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Abstract Point distributions with different

characteristics have a crucial influence on graphic

applications. Various analysis tools mainly for

blue noise sampling in Euclidean domains have

been developed in recent years. In this paper, we

present a new method to analyze the properties of

general sampling patterns that are distributed on

mesh surfaces. The core idea is to generalize the pair

correlation function (PCF) to surfaces because the PCF

has been successfully employed in sampling pattern

analysis and syntheses in 2D and 3D. Experimental

results demonstrate that the proposed approach can

reveal the correlations of point sets generated by a

wide range of sampling algorithms. An acceleration

technique is also suggested to improve the performance

of the PCF.

Keywords Point distribution, Spectral analysis, Pair

correlation function, Mesh surface.

1 Introduction

Sampling is a fundamental research topic in computer

graphics, and it has a variety of applications.

Sampled point sets with specific properties are often

suitable for specific applications. For example, the

well-known blue noise sampling is usually used in

non-photorealistic rendering [17], stippling [10], and

object distribution [8]; while white noise sampling is

preferred in random number generators [24]; and pink

noise is used for physical simulation and biological
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distributions [18].

Several analysis tools have been proposed to evaluate

the sampling properties. Some tools are performed

in the spatial domain; an example is the relative

radius [13], which is the normalized minimum spacing

between pairs of samples. Another important tool

is spectral evaluation either via the power spectrum

analysis determined by Fourier transform [13, 20, 25]

or via the differential domain analysis (DDA) [26].

As these tools are limited to blue noise sampling,

they cannot characterize the distributions with complex

sample patterns, including those that exist in many

nature phenomena. Recently, Öztireli and Gross [19]

proposed the use of the pair correlation function (PCF)

to achieve a general analysis in 2D or 3D Euclidean

spaces. However, the application of this approach in

surface sampling remains unclear.

In this paper, we present a new method for analyzing

surface sampling patterns using the PCF. The proposed

approach is an extension of the original approach

presented in [19]. The main contributions of this work

include the following:

• A new approach is proposed to measure sampling

properties on surfaces.

• Instead of utiziling the global PCF, the PCF

method [19] is accelerated by using a localized

version based on the smoothness of the Gaussian

function.

• A complete comparison of recent (blue noise)

sampling techniques on surfaces is performed.

2 Related work

This work is mostly related to surface sampling and

pattern analysis. This section briefly reviews recent

approaches in these two aspects.

2.1 Sampling

In probabilistic theory, point processes are well-

studied objects, and they are powerful modeling and
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analysis tools for spatial data. Point processes have

been extensively researched in many disciplines, such as

astronomy, chemistry, geography, and physics. A point

process is a type of random process, and a particular

sampling set can be regarded as a realization of such

process, e.g., Poisson sampling as the realization of

the Poisson process. The PCF or radial distribution

function, which is a measure of the probability of

finding a point at a specific distance away from a given

reference point, is sufficient to describe the diverse

properties of point distribution from the statistical

perspective, and this measure can be used to define

new analysis tools of general sampling in computer

graphics [19].

Although sampling has been extensively studied in

computer graphics [6, 15–17], focus is generally directed

toward blue noise sampling; blue noise is a type of

noise with minimal low frequency components and no

concentrated spikes in energy. Blue noise sampling

tends to generate sample patterns in which the points

are randomly distributed at a minimum distance from

one another. In this section, we only discuss a number

of surface sampling algorithms. An extensive survey

of blue noise sampling techniques was presented by

Lagae and Dutré [13], and Yan et al. [30]. The classic

dart-throwing algorithm was first generalized to mesh

surfaces by Cline et al. [5]. Yan and Wonka [32] recently

presented maximal Poisson-disk sampling (MPS) on

surfaces based on the empty region analysis. Guo

et al. [11] then improved the sampling quality and

efficiency of MPS by using a hierarchical subdivision

based approach. Iterative relaxation is another

important technique for generating high-quality point

distributions. Xu et al. [28] generalized the CCVT [2]

to surfaces with potential regularity artifacts. Chen

et al. [4] combined the centroidal Voronoi tessellation

(CVT) [31] and CCVT for surface blue noise sampling;

such combination can significantly reduce regularity

artifacts by introducing the CapCVT energy. Zhang

et al. [34] generalize the optimal transport based

blue-noise sampling approach [7] to mesh surfaces.

