satisfied, then the convergence will
highly depend on the capacity deviation tolerance,
∆max. The further we are away from these thresholds,
the higher the ∆max needed for the algorithm to
converge. This also considerably increases the num-
ber of iterations needed for convergence. Empirically,
when {rf > 0.92, rc < 0.61}, the presented algorithm
will hardly converge for any ∆max. Please refer to the
supplementary materials for a detailed convergence
analysis of the algorithm.

We are also aware that different initializations of the
samples have different influence on the convergence
speed, as illustrated in Fig. 4(c). Intuitively, the more
even the initial distribution of samples, the faster the
convergence speed will be.

5.2 Spectral and Anti-Aliasing Analysis
To further verify the ability of our algorithm to tune
the trade-off between noise and aliasing, we con-
ducted a spectral and anti-aliasing analysis. Fig. 5
shows the power spectra and zone plate plots of point
sets obtained with several sets of parameter config-
urations. The zone plate test reconstructs a function
(x, y) 7−→ sin(x2 + y2) using a single sample per
pixel and a Mitchell reconstruction filter [64]. Since it
shows the response for a wide range of frequencies,
it represents a powerful tool for assessing the aliasing
defects of sampling patterns.

First, the power spectra indicate that by varying
the parameters, our algorithm could achieve a series
of high-quality spectral profiles, which are very sim-
ilar to the state of the art, ranging from BNOT to

FPO. This also shows our potential ability to generate
controllable blue noise profiles. Furthermore, we can
observe that increasing rf can effectively reduce the
low-frequency noise, but at the cost of introducing
structured aliasing. Fortunately, reducing rc gives us
another chance to reduce noise without adding too
much aliasing, as shown in the left part of Fig. 5.
Hence, we can easily control the trade-off between
noise and aliasing by tuning the optimization param-
eters, yielding images that are of low noise and free
of coherent aliasing.

BNOT Our

Kernel Density Our

Fig. 6. Comparison of image stippling with the result
of state-of-the-art BNOT [24] and KDM [23]. Lena (top)
used 10000 points, Mario (bottom) used 8500 points.

Image Stippling: Our adaptive sampling algorithm
can be applied to generate non-photorealistic stip-
pling. Fig. 6 shows two examples of stipple drawings
from given gray scale images. The density function
is defined based on the intensity values of the input
images. By comparing with the results of state-of-
the-art work, we demonstrate that our method can
produce high-quality and visually pleasing blue-noise
point distributions.
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Fig. 5. Spectral and anti-aliasing analysis of the point sets obtained with different parameter configurations. From
top to bottom: point sets with 1024 points, zone plate test function sampled by 5122 points, power spectrum,
radial means and anisotropy. The left three columns show the influence of reducing parameter rc, the right three
columns show the influence of increasing parameter rf.

5.3 Surface Remeshing

Next, we extract new meshes from our surface sam-
ples and compare their quality with that obtained
using other remeshing techniques, including Max-
imal Poisson-disk Sampling (MPS) [16] [17], Farthest
Point Optimization (FPO) [59], Capacity Constrained
CVT (CapCVT) [29]. More recently, there are two
excellent works which can remove obtuse angles,
either by tuning the spatial density of disks in MPS
(DiskTuning) [41], or penalizing short Voronoi edges
in CVT (CVTnob) [50]. Table 2 lists the numerical statis-
tics of the remeshing quality compared to previous
methods. The comparison contains various standard
mesh quality metrics that are used in recent remehsing
papers. The quality of a triangle is measured by

Q(t) = 6√
3

St
ptht

, where St is the area of t, pt is the
half-perimeter of t and ht is the longest edge length of
t [65]. Here Qmin and Qavg is the minimal and average
triangle quality; θmin and θmax are the minimal and
maximal angle, and θ̄min is the average of the minimal
angles of all triangles; θ<30o % is the percentage of
triangles with angles smaller than 30o; θ>90o % is the
percentage of obtuse triangles; V567 is the percent
of vertices with valences 5, 6 and 7; dRMS is the
root mean square distance, and dH is the Hausdorff
distance between input surface and remeshing result,
measured with the Metro tool [66]. Fig. 7 shows
some selected remeshing results; please refer to the
supplementary materials for more comparison results.

We use the parameters {rf = 0.90, rc = 0.63}, where



JOURNAL 11

Model Method |X| |t| |tobt| Qmin Qavg θmin θ̄min θmax θ<30o % θ>90o % V567% dRMS(× 10−3) dH(×10−2)

Fertility

MPS 8.5K 17K 2.6K 0.50 0.81 30.26 45.26 116.0 0 15.1 96.4 0.48 0.41
FPO 8.5K 17K 1.0K 0.52 0.86 32.8 50.8 113.6 0 6.16 99.5 0.98 0.33

CapCVT 8.5K 17K 508 0.52 0.88 30.02 51.3 113.5 0 2.98 99.8 0.42 0.28
CVTnob 8.5K 17K 0 0.77 0.94 40.4 54.8 83.4 0 0 100 0.98 0.34

DiskTuning 7.7K 15.5K 0 0.64 0.82 30.1 45.7 90.0 0 0 97.8 0.55 0.37
Our 8.5K 17K 0 0.74 0.87 46.3 51.1 87.5 0 0 100 0.29 0.31

Moai

MPS 12K 24K 3.6K 0.47 0.81 30.4 45.3 118.8 0 14.8 96.1 0.91 0.54
FPO 11K 22K 1.4K 0.54 0.86 32.6 50.9 110.3 0 6.08 99.5 0.56 0.51

