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Abstract

Poisson-disk sampling is one of the fundamental research problems in computer graphics that has many applications.
In this paper, we study the problem of maximal Poisson-disk sampling on mesh surfaces. We present a simple
approach that generalizes the 2D maximal sampling framework to surfaces. The key observation is to use a subdivided
mesh as the sampling domain for conflict checking and void detection. Our approach improves the state-of-the-art
approach in efficiency, quality and the memory consumption.
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1. Introduction

Poisson-disk sampling is a fundamental research top-
ic in computer graphics that has many applications such
as rendering, digital half-toning and object distribution.

Given a sampling domain Ω and a sizing function
ρ(x) defined over Ω that indicates the sampling radius
r at each point, an ideal Poisson-disk set P = {(xi, ri)}
should satisfy three properties: 1) minimal distance
property requires that the distance between any two disk
centers should be larger than the sampling radius, i.e.,
∀xi, x j ∈ P, ‖xi, x j‖ ≥ min(ri, r j) ; 2) unbiased sampling
property requires that each point in the domain has the
probability that is proportional to the sizing at this point
to receive a sampling point; and 3) maximal sampling
property requires that the union of the disks covers the
entire sampling domain, i.e.,

⋃
(xi, ri) ⊇ Ω. If the siz-

ing function is a constant, then the sampling is the clas-
sic uniform sampling. Otherwise, it becomes the adap-
tive sampling as discussed in [1]. If a sampled Poisson-
disk set fulfills the above three requirements, then it is
called a Maximal Poisson-disk Sampling (MPS). Except
the aforementioned applications, it has been shown that
the triangulation of a MPS point set also exhibits ex-
cellent geometric properties, such as angle bounds and
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Figure 1: An example of the maximal Possion-disk sampling and
remeshing on the Chess model. Left : the sampled points (7500 sam-
ples); middle: the spheres centered at the samples that cover the input
surface; and right : the remeshing result. The angles are bounded be-
tween [34◦, 112◦].

edge length bounds, which are important to applications
such as physical simulation [2, 1].

The classic method for generating the Poisson-disk
sampling is called dart-throwing [3]. However, it is
known that dart-throwing cannot achieve the maximal
sampling property. Different data structures have been
proposed for accelerating the efficiency and improving
the sampling maximality, e.g., active front of disks [4],
Voronoi diagram [5], hierarchical quadtree [6, 7], u-
niform grid [8], power diagram and regular triangula-
tion [1].

More recently, the research of MPS has been general-

Preprint submitted to Computers & Graphics March 31, 2016



(a) (b) (c) (d) (e) (f)

Figure 2: The pipeline of our framework. (a) Input surface. (b) Subdivided surface that serves as the sampling domain. (c) Initial sampling. The
zoomin view shows the triangles that are not fully covered by disks. (d) Maximal sampling. The red points in the zoomin view are sampled by
filling the empty regions. (e) Extracted mesh from the MPS. The vertices are color-coded by the valence. Blue indicates the valence 5, green is
valence 6 and orange is valence 7. The red triangles are those with minimal angle smaller than a user specified value, i.e., 32◦ in this example. (f)
Optimized sampling and remeshing. The vertex valences are pure 5,6, and 7, and the ‘bad’ triangles are eliminated.

ized to mesh surfaces. Yan and Wonka [1] show that the
remeshing of the uniform MPS can preserve the same
geometric bounds on surfaces as that of the 2D domain-
s [2]. They further generalize the MPS to adaptive sam-
pling and remeshing on surfaces. In this work, a the-
oretical analysis of the gap existence is provided based
on the restricted power diagram on mesh surfaces, and
a uniform 3D grid is used to assist the conflict checking
of the dart-throwing. Although high quality remeshing
can be generated, the approach of [1] is both time and
memory consuming. Furthermore, since the Euclidean
distance for conflict checking in a global grid structure
is used, the sampling has the problem in thin-sheet re-
gions or nearby regions that have small Euclidean dis-
tance but large geodesic distance.

In this paper, we propose a simple method for max-
imal Poisson-disk sampling on mesh surfaces. Our ap-
proach follows the definition of [1] for the adaptive MP-
S on surfaces. We generalize the fast uniform MPS in
Euclidean space [9] to mesh surfaces. The key idea is
to use a subdivided mesh for conflict checking, which
is analogous to the grid structure used for MPS in Eu-
clidean space. As a consequence, the proposed algo-
rithm improves both the sampling quality and efficience
upon the state-of-the-art approach. The main contribu-
tions of this paper include: 1) an efficient framework for
MPS on surfaces, which is a generalization of the fast
2D sampling [9], and 2) several improvements upon the
state-of-the-art surface MPS algorithm [1], including s-
maller memory footprint, faster conflict checking, and

remeshing with valid topology.