Farthest point sampling based on geodesic distance was

demonstrated in [14]. In [29], the quality of blue noise

sampling was further improved by extending farthest

point optimization (FPO) [15, 21] to surfaces.

2.2 Sampling Pattern Analysis

Spatial statistics is a valid measure to analyze the

spatial distribution properties of samples. Shirley [22]

introduced a discrepancy to measure the quality of

samples, with a small discrepancy value introduced

for very equidistributed sample sets and a large

discrepancy value introduced for poorly distributed

sets. Liu et al. [14] defined a measure related to

the coefficient of variation. This measure can stably

analyze different point patterns on triangulated two-

manifold meshes on the basis of the Voronoi diagram

computed using geodesic distance. Another prevalent

statistics is the relative radius, that is, the normalized

minimum spacing between pairs of samples [13], which

is used to analyze the spatial uniformity of Poisson

disk distributions. However, this measure is only

applicable in a uniform Euclidean domain. Thus,

Wei and Wang [26] further extended this measure to

non-uniform domains. From the perspective of point

processes, Öztireli and Gross [19] defined a new analysis

tool based on the PCF which measures the probability

of finding a point at a specific distance away from a

given point. They demonstrated that the PCF can

be employed to analyze and synthesize general point

distributions. However, this approach is applicable

only in Euclidean domain sampling. In the present

work, we generalize this approach to uniform and

adaptive surface sampling. Other spatial measures are

often used in recent meshing/re-meshing studies; these

measures include the triangle qualities, the minimum

and histogram of triangle angles, and so on [32].

Spectral analysis is another standard evaluation

method that is effective in detecting sampling artifacts.

Power spectrum was introduced by Ulichney [25] to

study dither patterns and then used by Lagae et

al. [13] to compare different Poisson-disk sampling

methods. The power spectrum, radially averaged power

spectrum, and anisotropy help to reveal point-to-point

correlations. Schlömer et al. [20] investigated accuracy

issues by computing Fourier transform analytically.

Heck et al. [12] emphasized the shape of the power

spectrum and synthesized two new types of blue noise

patterns. Subr et al. [23] proposed to analyze the

quality of samples in image synthesis by utilizing the

amplitude and variance of the sampling spectrum.

However, these approaches can handle only Euclidean

domain sampling. Bowers et al. [3] was the first to

propose a method for analyzing the spectral quality

of surface samples, but this method can only be used

for uniform sampling and analysis of a few hundred

samples because of the limit of numerical computation.

Recently, Wei and Wang [26] introduced the DDA to

extend the standard Fourier analysis to non-uniform

samples on surfaces. They replaced the cosine kernel

in the definition of the Fourier power spectrum with a

Gaussian kernel with the aid of the so-called pairwise
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sample location differentials.

Our proposed method analyzes the sampling

processes from the statistical perspective, whereas the

DDA from the spectral perspective. Although the DDA

and PCF are mutual complementary, and can provide

the statistical and spectral properties of sampling

pattern, there are still some difference between them.

For example, the Irregularity of PCF can give the

regularity degree of sampling, but the DDA cannot

give this measure. Furthermore, the first peak of PCF

has its physical meaning, namely, the average relative

radius defined in [13], which cannot be obtained from

DDA directly. We will give their comparison in detail

in Sec. 5.

3 Pair Correlation Function

This section briefly reviews the PCF defined in the

Euclidean domain. A localized version of the PCF

based on the smoothness of the Gaussian kernel is then

proposed. The localized PCF is generalized to analyze

adaptive samplings.

