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Abstract

We present a novel method for high-quality blue-noise sampling on mesh surfaces under capacity constraints. Unlike the
previous surface sampling approach that only uses capacity constraints as a regularizer of the Centroidal Voronoi Tessellation
(CVT) energy, our approach enforces an exact capacity constraint using the restricted power tessellation on surfaces. Our approach
is a generalization of the previous 2D blue noise sampling technique using an interleaving optimization framework. We further
extend this framework to handle multi-capacity constraints. We compare our approach with several state-of-the-art methods and
demonstrate that our results are superior to previous work in terms of preserving the capacity constraints.

Keywords:
blue noise sampling, capacity constraints, centroidal Voronoi tessellation, power diagram

1. Introduction1

Sampling is an essential technique in computer graphics,2

and it is a building block of various applications. One of the3

most important sampling techniques, generates so-called blue-4

noise patterns. The term “blue-noise” refers to any kind of noise5

with minimal low frequency components and no concentrated6

spikes in energy [1]. The quality of a blue noise sampling can7

be evaluated by two one-dimensional functions that are derived8

from the power spectrum analysis [2]. One is the radially aver-9

aged power spectrum, and the second one is anisotropy. From a10

geometric point of view, blue-noise sampling aims to generate11

uniformly randomly distributed point sets in a given domain.12

Blue-noise sampling in the Euclidean domain has been ex-13

tensively studied [3] over the years. More recently, many ap-14

proaches focus on generating point sets on mesh surfaces with15

blue-noise properties. Such sampling has many applications in16

practice, e.g., rendering [4], solving some PDEs (e.g., water an-17

imation [5]), stippling [6], and object distribution [7].18

The classical way of generating blue-noise point sets are19

Poisson-disk sampling and relaxation based methods, e.g., L-20

loyd iteration [8]. Although Poisson-disk sampling is fast and21

is able to generate point sets with good blue-noise properties, it22

cannot explicitly control the number of sampling points, which23
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Figure 1: Results of multi-capacity constrained sampling. An earthen dragon
and a ceramic Bunny. Both use 3k samples.

is important for many applications. While Lloyd relaxation al-24

ways result in more regular patterns which reduces the blue-25

noise characteristics. This iterative algorithm has to be termi-26

nated before reaching the local minima to avoid regular pattern-27

s [9].28

Balzer et al. [10] proposed a variant of the Lloyd itera-29

tion, called capacity-constrained Voronoi tessellation (CCVT),30

where “capacity” means that the size of the cells of the power31

diagram of weighted points should have the same size. This32

algorithm introduces more irregularity patterns and improves33

the randomness of the point set as well. However, the CCVT34

method needs a descritization of the sampling domain and us-35

es a discrete optimizer to compute the final solution which is36

inefficient. Chen et al. [7] proposed CapCVT, which combines37

Centroidal Voronoi Tessellation (CVT) and the capacity con-38

strained Voronoi tessellation to improve the efficiency of the39

CCVT algorithm. However, the CapCVT is not able to en-40
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force the exact capacity constraints. More recently, de Goes41