2. Related Work

Poisson-disk sampling. Cook [3] first proposes an
algorithm for 2D Poisson-disk sampling, called dart-
throwing. Given a sampling domain and a sampling
radius, the algorithm keeps generating disks (darts) in
the sampling domain randomly. If the current generat-
ed disk conflicts with any previous sampled disk, then
it is rejected, otherwise it is accepted. This process is
repeated until a continuous number of rejection is ob-
served. The algorithm complexity of the original dart-
throwing algorithm is O(n2) [3]. Because of the exis-
tence of tiny uncovered regions that are difficult to re-
ceive a random point, the result of dart-throwing is not
maximal. To achieve the sampling maximality, differ-
ent data structures are designed to trace and sample the
empty regions. Dunbar and Humphreys [4] use a da-
ta structure called scalloped sectors that records the ac-
tive front of the sampled disk set for maximal sampling.
The algorithm complexity becomes O(nlog(n)), but the
sampling is biased. Jones [5] first introduces a unbiased
MPS algorithm. It builds the Voronoi diagram of the al-
ready sampled point set, and compute the empty regions
by subtracting the disk from each Voronoi cell. Then the
empty regions are filled until the maximality is reached.
The algorithm complexity is also O(nlog(n)). Wei [10]
presents a parallel method for Poisson-disk sampling on
GPUs. The speed is much faster than previous work,
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but the sampling is not maximal and is biased. Ebeida
et al. [8] propose a two-step unbiased sampling strat-
egy. They first perform the classic dart-throwing on a
uniform grid, and then switch to computing and filling
empty regions by subtracting the incident disks of each
grid cell. Other approaches use hierarchical quadtrees to
track the empty regions [6, 7]. Ebeida et al. [9] further
accelerate the sampling process by sampling a flat frag-
ment array instead of using the hierarchical quadtree. In
this paper, we show how to extend this fast sampling
scheme to 3D surfaces. Mitchell et al. [11] study 2D
Poisson-disk sampling with various radii, and they ana-
lyze the conflict condition under which a maximal sam-
pling can be achieved.
Possion-disk sampling on surfaces. Cline et al. [12]
first extend the dart-throwing algorithm to mesh sur-
faces using a hierarchical quadtree data structure. Bow-
ers et al. [13] propose a parallel surface sampling
method with the GPU acceleration. Corsini et al. [14]
first perform a pre-sampling stage, and then carefully
choose samples from the pre-sampled point set. Ying et
al. [15] propose a GPU-based approach that generates
Poisson-disks on surfaces using the geodesic distance.
The recent work of Ying et al. [16] propose a parallel
approach to improve the maximal property of the Pois-
son disk sampling. The discrete exponential map is used
for the surface sampling. However, these approaches
are not maximal.

Yan and Wonka [1] first introduce a theoretical frame-
work for analyzing and extracting the empty region-
s on surfaces, using the restricted power diagram and
the restricted regular triangular. Then this framework
is used for maximal Poisson-disk sampling on surfaces.
While high-quality sampling/remeshing results can be
obtained by this approach, the performance is limited
due to the costly computation. In this paper, we present
an alternative simpler approach that is able to achieve
the better quality, higher performance, and lower mem-
ory footprint. Later, this MPS framework is extended to
handle isosurfaces [17].
Other approaches. There are quite a lot other ap-
proaches that aim at high quality sampling on surfaces.
Fu and Zhou [18] extend the active front approach of [4]
to mesh surfaces. They use geodesic distance to trace
the disk borders on surfaces in sampling stage. Then,
they perform the Lloyd relaxation [19] for high quali-
ty remeshing. Yan et al. [20] present an efficient algo-
rithm for computing the restricted Voronoi diagram on
mesh surfaces, and then they use an accelerated version
of the Lloyd relaxation [21] to compute the so called
Centroidal Voronoi tessellation (CVT) for isotropic sur-
face remeshing. Chen et al. [22] combine the CVT and

the capacity constrained Voronoi tessellation for sur-
face blue-noise sampling. Xu et al. [23] generalize the
capacity constrained Voronoi tessellation to surfaces.
More recently, Chen et al. [24] introduce Bilateral Blue-
noise Sampling that is suitable for dense point set sub-
sampling. Some of these methods exhibit the so called
blue-noise properties. However, all these methods rely
on the iterative optimization/relaxation, which are not
suitable for realtime applications.