Definition: In contrast to that in traditional

spectral analysis, the PCF is directly measured

according to the spatial distance distribution of points.

Specifically, it describes the joint probability of points

existing at specific locations and can thus reflect the

uniformity and irregularity (or randomness) of a point

distribution.

The PCF can be used in arbitrary dimensional

Euclidean space. Without loss of generality, we give

its definition in a 2D case. Given a sampling point

set X = {xi}n and a sampling domain V , we denote

d(xi,xj) as the Euclidean distance between points xi
and xj , and |V | as the volume of the sampling domain.

The estimator of the PCF is then defined as:

Ĝi(r) =
|V |

2πrn

∑
j 6=i

kσ(r − d(xi,xj)),

Ĝ(r) =
1

n

∑
i

Ĝi(r),

(1)

where kσ(x) = 1√
πσ
e−x

2/σ2

is the Gaussian kernel.

For Poisson sampling, each point is stochastically

independent of all other points; hence, Ĝ(r) = 1.

The space where the discretization of Ĝi(r) (e.g., Eq.

(4)) lives is called the pair correlation space (PCS). The

PCS is a rigid motion invariant because it only relies

on the spatial distance distribution of points. Different

point sets can be mapped into the same space with the

same discretization for r, and the properties of the point

sets can be examined by analyzing the distribution of

these discrete vectors (i.e., the discretization of Ĝi(r)

with respect to r). For a given radius r = rk, the

estimator of Ĝ(rk) can be obtained by calculating the

mean of Ĝi(rk)(i = 1, . . . , n).

In accordance with the observation that considerable

regularity in point distributions leads to little variance

in the PCS, the irregularity of point distribution can be

measured by the variance of Ĝi(rk) for a given radius

r = rk. Irregularity describes the irregularity degree

of distance distribution of point sets. If points have

almost the same neighbor point distribution, e.g., the

point set of a regular grid, then the irregularity is small.

By contrast, a random point set where each point has

a different neighbor point distribution leads to large

irregularity.

3.1 Localized PCF

The original approach [19] estimates the PCF using

all pairwise distances of a point set; thus, the time

complexity is O(N2), where N is the number of

sampling points. The time cost increases dramatically

when the number of samples increases. This section

proposes a localized version of the PCF to improve its

performance.

The localized version is Ĝi(r) = |V |
2πrM

∑M
j=1 kσ(r −

d(xi,xj)). This extension is reasonable because of the

smoothness of the Gauissan kernel. Intuitively, the

Gaussian function introduces the weight properties into

the PCF analysis. The distance d(xi,xj) carries a large

weight if it is close to r; otherwise, it carries a relatively

low weight. Hence, a specific range of pairwise distances

is used, i.e., the weight of d(xi,xj), which is far from

r, is set as zero. In practice, the k-ring neighborhood

is employed to replace all pairwise distances. The time

complexity of this improved version is O(MN), where

M is the average number of points within the k-ring

neighborhood of each sample point. In general, M is

much smaller than N (N � M). In the most recent

sampling approaches, point pairs over long distances

tend to be uncorrelated; hence, the localized PCF can

sufficiently capture the characteristics of these sampling

patterns.

To verify the validity of our new method, we compare

the global PCF with our localized version and present

the result in Fig. 1. We generate a set of 3,000

uniformly sampled points with the FPO method [21] as

an example. When k is small, the statistical pairwise

distance information of one point is limited. Then,

we can obtain the result of r with a limited range.

Interestingly, we can also capture the main peak of

the PCF when k = 1. Along with the increase in k,

the range of r widens. We numerically calculate the
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Fig. 1 Analysis of PCF with different local neighborhood sizes. From left to right: k = 1, 3, 5, 6, 10, global. We use the uniform

FPO method [21]. The number of samples is 3,000. σ = 0.25.

difference between the localized PCF and the global one

in terms of the square deviation. The results are 1.7680,

0.1288, 0.0355, 0.030, and 0.015. When k ≥ 6, the

results are almost same in both visual and numerical

terms.