et al. [11] proposed a practical algorithm for blue noise sam-42

pling based on the theory proved by Aurenhammer et al. [12],43

which could enforce exact capacity constraints using an inter-44

leaving optimization framework that iteratively optimizes the45

point positions and their associated weights (more details are46

given in Sec. 3.2). Such equal capacity tessellations also have47

general interests in many research filed, such as computational48

geometry [13] and architectural geometry [14].49

In this paper, we generalize the above mentioned interleav-50

ing optimization framework for blue-noise sampling [11] to 3D51

mesh surfaces. We formulate the new objective function on52

mesh surfaces, and provide rigorous mathematic proofs of the53

gradient derivation. We demonstrate that our results exhibit the54

best quality in terms of the capacity constraints among all the55

state-of-the-art blue noise sampling techniques. Figure 1 shows56

two examples of our multi-capacity constrained sampling on57

surfaces. The contributions of this paper include:58

• A new approach for computing blue-noise sampling on59

mesh surfaces under capacity constraints.60

• A novel extension to handle multi-capacity constraints.61

• The derivation of the gradient of the new formulation on62

mesh surfaces.63

2. Related Work64

We briefly review the previous work on blue-noise sampling65

focusing on the approaches for surface sampling and their cor-66

responding 2D approaches. For more details, please refer to67

recent survey papers [3, 15].68

Surface Poisson-disk Sampling. Inspired by the technique of69

dart-throwing, Cline et al. [16] first propose to generate Poisson-70

disk samples on surfaces by utilizing a hierarchical data struc-71

ture. Corsini et al. [17] present a new constrained Poisson-disk72

sampling method, which carefully selects samples from a dense73

point set pre-generated by Monte-Carlo sampling. The work of74

Bowers et al. [18] proposes a parallel dart throwing algorithm75

for sampling arbitrary surfaces. Geng et al. [19] generate ap-76

proximate Poisson disk distributions directly on surfaces based77

on the tensor voting method. Ying et al. [20] propose another78

GPU-based approach by using the geodesic distance as metric.79

Then they further improve the maximal property of the Pois-80

son disk sampling in a parallel manner [21]. Peyrot et al. [22]81

propose a feature sensitive dart-throwing method with more fo-82

cus on the complex shapes and sharp features. Medeiros et83

al. [6] propose a hierarchical Poisson-disk sampling algorith-84

m on polygonal models, which is used for surface stippling and85

non-photo realistic rendering. Yan and Wonka [23] propose a86

gap analysis framework to achieve Maximal Poisson-disk Sam-87

pling (MPS) on surfaces, and they also generalize MPS to adap-88

tive sampling. Based on this, Guo et al. [24] use a subdivided89

mesh, instead of the common uniform 3D grid, to improve both90

the sampling quality and the efficiency.91

Relaxation-based Sampling. Relaxation-based methods itera-92

tively reposition the samples in a random point set, where the93

Figure 2: Illustration of the power diagram (left) and the regular triangulation
(right) in 2D. The positive weights are shown in red and negative weights are
shown in blue. The radius of each point xi equals to

√
|wi |.

mostly used optimization technique is Lloyd relaxation [8]. Fu94

and Zhou [25] extend the 2D dart-throwing approach of [26] to95

surfaces sampling, and then the Lloyd relaxation is applied for96

high quality remeshing. Yan et al. [27] present an efficient al-97

gorithm to compute the CVT for isotropic surface sampling and98

remeshing. However, CVT tends to generate point distributions99

with regular patterns that lack some blue-noise properties. X-100

u et al. [28] generalize the concept of CCVT [10] to surfaces,101

which generates point sets exhibiting blue-noise properties. To102

improve the performance of CCVT, Chen et al. [7] combine C-103

CVT with the CVT framework for blue-noise surface sampling.104

de Goes et al. [11] generate the blue-noise point sets using opti-105

mal transport. Apart from Lloyd-based methods, there are some106

other iterative approaches on surfaces. Chen et al. [4] introduce107

bilateral blue-noise sampling which integrates the non-spatial108

features/properties into the sample distance measures. Yan et109

al. [29] use the Farthest Point Optimization (FPO) [30] to gen-110

erate point sets with high quality of blue-noise properties while111

avoiding regular structures.112

3. Problem Statement113

In this section, we first give the definitions of the power di-114

agram and the restricted power diagram on surfaces, and the115

main theory that connects the power diagram and the capacity116

constraint. Then, we generalize the formulation of 2D capacity117

constrained blue-noise sampling to mesh surfaces. Finally, we118

propose a novel extension for multi-capacity constrained sam-119

pling.120

3.1. Definitions121

Power Diagram. A power diagram [31] tessellates the Eu-
clidean space Ω into a set of convex polytopes (e.g., polygons in
2D, and polyhedra in 3D), by a set of n weighted points {xi,wi},
where each xi ∈ Rn, called site, is associated with a scalar value
wi called weight of site xi. Each polytope (or power cell) Vi of
xi contains the points that have smaller weighted distance to the
site xi than to others:

Vi = {x ∈ Ω | dw(xi, x) < dw(x j, x),∀ j , i}.
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Figure 3: Illustration of the RPD and RRT on a sphere. The restricted power
cells corresponding to each point is shown in random color. The boundary of
RPC Vi|S is marked with white color. A triangle in the input mesh (highlighted
in yellow) is split into convex polygons and assigned to its incident cells.

To compute the weighted distance dw(xi, x), we adopt the power122

product dw(xi, x) = ‖xi−x‖2−wi, here ‖ · ‖ denote the Euclidean123

norm.124

Then the dual of the power diagram is called the regular125

triangulation. Figure 2 shows an example of the power diagram126

and regular triangulation in a 2D square. Note that when the127

weights of all the sites are the same, then the power diagram is128

equivalent to the Voronoi diagram.129

Restricted Power Diagram. If the input domain is a 3D sur-
face S , and the set of the weighted points are sampled on S ,
the intersection between the power diagram and the surface S
is called the restricted power diagram (RPD), each intersected
cell Vi|S is called a restricted power cell on S , defined as

Vi|S = {x ∈ S | Π(xi,wi; x, 0) < Π(x j,w j; x, 0),∀ j , i}.