3. Overview

In this paper, we present a simple algorithm for max-
imal Poisson-disk sampling on mesh surfaces. There
are two key issues of generating MPS on surfaces, i.e.,
1) conflict checking for dart-throwing, and 2) empty re-
gions detection and filling for maximal sampling. Our
approach aims at improving both the sampling quality
and efficiency upon the state-of-the-art method in these
two aspects. First, we improve the sampling quality by
using a local region-growing-based approach for con-
flict checking, that avoids the misclassification caused
by using a global grid. Second, we improve the efficien-
cy of surface MPS by generalizing the simple 2D MPS
algorithm to mesh surfaces, that avoids the computation
of the restricted power diagram on surfaces as in [1].

4. Methodology

The input of our algorithm is a 2-manifold triangular
mesh surface M, which consists of a set of triangles
{t j}

n
j=1. The minimal and the maximal sampling radius

rmin and rmax are specified by the user. Typically we set
rmax = λ rmin, λ ≥ 2 (we choose λ = 8 for adaptive
sampling in this paper). If λ = 2, then it becomes the
uniform sampling. Supposing that a sizing function ρ(x)
is defined over the mesh surface that indicates the local
sampling radius which is mapped to [rmin, rmax]. Either
local feature size [25] or curvatures [13] can be used for
defining the sampling radius. In this paper, we use the
local feature size (lfs) as the sizing function. For each
point pi on the surface, we define its radius ri = kρ(pi),
thus ri is proportional to its local edge length (k is a
constant).

We follow the recent work [1] for the definition of
the adaptive MPS on surfaces, i.e., the sampling pro-
cess should follow the three properties as discussed in
Sec. 1. There are five main steps of our framework: 1)
initialization, 2) initial sampling, 3) maximal sampling,
4) mesh extraction, and 5) mesh optimization. Note that
the mesh optimization step is optional. Fig. 2 illustrates
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Figure 3: The subdivision process for an input triangle.

these steps of the proposed approach. In the following,
we will explain the details of each step.

4.1. Initialization

The purpose of this step is to construct a suitable
structure for Poisson-disk sampling on the surface that
is similar to the flat quad array used in [9]. Toward this
aim, we simply split the edges of the input mesh M
whose length is larger than the minimal sampling radius
rmin. We store the edges in a priority-queue, with the
edge length as the sorting score, such that the longest
edge is in the front of the queue. We iteratively pop the
first edge from the top of the queue, and split the edge
by adding a new vertex in the middle point of the edge.
Four new triangles are generated by adding a new edge
that connects the new point and the vertex that is oppo-
site to the edge that splits. Then, the new added edges
are inserted in the queue and the weight of the effect-
ed edges are updated. This step terminates until all the
edge lengths are smaller than rmin. This splitting process
is illustrated in Fig. 3. In sub-figure (a), 4ABC is an in-
put triangle. We first find that the edge length of AB is
lager than rmin, and then we subdivide 4ABC into two
triangles: 4ADC and 4DBC. Here D is selected as the
middle point of edge AB. In sub-figures (b) and (c), we
use the same strategy to handle the long edges BC, AC
and CD. Finally, we subdivide the input triangle into six
small triangles and each edge length is smaller than rmin.

Once the splitting is done, we get a subdivided mesh
M′, which will be used as the sampling domain in lat-
er steps. The function of M′ is similar to that of the
grid structure used for conflict checking in Euclidean s-
pace [9, 1], such that each triangle ofM′ can receive at
most one sample point. Each triangle ofM′ is equipped
with a buffer to record the indices of samples that fully
cover it or intersect with it, as well as a label to indi-
cate whether the triangle is fully covered by any sample
point or not. This flag is initialized as false.

(a) (b)

(c) (d)

P P

PP

Figure 4: (a) The yellow triangle is the randomly selected triangle t′j,
p is the randomly generated point in t′j and the blue points are the
previous samples. (b) Check for the neighboring triangles of t′j. (c)
and (d) propagate to other neighboring triangles.