3.2 Adaptive Sampling

If an importance function f(p) is defined in an

n-dimensional sample domain, then the sampling

becomes adaptive. The difference between uniform and

adaptive sampling is that adaptive sampling introduces

a weight for each point, i.e., each sample point is

equipped with a weight S = {pi, wi}Ni=1. The weight

w(p) of each point can be derived from the importance

function f(p) with w(p) ∝ f(p)−
1
n .

In adaptive sampling analysis, defining a valid

distance measure is an important issue. To generalize

the PCF analysis method to adaptive sampling, the

warp method introduced in [26] is utilized in mapping

the non-uniform domain to a uniform one. The

sampling points carry a large weight at flat regions

in the domain and a low weight at highly-curved

regions. The transformation function given in Eq.(2) is

employed to approximate the uniform distance between

two samples.

dij =
2 ∗ E(w)

wi + wj
‖pi − pj‖, (2)

where wi and wj are the weight of points pi and pj ,

respectively. E(w) is the mean weight of all points.

Furthermore, E(w) scales the pairwise distance but

does not affect the shape of the PCF and Irregularity.

Fig. 2 shows an example of an analysis of 2D sampling

patterns using the proposed approach. As shown in

the figure, the uniform and adaptive cases share the

same consistent appearance in terms of the PCF and

irregularity except the case of a small σ. The PCF is

the probability density function of pairwise distances

using kernel density estimation. Scale factor σ decides

the local estimation neighborhood size and thus plays

an important role in this estimator. However, this

hyper-parameter is difficult to estimate and is usually

obtained through some experiments. In Fig. 2, we

compare the effects of different σ on the results.

Small or large σ values lead to inaccurate estimation.

Specifically, a large σ indicates a Poisson sampling

pattern, i.e., the PCF is flat and equal to 1.

4 PCF on Surfaces

In this section, we propose a new approach for

analyzing sampling patterns on surfaces on the basis

of the localized PCF. The inputs are a two-manifold

domain Ω (represented by a triangular mesh) and the

corresponding sampled point sets S = {pi}Ni=1. The

PCF on surface can be defined as:

g(r) =
|V |

4πr2MN

N∑
i=1

M∑
j=1

kσ(r − dij), (3)

where M is the local neighborhood size (i.e., the

number of points within the k-ring neighborhood of one

sample point), |V | is the superficial area of the model,

and dij is the distance between points pi and pj . Note

that the concept of the PCF could be generalised to

arbitrary manifolds with a metric. However, we will

focus only on the surface in this paper.

The most intuitive choice of distance metric

on surfaces is geodesic distance. However, the

computation of geodesic distance is still time consuming

even with hardware acceleration. In many applications

in which the number of sampling points increases

relative to the surface curvature, the Euclidean

metric becomes a suitable approximation of the

geodesic distance [9] in a local neighborhood. This

approximation is validated in Sec. 5 by comparing
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Fig. 2 Analysis of the 2D uniform (top) and adaptive sampling (bottom). The sampling points are generated using the

FPO method [21] shown in first column. The number of samples is 1,024, and the neighborhood size is k = 10. We set

σ = 0.05, 0.15, 0.25, 0.5 from left to right.

the analysis quality of using both metrics. Hence,

we adopt Euclidean distance in our approach, i.e.,

dij = ‖pi − pj‖ in uniform sampling. To make

g(r) independent of the point number N , we further

normalize dij by dmax, which indicates the theoretically

largest minimum distance between any two sample

points. Here, dmax = 2
√

A
2
√

3N
, and A is the area of

surface [33].