The dual structure is called restricted regular triangulation (R-130

RT) on surfaces. Figure 3 illustrates the concept of RPD and131

RRT on a sphere.132

Optimal Transport. The relation between the power diagram133

and the capacity constraint has been proven by Aurenhammer,134

Hoffman and Aranov [12]: Given a point set X = {xi} and a set135

of corresponding positive numbers {mi}, and a probability mea-136

sure µ such that
∑

mi =
∫

dµ, it is possible to find the weights137

wi of a power diagram such that µ(Vi) = mi and the optimal138

weights are obtained as the maximum of a concave function.139

Note that Aurenhammer, Hoffman and Aranov make the re-140

mark that the map defined by ∀x ∈ Vi,T (x) = xi is an optimal141

transport map with respect to the L2 cost. The equivalence can142

be also directly shown using Brenier’s polar factorization the-143

orem [32]. The proof of convergence and an implementation144

based on [12] is given by Mérigot [33]. A similar algorithm145

was proposed by Gu et al. [34] recently. This remark has been146

used in several works in optimal transport [11, 35, 36, 37, 38].147

We refer the readers to the textbook [39] for more details on148

this topic.149

3.2. Formulation on Surfaces150

In our setting, the goal is to compute a point set X = {xi}151

on a give 3D surface that fulfills the capacity constraint, i.e., for152

each point xi, we want to constrain the (weighted) area of the153

restricted power cell associated with xi.154

Our target is to minimize the following objective function
subject to the equal capacity constraints on surfaces, i.e.,

E(X,W) =

n∑
i=1

∫
Vi|S

ρ(x)‖x − xi‖
2dx

s.t. mi =

∫
Vi|S

ρ(x)dσ = m =
mγ

n
,

(1)

where mγ =
∫

S ρ(x)dσ is a given constant. This optimization
problem is usually solved by introducing Lagrange multipliers
Λ = {λi}

n
i=1, and the objective function becomes

Minimize E(X,W) +

n∑
i=1

λi(mi − m) (2)

with respect to xi,wi, λi. However, since an additional n vari-
ables λi add complexity to the optimization problem, it can be
reformulated into a simple scalar function [11]:

F (X,W) = E(X,W) −
n∑

i=1

wi(mi − m), (3)

with respect to xi,wi. By our appendix and [11], the optimiza-155

tion of (2) is equivalent to finding a stationary point of (3).156

Note that the difference between our formulation and [11] is
that we use the restricted power diagram on surfaces instead of
the ordinary power diagram. We derive the gradient on surfaces
for variables X and W. Surprisingly, we found that the gradi-
ents have the similar forms as their Euclidean formulation. The
gradients of the energy F (X,W) are

∇wiF (X,W) = m − mi,

∇xiF (X,W) = 2mi(xi − bi).

where bi = 1
mi

∫
Vi|S

xρ(x)dx is the corresponding weighted barycen-157

ter. However, the derivation on surfaces is more involved. Sim-158

ilar to [11], the objective function F is a concave maximization159

problem when X is fixed, and it can be considered as a mini-160

mization problem of the centroidal power diagram when W is161

fixed. The formal proof and derivations are given in Appendix162

B. Note that an alternative elegant proof was independently de-163

rived by Bruno Lévy in a recent paper [38].164

3.3. Multi-Capacity Extension165

The formulation discussed above considers only a single ca-
pacity value. In this paper, we further extend the sampling prob-
lem to multiple capacity constraints. Given a ratio θi for xi, the
customized capacity can be given as mc

i = θim. In order to keep
the total capacity requirement, we require

∑n
i=1 mc

i = mγ. Thus
the new energy can be written as

F c(X,W) = E(X,W) −
n∑

i=1

wi(mi − mc
i ).

The gradient w.r.t. wi is changed to be

∇wiF
c(X,W) = mc

i − mi,

and the gradient ∇xiF
c(X,W) remains unchanged.166
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Figure 4: The main steps of our algorithm. The top row shows the Restricted power diagram of each step and the bottom row shows the corresponding quadratic
errors respect to the prescribed capacities ‖mi −m‖2. The colder color means small error and the warmer color means high error. (a) Initial sampling after 3 steps of
Lloyd iteration (for better visualization), (b) after weight optimization, (c) after vertex optimization, and (d) final result.