CapCVT 11K 2.2K 2.3K 0.48 0.82 21.1 46.4 118.5 0.65 10.4 99.4 0.55 best0.45
CVTnob 11K 22K 0 0.68 0.95 32.4 55.8 85.2 0 0 100 0.88 0.51

DiskTuning 11K 22K 3 0.64 0.82 30.1 45.6 90.0 0 0.01 97.8 0.95 0.60
Our 11K 22K 0 0.74 0.87 45.6 51.1 87.7 0 0 99.9 0.43 0.46

Homer

MPS 7.5K 15K 1.6K 0.56 0.82 30.1 46.4 105.8 0 10.8 99.8 0.61 0.28
FPO 7.7K 15.6K 1.2K 0.49 0.85 31.0 49.6 117.5 0 7.99 99.2 0.45 0.30

CapCVT 7,5K 15K 1.6K 0.37 0.83 21.3 46.2 131.1 0.98 10.66 95.8 0.42 0.20
CVTnob 7.5K 15K 0 0.69 0.94 33.7 54.5 85.4 0 0 100 0.36 0.17

DiskTuning 3.8K 7.8K 1 0.51 0.82 21.3 45.0 90 1.64 0.01 97.3 1.21 0.57
Our 7.5K 15K 0 0.68 0.90 34.4 51.8 89.5 0 0 100 0.40 0.23

Bunny

MPS 7.8K 15.4K 755 0.62 0.83 32.0 47.4 97.9 0 4.89 99.8 0.77 0.46
FPO 8.0K 16K 1.6K 0.50 0.84 30.0 48.6 116.3 0 9.92 98.0 0.81 0.42

CapCVT 8.0K 16K 1.4K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.71 0.24
CVTnob 8.0K 16K 0 0.72 0.94 36.3 54.4 89.4 0 0 100 0.94 0.35

DiskTuning 5.8K 12K 0 0.50 0.82 19.89 45.2 90.0 0.88 0 97.8 1.55 0.52
Our 8.0K 16K 0 0.71 0.87 37.1 51.1 89.5 0 0 99.8 0.44 0.52

Kitten

MPS 7.9K 15.8K 2.4K 0.42 0.81 25.3 45.3 125.4 0.29 15.3 96.0 0.78 0.96
FPO 9.5K 19K 1.3K 0.53 0.85 32.0 50.0 111.6 0 6.89 99.4 0.53 0.29

CapCVT 9.8K 19.6K 1.4K 0.39 0.84 15.6 47.3 125.1 1.04 8.46 98.7 0.29 0.21
CVTnob 9.8K 19.6K 0 0.71 0.95 33.6 55.3 87.1 0 0 100 0.27 0.20

Our 9.8K 19.6K 0 0.71 0.90 37.3 52.1 88.9 0 0 100 0.26 0.27

TABLE 2
Comparison of remeshing quality with previous techniques. We compare the uniform remeshing on the Fertility
and Moai models, and adaptive remeshing on some other three models. The best result of each measurement
is marked in bold font. |X| is the number of vertices; |t| is the number of triangles; |tobt| is the number of obtuse

triangles. The other measurements are explained in Sec 5.3.

β = 0.7, to achieve excellent surface sampling in
all the remeshing results. Table 2 suggests that our
approach can effectively remove obtuse angles and ex-
hibits significantly better triangle and angle qualities
than the methods with blue-noise profiles. Compared
with CVTnob, our algorithm is still competitive and
has similar qualities. Further, Fig. 7 demonstrates
that the distribution of vertices of our meshing is
more irregular than CVTnob, which are preferred for
many simulation applications [39], such as fracture
simulations [67] and fluid simulation [68].

5.4 Limitations
In the current optimization framework, we haven’t
considered boundaries or sharp features of the input
domains. One possible solution is that we explicitly
project nearby samples onto features after each iter-
ation, or adapt other techniques proposed by [69],
[70], but the convergence behavior should be studied
carefully. We hope to address this issue in future
works.

6 CONCLUSION AND FUTURE WORK

We presented an iterative blue-noise optimization
method by directly enforcing spatial constraints on

a given point set. Three optimization steps are pro-
posed, and they are able to generate a variety of
blue noise profiles that can be used in different ap-
plications, such as rendering, adaptive sampling, sur-
face remeshing, etc. We demonstrate that our method
outperforms state-of-the-art blue noise algorithms in
terms of speed and many other spectral and spatial
measures.

The proposed method was originally conceived for
optimizing AA-Patterns [37] and tile-based samplers
(e.g. Polyhexes [36]), where indexed points are po-
tentially required to fit well into more than one con-
text. The “move-your-neighbors” approach proved
especially useful in these cases. The method was
developed thereafter into a simple and intuitive, yet
competitive, general-purpose blue noise optimizer.
The algorithm also proved effective and efficient for
generating stratified blue noise point sets, as required
in the recent work of Ahmed et al. [71].

Although our algorithm could generate sample pat-
terns similar to various other blue noise methods,
our current implementation cannot generate point
samples that exactly match a target spectral profile,
especially on surfaces.

In the future, we would like to extend our optimiza-
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[Input] [CVTnob][FPO] [DiskTuning] [Push-pull]

Fig. 7. Quality comparison of remeshing with representative algorithms. From left to right: input meshes, results
of FPO [59], DiskTuning [41], CVTnob [50] and our Push-pull method. The obtuse triangles are shown in pink,
and triangles with θmin < 30 are shown in blue.

tion algorithm to generate three dimensional blue-
noise sets, as well as high-quality tetrahedral meshes.
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