The PCF essentially analyzes the distance

distribution of sampling points with the kernel density

estimation method. In the statistical community,

data distribution can be effectively characterized by

the average and variance of the data. Therefore, we

can reasonably regard the PCF as the average of the

distance distribution, i.e.,

g(r) =
1

N

N∑
i=1

gi(r), (4)

where gi(r) = |V |
4πr2M

∑M
j=1 kσ(r − dij). In practice,

the discrete PCF is used by discretizing r, i.e., r =

(r1, r2, · · · , rk)T . Therefore, g(r) and gi(r) can be

discretized as follows:

Φ = (g(r1), g(r2), · · · , g(rk))T ;

Φi = (gi(r1), gi(r2), · · · , gi(rk))T , (5)

In addition, irregularity can be captured by the

variance of the distance distribution for each sampling

point. The irregularity measure can be defined as:

Vrk =
1

N

N∑
i=1

(Φik − Φk)2. (6)

For normalization, this measure is divided by the

irregularity of white noise samplings.

For a given 3D mesh and its corresponding sample

points, we first triangulate the point set using the

restricted Delaunay triangulation [31] to compute the

local distance for each point using the breadth first

search. For each rk, Φik is computed for each point.

Then, the corresponding Φk and Vrk is calculated.

The core steps of computing PCF and Irregularity are

shown in Algorithm 1. Consequently, the adaptive PCF

and Irregularity on the surface can be easily obtained

by replacing ‖pi − pj‖ with 2∗E(w)
wi+wj

‖pi − pj‖ when

computing Φik in Alg. 1.
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Fig. 3 Analysis of different point distributions on a uniform domain. From top to bottom: surface sampling results; Voronoi cells

(each cell is color-coded by its valence: light yellow is valence 6, pink is valence 5, and blue is valence 7; dark pink is valence larger

than 7, and dark green is valence smaller than 5); DDA analysis [26], including the power spectrum, radial mean, and anisotropy;

our PCF results; and our irregularity measures. We set σ = 0.05, k = 7.

Algorithm 1 Computing PCF and Irregularity

Input: 3D mesh, Sampling set S.

Output: PCF and Irregularity of S.

Initialize: PCF and Irregularity of S

for all rk ∈ r do

for all pi ∈ S do

compute Φik

end for

compute Φk and Vrk

end for

5 Experimental Results

We present our experimental results on different

sampling patterns to verify the validity of the proposed

method. All the results shown in this work are obtained

with a PC equipped with 2.83 GHz Q9550 Quad CPU,

4 GB memory, and 64-bit Windows 7 operating system.

Parameters: The most important parameter is the

neighborhood size M of each point, which directly

affects the speed and quality of our algorithm.

Neighborhood size is related to the number of sampling

points. In our tests, we adapt k to match the

neighborhood size. When the number of samples is

large, we increase k accordingly to collect adequate

neighborhood information. Furthermore, a large M

does not change the shape of the PCF but affects the

Irregularity. In our experiments, we find that k ∈ [5, 15]

is generally effective. We set k = 7 for our results unless

explicitly specified. Given the range [r1, r2] of r values

and σ value, the maximum neighborhood size in terms

of pairwise distance is D = dmax(r2 + µσ), where µ is

the cutoff factor of the Gaussian function. Using this

formulation, we can estimate a good k and qualify the

reasonableness of a given k as well.

Another important parameter is the standard

deviation σ of the Gaussian kernel, which affects the

smoothness of the result. In the uniform surface

sampling, we find σ ∈ [0.04, 0.08] to be effective, and we

set σ = 0.05. In the adaptive surface sampling, we find

σ ∈ [0.06, 0.12] to be effective, and we set σ = 0.08.

The range of r should capture adequate information

on the point distribution. In our tests, r ∈ [0.25, 5],

6
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Fig. 4 Comparison of running time of our local distance

measure and the original one [19]. Time is the square root of

the true time for clarity. The blue curve corresponds to the

original global method, whereas the red curve is our localized

method. We use the CCVT method [2] to generate samplings.

The number of points in each site is 1,024. We set σ = 0.25 in

this example.

and the stride of 0.02 can obtain the tradeoff between

smoothness and efficiency.