4. Implementation Details167

The input of our algorithm is a triangular mesh surface S ,168

and the number of desired sampling points n. A density func-169

tion ρ(x) is defined on mesh vertices and piecewise linearly in-170

terpolated over the triangles. In our implementation, we use171

the local feature size introduced in [40] as the density function,172

i.e., l f s2(x). But other density can also be used. There are three173

main steps in our framework, i.e., initialization and interleaving174

weight/vertex optimization. Figure 4 shows the main steps of175

our pipeline.176

4.1. Initial Sampling177

The sampling points X are initialized randomly according to178

the density function. The initial power weights W are initialized179

to be 0. Before starting into optimization, we perform 3 ∼ 5180

steps of Lloyd iteration to get a better initial distribution. Other-181

wise, the optimization might get stuck in undesirable local min-182

ima quickly and it becomes difficult to find optimal weights. In183

the case of multi-capacity sampling, we initialize each type of184

capacity separately to ensure a better distribution. Figure 4(a)185

shows the initialization result on a sphere model.186

4.2. Weight Optimization187

Before starting the weight optimization, all weights are re-
set to 0. Weight optimization makes every sampling point share
a common capacity as much as possible when the positions of
sampling points remain fixed. The Hessian matrix w.r.t. weight
HF = ∇2

wF (X,W) can be explicitly derived as (see Theorem 6
in Appendix ):

[HF ]i j =
ρ̄i j

2

∑
l∈Ti j

|e∗i j ∩ τl|

|ei j|τl

,

[HF ]ii =
∑
j∈Ωi

[HF ]i j,

where |ei j|τ is the length of projection of ei j onto the triangular188

plane τ, Ti j is the index set of the triangles in the mesh that189

intersect with the bisecting plane e∗i j, and ρ̄i j is the average val-190

ue of ρ over e∗i j ∩ T . Newton iterations are used to optimize191

weights. Note that the Hessian on surfaces is different from192

the 2D case, the edges of the restricted power diagram is not a193

single segment but a set of connected segments.194

The derivation of the multi-capacity sampling is similar.195

The only difference is that the righthand side of the linear sys-196

tem is changed to be ∇wiF
c(X,W) instead of ∇wiF (X,W).197

During the iterations, the step size is adapted by a line search198

with Armijo condition [41]. The weight optimization stop-199

s when the threshold is met. The threshold for weight opti-200

mization is defined as
√∑n

i=1(∇wiF (X,W))2 ≤
α1
n mθ1

γ , where α1201

is a scaling coefficient accounting for the number of sampling202

points and the density function (α1 = 0.1, θ1 = 1.0 in our exper-203

iments). Typically, 5 ∼ 7 iterations can reduce the δ′w within204

the threshold.205

4.3. Vertex Optimization206

Vertex optimization, which reduces the objective function207

F when the weight remains unchanged, can be seen as the pro-208

cess of finding a “centroidal power diagram” of the weighed209

sampling points, which could be achieved by using either Lloy-210

d iteration [8] or quasi-Newton solvers [42].211

During the optimization, the positions of the sampling points
will be updated to their weighted barycenters, and then project-
ing bi to the input mesh S if Lloyd iteration is used. Other-
wise, if a quasi-Newton solver is used, the gradient ∇xiF (X,W)
should be constrained within the tangent plane of xi, i.e.,

∇xi |SF (X,W) =∇xiF (X,W)
−[∇xiF (X,W) · N(xi)]N(xi).

After each step of update, the vertices are then projected back to212

the input surface. Optimizing vertices only reduces the energy213

F (X,W), but might increase of capacity variance (see Figure 6214

in Section 5). Typically after 3 ∼ 5 iterations, the requirement215

of the threshold will be satisfied. We set the condition for vertex216

optimization to
√∑n

i=1 ‖∇xiF (X,W)‖2 ≤ α2
n mθ2

γ (α2 = 0.1, θ2 =217

1.2 in our experiments).218
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4.4. Randomness Improvement219