4.2. Initial sampling

In this step, we run the dart-throwing algorithm on
the subdivided mesh. The main idea is that we itera-
tively sample a random point in the mesh, and perfor-
m the conflict checking to determine whether this new
point can be accepted. The new point is accepted on-
ly if it is not covered by any previous samples and it
does not cover any other existing samples in a locally
defined neighborhood. Then the index of the new sam-
ple is recorded by the triangles that are fully covered
by this sample or intersect with it. In detail, to gener-
ate a new point on the mesh, we first randomly select a
triangle t′j ∈ M

′ with the probability proportional to its
weighted area (e.g., ρ(ct′j )|t

′
j|, where ct′j is the barycenter,

and |t′j| is the area of the triangle). Then we randomly
generate a point p inside the selected triangle t′j (we use
the random point generator proposed by Turk [26]), as
well as computing its corresponding sampling radius rp

from the sizing function.
Conflict checking. Next, we propose a local region-
growing-based method for conflict checking (Algorith-
m 1). In our approach, a FIFO queue Q is used to facil-
itate the propagation process. First, if t′j has been fully
covered by previous samples, then the new point p is
rejected. Otherwise, we push t′j into the queue. The re-
gion growing process is then performed by repeatedly
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Algorithm 1: Conflict checking

1 Generate a random point p in a random triangle t′j;
2 Queue Q← ∅;
3 if t′j has been fully covered then
4 p is rejected. Return.
5 else
6 push t′j into Q;
7 while Q , ∅ do
8 pop the front element t′i of Q;
9 check if p conflicts with the previous

samples recorded by t′i ;
10 if not then
11 index of p is recorded by t′i ;
12 check if p fully covers or intersects

with the neighboring triangle t′k of t′i ;
13 if yes then
14 push t′k into Q;

15 else
16 p is rejected. Return.

popping triangles in the front of Q until the queue be-
comes empty. For each popped triangle t′j, we traverse
all the samples that intersect with this triangle and com-
pute the distance between each sample x and the new
point p. Once the distance is smaller than the radius of
x or p, the point p is also rejected; otherwise, the index
of p is recorded by the triangle t′j. Then we detect each
neighboring triangle t′k (if it has not been visited) of t′j
and push t′k into Q as long as p fully or partially covers
it. Fig. 4 uses a 2D illustration to display our conflict
checking process.

The initial sampling step terminates when k consecu-
tive rejections are observed or the number l of throwing
darts is larger than a threshold. In our implementation,
we empirically set k = 300, and l = 8m where m is the
number of triangles inM′.

4.3. Maximal sampling

As discussed in Sec. 2, the key issue of the maximal
sampling is to track and fill the small regions that cannot
be sampled by the classic dart-throwing. For this aim,
we apply an iterative sampling approach to track/fill the
empty regions, which is similar to [9].

After the initial sampling stage, the triangles that are
not fully covered are identified as valid and collected in
a flat array. Each such triangle is called a “fragment”.
Then, at each iteration, we first traverse all the valid tri-
angles in the fragment array of current leveli, and sub-

Algorithm 2: Fragments filling

1 Initially sampled point set P, sampling domain
M′, i← 1;

2 repeat
3 Subdivide each valid triangle in the fragment

array of leveli into 4 small triangles;
4 Re-throw darts in the still valid subdivided

triangles to get a new point set P
′

;
5 i← i + 1, update the fragment array;
6 until achieve maximal sampling P

′

;

divide each of such triangle into four small triangles us-
ing the mid-point-insertion subdivision (see Fig. 5(b)).
Next, we check the validness of these subdivided trian-
gles (i.e., whether fully covered by neighboring disks)
and collect all the valid triangles in a flat fragment array
in the next leveli+1. Now we can re-throw darts in the
fragments, where we use the same method as in the ini-
tial sampling stage to generate new points. In the worst
case, in a fragment, the newly generated points which
are not covered by existing samples may cover some
existing samples. It will lead to non-maximal sampling.
To overcome this problem, we use the method in [1]
to recompute the radius of the new point by setting its
radius as the distance to the nearest sample. By this ap-
proach, we will always sample an empty region. These
two steps are repeated until all the fragments are fully
covered or the subdivision process reaches a maximal
level (e.g., 64). However, the latter is never happened
in our experiments. In Fig. 5, we use the same example
in Fig. 4 (d) to demonstrate one iteration of filling frag-
ments. We refer the reader to [9] for more details of the
algorithm complexity analysis, which is similar to our
case.