Performance: As shown in Fig. 4, we compare the

running time of the original PCF and our localized

version. We use the increasing number of points

and test the running time separately. The sampling

points of varying amounts are obtained with the CCVT

method [2], and the number of points in each site is

1,024. The speed of the localized PCF is significantly

faster than that of the global PCF. Specifically, the

running time of the global PCF is quadratic with

respect to the number of sampling points, whereas that

of the localized PCF is almost linear.

Sampling analysis: We apply our approach to

analyze several sampling algorithms on surfaces,

including CVT [31], CapCVT [4], MPS [11, 32], and

FPO [29]. Poisson sampling is used for ground truth,

where g(r) = 1. We use two new measures in our

analysis, i.e., Ppeak and Ivalley, which are obtained from

our PCF and irregularity analysis. The value of Ppeak
indicates the specific distance at which most points are

distributed with respect to their neighborhood points.

In other words, most points have a similar distribution

in this specific distance. Thus, the irregularity is

relatively small. Hence, Ppeak and Ivalley are almost

the same. We also observe that Ppeak is essentially

equivalent to the average relative radius ρ defined

in [13]; however, this measure cannot be obtained from

DDA directly. For example, Ppeak of FPO is close to

0.93, and Ppeak of MPS is approximately 0.81; these

Tab. 1 Statistics of PCF and irregularity. |S| is the number

of sampled points. Ppeak is the abscissa of the main peak of

PCF. Ivalley is the abscissa of the valley of irregularity. The

abscissa value of 2 denotes true distance 2dmax because of the

normalization of distance.

Model Method |S| Ppeak Ivalley

Eight

CVT 1.7K 0.99 1.01

CapCVT 1.7K 0.95 0.97

MPS 1.7K 0.81 0.79

FPO 1.7K 0.93 0.93

Genus

CVT 6.2K 0.99 1.01

CapCVT 6.2K 0.95 0.97

MPS 6.2K 0.81 0.79

FPO 6.2K 0.93 0.89

Kitten

CVT 2.9K 0.99 1.01

CapCVT 2.9K 0.95 0.97

MPS 2.9K 0.81 0.79

FPO 2.9K 0.93 0.89

values agree well with the reported values in [21].

Furthermore, these two measures are independent of

the number of samples and the area of the sampling

domain because we normalize the distance measure by

dmax. Thus our approach has strong generalization

ability. The results are shown in Fig. 3, and the values

of these measures are shown in Tab. 1.

For adaptive sampling (non-uniform density

sampling), we transform the adaptive domain to a

uniform case using the weight information defined in

each point and directly apply the uniform analysis

tools. To ensure the validity of the transformation

function of Eq.(2), we apply our algorithm to the

adaptive version of four sampling algorithms on

surfaces(Fig. 5). Poisson sampling is employed for

ground truth as well. The results are almost the same

as the uniform results shown in Fig. 3.

To demonstrate the effectiveness of our analysis

method in models with different topological structures,

we persent the results of our approach applied to several

models with different topological structures(Fig. 6). We

obtain the sample points by MPS. The left column

indicates the uniform sampling, and the right column

shows the adaptive sampling. For adaptive MPS

sampling, we use the local feature size (lfs) [1] as the

sizing function. We can find that uniform and adaptive

cases exhibit a consistent appearance, including the

PCF and irregularity. Furthermore, our method can

capture the blue noise property of this pattern, in which

the PCF features a salient peak for each model.

Comparison with DDA: We also compare our

method with the DDA tool [26](Fig. 3). The core

7
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Fig. 5 Analysis of different point distributions on the adaptive domain. We set σ = 0.08, k = 7.
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Fig. 6 Analysis of uniform and adaptive sampling in different

models. The left column is uniform sampling, whereas the

right column is adaptive sampling. Each group includes surface

sampling results, PCF results, and irregularity measures. The

number of sampling points is approximately 3,000. We set

σ = 0.05 for uniform sampling and σ = 0.08 for adaptive

sampling. k = 7.

principle of DDA is to use the distribution of difference

vectors pi − pj . Our PCF is based on the probability

analysis of the magnitude of difference vectors, i.e.,

‖pi − pj‖. The PCF contains the same information as

the radial average of the DDA. As shown in Fig. 3,

the radial mean of the DDA is consistent with our

PCF. In essence, the DDA performs the kernel density

estimation of p(d) (the probability density function

of d), and p(d) is constructed from a straightforward

histogram. The PCF is p(|d|) using the Gaussian

function. In addition, we analyze the irregularity of

the point distribution instead of anisotropy because

pairwise distance |d| has no directional information.