Since our optimization framework has the same shortcom-220

ing as most relaxation based methods, i.e., the restricted power221

cells form a regular hexagonal pattern after optimization. To222

overcome this problem, Gaussian noise is used to add random-223

ness in such regions to break regular patterns.224

It is worth to point out that the local regular patterns of the225

point distributions are detected and are broken up in a way that226

is similar to [11]: we first measure the regularity for every point,227

and then disturb the point and its one-ring neighbors in the reg-228

ular regions. The main difference of our implementation is that229

the disturbances occur in the corresponding containing triangles230

on the surface instead of resampling randomly. Our procedure231

ensures that the perturbed points still lie on the mesh.232

Algorithm 1: Optimization algorithm

1 Initialize sampling point set X with n points;
2 Run 3 ∼ 5 times Lloyd iterations;
3 Compute the threshold for weight optimization
δw = α1

n mθ1
γ ;

4 Compute the threshold for vertex optimization
δx = α2

n mθ2
γ ;

5 repeat
6 Set all power weights to be 0;
7 Call WEIGHT-OPTIMIZATION;
8 Optimize vertices and update RVD;
9 Compute δ′x =

√∑n
i=1 ‖∇xiF (X,W)‖2;

10 until (δ′x ≤ δx);
11 Call WEIGHT-OPTIMIZATION;
12 Randomness improvement;
13 Function WEIGHT-OPTIMIZATION
14 repeat
15 Solve the concave problem of weight optimization;
16 Update power weights and RVD;
17 Compute δ′w =

√∑n
i=1 (∇wiF (X,W))2;

18 until (δ′w ≤ δw);

5. Experimental Results233

In this section, we demonstrate some results of the proposed234

method and compare our approach with several state-of-the-art235

surface sampling algorithms in various aspects. In our imple-236

mentation, we use CGAL [43] for computing the 3D regular tri-237

angulation. We use the implementation of [27] for RPD compu-238

tation. Note that more recently, Bruno Lévy has released a new239

open-source package, called Geogram [44], which contains an240

improved version of the RVD computation libraray. Our ex-241

periments are conducted on a PC with i5-2320, 3.00GHz CPU,242

16GB memory and a 64-bit Ubuntu operating system.243

Performance Analysis. Our framework is able to generate a244

high quality blue-noise point set efficiently. We test our method245

on a complicated Pegaso model as shown in Figure 5. The con-246

vergence behavior of the optimization procedure run on the Pe-247

gaso model is shown in Figure 6. In our implementation, we248

set the number of iterations of weight optimization and vertex249

optimization to 10 and 20 times, respectively. The optimization250

usually converges after 3-5 iterations. The total running times251

are 89.2 and 182.5 seconds for uniform and adaptive sampling,252

respectively. More results are shown in Fig. 7.253

Figure 5: Uniform (top) and adaptive (bottom) sampling on the Pegaso model.
The number of sampling points is 10K in both tests. Left: sampled points,
middle: quadratic error with respect to the prescribed capacities, and right:
restricted power diagram. Different colors indicate different valences of each
vertex in the dual restricted regular triangulation. Light green is valence 6 (v6),
orange is v7, blue is v5, dark blue is v4 and brown is v7.
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Figure 6: Illustration of the convergence of the capacity variance against the
number of iterations. Each peak corresponds to a switch from the weight opti-
mization to vertex position optimization.

Figure 8 compares the timing statistics of different approach-254

es. The time cost of CVT and CapCVT are evaluated by apply-255
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Figure 7: More sampling results. From top to bottom: uniform sampling of Venus and Elk, and adaptive sampling of Omotondo and Dragon. We use 10K samples
for all the models. The time costs are 92.34s, 94.07s, 123.23s, and 125.45s, respectively. From left to right: sampled points and their corresponding RPDs; color-
coded RPDs, where the color indicates different valences of each vertex in the dual restricted regular triangulation; quadratic error with respect to the prescribed
capacities; and the power spectrum, the radial power and the normal anisotropy.
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Figure 8: Comparison of the time cost of different methods using the Genus3
model. Left: uniform sampling. Right: adaptive sampling.

ing 100 L-BFGS iterations. Since MPS does not need iterative256

optimization, it is the most efficient approach compared to the257

other methods, while FPO is the most time consuming since it258

optimizes each individual point once during each step of itera-259

tion. From this comparison, we can see that the performance of260

our method is comparative to the other optimization-based ap-261

proaches, while we can generate results with minimum capacity262

variances.263

Randomness Improvement. We further analyze the effect of264

the Gaussian noise introduced in Sec. 4.4 for randomness im-265

provement. We show two examples in Fig. 9 and Fig. 10 for266

both uniform and adaptive sampling, respectively. In each ex-267

ample, we first run our interleaving optimization framework un-268

til convergence. As we can see in the left column, both results269

contains many hexagonal cells. Then we apply Gaussian noise270

to break the regular patterns and run the optimization again.271

The right column in each Figure shows the final results with272

more irregular patterns while keeping small capacity variances.273

In the first example, the percentage of valence-6 points is re-274

duced from 80.55% to 54.95% after adding Gaussian noise. In275

the second example, the percentage of valence-6 points is re-276

duced from 75.51% to 50.53% after adding Gaussian noise.277
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Figure 9: Randomness improvement of the uniform sampling on the Sphere
model. Left: results without adding Gaussian noise; right: results of adding
Gaussian noise and further optimization.
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Figure 10: Randomness improvement of the adaptive sampling on the Botijo
model. Left: results without adding Gaussian noise; right: results of adding
Gaussian noise and further optimization.

Evaluation and Comparison. We then evaluate our results in278

terms of sampling irregularity, quadratic error with respect to279

the prescribed capacities and the spectral property. The last col-280

umn of Figure 11 and Figure 12 demonstrate the visual qualities281

of these criteria of uniform sampling and adaptive sampling, re-282

spectively. It is easy to see that our results present high irreg-283

ularity and low capacity variation, as well as good blue-noise284

property.285

Next, we compare the above criteria with several state-of-286

the-art techniques in Figure 11 and Figure 12, including maxi-287

mal Poisson-disk sampling (MPS) [23], farthest point optimiza-288

tion (FPO) [29], centoridal Voronoi tessellation (CVT) [27] and289

capacity-constrained centroidal Voronoi tessellation (CapCVT)290

[7]. To make a precise comparison, we use the same densi-291

ty function ρ(x) = 1/l f s2(x) for all methods. The results of292

CVT and CapCVT are generated after 100 LBFGS iterations.293

The balance coefficient λ used in CapCVT is set to 50 to en-294

force better capacity constraints. Usually MPS has the maximal295

variance, and FPO and CVT also have large values since these296

methods do not have explicit control of the capacity constraints.297

CapCVT is better since it tends to equalize the capacity values298

using a penalty term in addition to CVT energy, which controls299

the regularity of the point distribution. Our result exhibits the300

lowest capacity variance among all the methods thanks to the301

exact capacity formulation.302

Figure 13 compares the capacity variances against the in-303

creasing number of points for all approaches. The relative ca-304

pacity variance is computed as 1
mγ

√
1
n
∑n

i=1 (mi − m)2. We use305

the logarithmic coordinates for better visualization. From this306

figure, we can see that capacity variances converge when in-307

creasing the number of sampling points for all sampling meth-308

ods. The magnitude of our method is several orders smaller309

than other approaches.310
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Figure 13: Comparison of the capacity variance against the increasing number
of sample points. Left: uniform sampling. Right: adaptive sampling.

Feature Preserving. Our framework is able to handle sharp311

features easily. We assume that the sharp features are given312

as input. During the optimization, the points whose restricted313

power cells are clipped with feature curves are project back to314

the feature skeletons. Figure 14 shows an example of feature315

preserving sampling and its spectral analysis. This simple ex-316

tension does not spoil the blue-noise property.317

Multi-Capacity Constraints. Two examples of multi-capacity318

constraints are shown in Figure 1. Figure 14 shows the quadrat-319

ic error with respect to the prescribed capacities and the spectral320

analysis results of a two-capacity example on a sphere mod-321

el. This new extension keeps the variances small and maintains322

high blue-noise quality.323
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Figure 11: Comparison of the uniform sampling results. From left to right: results of MPS, FPO, CVT, CapCVT and ours. The top row shows the sampling results
of each method. The second row shows the restricted Power diagram of the sampling points. The third row shows quadratic errors with respect to the prescribed
capacities. The colors from blue to red indicate the errors from low to high. The fourth row is the power spectrum of the differential domain analysis [45] and the
last row shows the radial power and the normal anisotropy of each method.

0 50 100 150 200 250

0

5

10

15

20

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250

0

5

10

15

20

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

Figure 14: Spectral analysis of examples of feature preserving (top) and multi-
capacity sampling (bottom). The feature curves of the joint model are shown
in green. Left: results of RPDs; middle: quadratic error with respect to the
prescribed capacities; and right results of spectral analysis.