For example, the radial mean and PCF of CapCVT

both exhibit visible fluctuations. In addition, the PCF

can further reveal the distance characteristics because

it is a statistical measure based on pairwise distances.

Fig. 3 shows that the PCF of Poisson sampling is flat

because of the uniformity of the distance distribution.

The other four methods show apparent main peaks in

the PCF. The PCF of CVT exhibits a larger fluctuation

after the main peak in comparison with the other three

methods. The irregularity of CVT has a low-lying

area which indicates that CVT has high regularity.

The irregularity of MPS is flatter than that of the

other three methods; hence, MPS has good blue noise

properties.

In sampling, regularity is an important criterion

that inherently presents a potential risk for aliasing.

Our method can analyze the regularity degree of a

sampling pattern, which cannot be obtained with the

8
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Fig. 7 Analysis of CapCVT [4] with different λ (from left to

right, λ = 1, 30, 50, 100). From top to bottom: surface sampling

results, PCF results, and irregularity measures. The number of

samples is 3,000, σ = 0.05, and k = 7.

DDA tool [26]. CapCVT [4] adopts parameter λ

to balance regularity and randomness. Decreasing λ

introduces regular patterns. The patterns are the same

as that of CVT if λ = 0. When λ increases, the

point distribution shows irregularities, which are the

core principle of CapCVT to avoid the regular patterns

observed in CVT. In Fig. 7, we show our analysis results

by applying our algorithm to the samples generated

by CapCVT with different λ. The number of samples

is 3, 000. The first column is similar to the PCF

of CVT because λ is very small, and the residual of

the other three PCFs is almost same. However, the

Irregularity shows more fluctuations from left to right,

i.e., more randomness, which is consistent with the

result of CapCVT [4].

Euclidean vs geodesic: To verify that the Euclidean

metric is a suitable approximation for PCF analysis

on surfaces, we compare the analysis results of both

metrics(Fig. 8). In our experiments, we employ the

fastest MMP algorithm [27] for geodesic computation.

When the number of points is small, the result of

using the Euclidean metric is slightly biased because the

approximation error is too large. When the number of

points increases, the results of the two metrics become

similar. Note that the results of both metrics become

smooth when the number of samples increases.

Limitations: Our current approach has several

limitations. For example, we only focus on analyzing

isotropic sampling patterns and do not address the

anisotropic sampling. Another limitation is that the

local neighborhood distance computation depends on

the restricted Delaunay triangulation of the sampling

Euclidean Geodesic
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Fig. 8 Comparison of analysis results using Euclidean and

geodesic metrics. Left column: surface sampling results, middle

column: results of using Euclidean metric, right column: results

of geodesic metric. Each row includes our PCF results and

irregularity measures. From top to bottom, the number of

sampling points is 100, 500, 1,500, and 3,500, as generated by

MPS [32]. We set σ = 0.05, k = 7.

points and may thus be problematic in regions with

inadequate samples. We aim to address these issues in

our future work.

6 Conclusions

We proposed a localized version of the PCF to

accelerate the algorithm without reducing the quality

of analysis. We generalized the PCF to analyze

the sampling patterns on surfaces. The experimental

results demonstrate that our method can determine the

properties of different point distributions. In the future,

we aim to develop new techniques for point sampling

synthesis on surfaces. We also plan to increase the

speed of our algorithm using GPU because of its local

characteristics.
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