Limitations. One limitation of our algorithm is that we can-324

not guarantee the maximal sampling property as [23]. Gaps325

can be detected if we draw a sphere at each vertex using the326

shortest edge length as radius in uniform sampling case and us-327

ing the shortest incident edge length as radius in adaptive sam-328

pling case. Although our algorithm works well in practice, the329

connection between the capacity constraint and the blue-noise330

property is still not well explained. We would like to address331

these issues as future works.332

6. Conclusions333

We present a new method for blue noise sampling on mesh334

surfaces under exact capacity constraints. The problem is for-335

mulated as an optimization problem on mesh surfaces. A closed-336

form formula for gradient computation on surfaces has been337

derived and it has been proved that the gradient of the new for-338

mulation coincide with its Euclidean counterpart, thus can be339
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Figure 12: Comparison of the adaptive sampling results.
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minimized efficiently using modern solvers. We also extend the340

presented sampling framework to handle multi-capacity con-341

straints. We make a complete comparison of various criteria342

between the state-of-the-art surface sampling approaches, and343

we show that our results perform better than others when p-344

reserving capacity constraints. In the future, we would like to345

investigate more properties of this sampling framework, and ap-346

ply it for more applications, such as remeshing.347
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Appendix A. Reynolds Transport Theorem470

The derivation of an integral function f = f(x, t) over the
time-dependent region Ω(t) that has boundary ∂Ω(t) with re-
spect to time t is in the following form:

d
dt

∫
Ω(t)

f dV =

∫
Ω(t)

∂f
∂t

dV +

∫
∂Ω(t)

(vb · n)fdA,

where n(x, t) is the outward-pointing unit-normal, x is a point471

in the region and is the variable of integration, dV and dA are472

volume and surface elements at x, and vb(x, t) is the velocity of473

the area element.474

Appendix B. Gradient Derivation on Surfaces475

In this appendix, we derive the gradient ∇wi and ∇xi of the476

objective function. We assume that when applying a sufficiently477

small perturbation to the weight wi or the location of xi, only the478

shapes of the Voronoi regions {V j| j ∈ Ωi} will change.479

We denote by ei j the edge connecting the sites xi and x j,480

e∗i j the bisecting plane of the weighted sites xi and x j, | · | the481

length of an edge, |ei j|τ the length of the projection of ei j onto482

the triangle τ, Ti j the index set of the triangles in the mesh that483

intersect with the Voronoi face e∗i j, and ρ̄i j the average value of484

ρ over e∗i j ∩ S.485

Let mi =
∫

Vi|S
ρ(x)dσ. Since for a fixed domain, the partition

of the density function ρ(x) into cells Vi|S sums up to a constant,
i.e., ∑

i

mi = mγ, (B.1)

we take derivative of (B.1) w.r.p to wi and xi:

∇wi mi +
∑
j∈Ωi

∇wi m j = 0

∇xi mi +
∑
j∈Ωi

∇xi m j = 0
(B.2)

Figure B.15 illustrates the notations of the RVD used in the486

following proof.487

(xj,wj)
(xi,wi)

(xj,wj)
(xi,wi)

Figure B.15: Illustration of the notations of restricted power diagram. A tri-
angle of input mesh is denoted as τ. The intersection of the triangle with a
bisecting plane of two neighboring cells i, j is shown in white.

Lemma 1.

∇wi m j = −
ρ̄i j

2

∑
l∈Ti j

|e∗i j ∩ τl|

|ei j|τl

.

Proof: By Reynolds’ theorem, noticing that ρ(x) is independent
of (xi,wi), we have

∇wi m j =
∑
k∈Ω j

∑
l∈T jk

∫
e∗jk∩τl

ρ(x)vwi ·bds = −
∑
l∈T ji

∫
e∗i j
⋂
τl

ρ(x)vwi ·bds,

(B.3)
where Ω j is the index set of the cells that are adjacent with V j|S ,488

vwi = ∇wi x for those intersection points x of the bisecting plane489

e∗jk and a mesh triangular τl (with normal nτl and a vertex pτl ),490

b is the outpointing normal at the boundary points.491

Now we formulate vwi by writing out the explicit represen-
tation of the intersection point x:

(x j − xi) · (x − ci j) = 0
(x − pτl ) · nτl = 0,

(B.4)

where

ci j = xi +
di j

|ei j|
(x j − xi), di j =

|ei j|
2 + wi − w j

2|ei j|

Taking the derivative ∇wi of (B.4) yields:

∇wi x · (x j − xi) =
1
2

∇wi x · nτl = 0
(B.5)

Noticing that the unit normal b is given by

b =
(x j − xi) − ((x j − xi) · nτl )nτl

‖(x j − xi) − ((x j − xi) · nτl )nτl‖
(B.6)

Hence

∇wi x · b =
1

2‖(x j − xi) − ((x j − xi) · nτl )nτl‖
=

1
2|ei j|τl

. (B.7)

Substituting (B.7) back to (B.3) gives

∇wi m j = −
∑
l∈Ti j

1
2|ei j|τl

∫
e∗i j∩τl

ρ(x)ds = −
ρ̄i j

2

∑
l∈Ti j

|e∗i j ∩ τl|

|ei j|τl

.

(B.8)

Lemma 2.

∇xi m j =
∑
l∈Ti j

−
∫

e∗i j∩τl
ρ(x)xds

|e∗i j|τl

−
∑
l∈Ti j

|e∗i j ∩ τl|

|e∗i j|τl

ρ̄i jmi j, (B.9)

where

mi j = −xi + (1 −
2di j

|ei j|
)(x j − xi).

Proof. The derivation is similar to 1 the previous proof,
hence we directly write out

∇xi m j =
∑
l∈Ti j

∫
e∗ji∩τl

ρ(x)bvxi ds = −
∑
l∈Ti j

∫
e∗i j∩τl

ρ(x)bvxi ds,

(B.10)

1A slight difference here is that xi is now a vector. Taking the derivative
of any vector f = ( f1, f2, f3) w.r.p. to xi = (xi1, xi2, xi3) gives a matrix, i.e.,
∇xi f = ( f jk)3×3, whose element f jk = ∇xik f j . Correspondingly, the vector dot-
product in (B.5) now becomes the matrix production
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where vxi now represents ∇xi x for those boundary point x. The
formulation of these boundary point x has already been provid-
ed by equation (B.4). So we now take the derivative for (B.4):

(x j − xi)∇xi x = (x − xi) + (1 −
2di j

|ei j|
)(x j − xi)

nτl∇xi x = 0.
(B.11)

The outpoint normal b still preserves the representation in (B.6).
Hence

b∇xi x =
(x − xi) + (1 − 2di j

|ei j |
)(x j − xi)

|e∗i j|τl

. (B.12)

Substituting (B.12) back to (B.10) gives

∇xi m j =
∑
l∈Ti j

−
∫

e∗i j∩τl
ρ(x)xds −mi j

∫
e∗i j∩τl

ρ(x)ds

|e∗i j|τl

=
∑
l∈Ti j

−
∫

e∗i j∩τl
ρ(x)xds

|e∗i j|τl

−
∑
l∈Ti j

|e∗i j ∩ τl|

|e∗i j|τ
ρ̄i jmi j,

(B.13)

where

mi j = −xi + (1 −
2di j

|ei j|
)(x j − xi).

Appendix B.1. Total Cost Change Rate492

The total cost is defined by

E(X,W) =
∑

i

∫
Vi|S

ρ(x)‖x − xi‖
2dx (B.14)

Theorem 3.

∇xiE = 2mi(xi − bi) +
∑
j∈Ωi

(w j − wi)∇xi m j, (B.15)

where

bi =

∫
Vi|S

xρ(x)dx

mi
.

Proof. By B.12,B.13,

∇xiE =

∫
Vi|S

∇xi (ρ(x)‖x − xi‖
2)dx

+
∑

j∈i∪Ωi

∫
∂V j|S

ρ(x)‖x − xi‖
2(∇xi x · b)ds

= 2mi(xi − bi) +
∑
j∈Ωi

(w j − wi)∇xi m j

(B.16)

Theorem 4.

∇wiE =
∑
j∈Ωi

(w j − wi)∇wi m j, (B.17)

Proof. The proof is similar to above using Lemma 1.493

Appendix B.2. New Functional494

We use the new energy functional

F (X,W) = E(X,W) −
∑

i

wi(mi − m)

Theorem 5.

∇wiF (X,W) = m − mi

∇xiF (X,W) = 2mi(xi − bi)
(B.18)

Proof. By Theorem 4 and by equation (B.2), we have

∇wiF (X,W) = ∇wiE(X,W) − (mi − m) −
∑
j∈Ωi

(w j − wi)∇wi m j

= m − mi.
(B.19)

By Theorem 3 and by equation (B.2), we have

∇xiF (X,W) = ∇xiE(X,W) −
∑
j∈Ωi

(w j − wi)∇xi m j

= 2mi(xi − bi)
(B.20)

By (2), Lemma 1 and Theorem 5 we directly have495

Theorem 6.

[HF ]i j =
ρ̄i j

2

∑
l∈Ti j

|e∗i j ∩ τl|

|ei j|τl

[HF ]ii =
∑
j∈Ωi

[HF ]i j.

(B.21)
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