4.4. Mesh extraction
Once we have a maximal sampled Poisson-disk set,

we are ready to extract the high-quality mesh from the
samples. Instead of computing the restricted Power dia-
gram [1], we propose a much simpler approach by using
the discrete clustering [27, 28] technique. Note that Guo
et al. [29] use a similar clustering approach for triangu-
lating Poisson-disk sampled point sets in 2D domain.
Our approach includes two stages described as follows:
Initial mesh extraction. We first cluster the triangles in
the subdivided meshM into different patches using the
variational shape approximation [27]. Each patch cor-
responds to one sample point. A priority queue PQ is
maintained to store the triples (t′i ,p j, di j), where t′i is a
triangle ofM′, p j is a sample point, di j is the Euclidean
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(a) (b)

Figure 6: (a) Clustering of the triangles in the subdivided meshM′. Each patch is encoded in a single color. (b) Remeshing result extracted using
the clustering information.

distance between the triangle center and the sample. di j

is used as the key for the priority queue, and the least
distance has the highest priority. First, we push all the
triangles that contain sample points as the initial seeds
into the priority queue. While PQ is not empty, the seed
element (t′i ,p j, di j) in the front of PQ is popped out. For
each popped (t′i ,p j, di j), if t′i has been assigned to a sam-
ple, then we discard it and pop next seed element; oth-
erwise, we assign the index of p j to t′i , and push the new
element (t′k,p j, dk j) into PQ, where t′k is the neighboring
triangle of t′i . This process is performed repeatedly until
the priority queue PQ becomes empty. Fig. 6 (a) shows
an example of the clustering result.

Next, we extract the mesh from the clustering. We
consider each vertex v′i of M′, and check the 1-ring
triangles around this vertex in a counterclockwise di-
rection. If the number of different clusters that these
triangles belong to is larger than two, we can ex-
tract a triangle fan using the corresponding samples.

p
0

p
1

p
2

p
3

p
4

p
5

For example, in the embed-
ded figure, black points are
the samples, colored points
are the input vertices. For
the purple vertex, there are
four clusters around it, so the
samples p0, p1, p2 and p3 can
form a triangle fan (dashed lines), including 4p0p1p2
and 4p0p2p3. After processing each vertex like this, we
extract an initial triangular mesh.
Edge flipping. However, the initial remeshing is not
guaranteed to be a Delaunay/regular triangulation. In
this step, we use the algorithm that similar to [30, 31]
for edge flips. We omit the details here since this is not
our contribution.

Note that using our mesh extraction algorithm, each
clustered patch is singly connected and any two patches
are not overlapping. As a result, there are no intersect-
ing triangles in the extracted mesh.

4.5. Mesh optimization
In the remeshing literature, the most important char-

acteristic of a triangle mesh is the angle bounds, which
are required in many applications [32]. On the other
hand, the valences of vertices often have an impact on
how certain mesh processing algorithms perform, and
irregular vertices are undesirable [33]. In this part, we
provide an optional step to improve the remeshing qual-
ity, especially the properties of angle bound and vertex
valence. In angle bound optimization, the user is re-
quired to specify the desired lower/upper angle bound.
The vertices with one triangle angle that is bad (here
“bad” means that this angle is not within the required
angle bound) are removed. In valence optimization, the
vertices whose degrees are less than 5 or larger than 7
are removed. Then we keep tracking of the new gener-
ated fragments and fill them using the method described
in Sec. 4.3. The optimization step terminates when there
are no bad angles and each vertex valence is 5, 6 or 7.

5. Experimental Results

We demonstrate the experimental results to verify the
effectiveness and the validity of the proposed algorithm.
First, we perform the spectral analysis of the sampling
results, as well as the remeshing quality of the extract-
ed meshes. Next, we evaluate the performance and the
memory usage of the proposed method. To the best of
our knowledge, [1] is the only approach that can achieve
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(c)

(a) (b)

Figure 5: (a) The yellow triangles are fully covered by samples and
the light triangles are valid. (b) Each valid triangle is subdivided into 4
small triangles, and the fragments are in light color. (c) Generate three
new samples (red) in the fragments then there are no valid triangles.

adaptive maximal sampling on surfaces. Therefore, here
we focus the comparisons of our algorithm with [1]. All
the results presented in this paper are conducted on a PC
with Intel i7-3770, 3.40 GHz CPU, 16GB memory, and
a 64-bit Windows 7 operating system.
Spectral analysis. We apply the technique of differen-
tial domain analysis [34] to analyze the spectral proper-
ties of the point sets sampled by our algorithm, includ-
ing power spectrum, radially average and anisotropy.
Fig. 7 and Fig. 8 illustrate these standard spectral mea-
surements for uniform and adaptive samplings, respec-
tively. Note that for the Squirrel model, the MPS point
sets used for spectral analysis are generated by our algo-
rithm without optimization. For the Max-Planck model,
the MPS point sets have been optimized using our opti-
mization framework. From this figure, we can see that
our approach can generate high-quality samples that ex-
hibit the blue noise characteristics. Furthermore, our
optimization framework preserves the blue noise prop-
erties of the sampled point sets very well.
Remeshing quality. Our mesh extraction step accom-
panied with the mesh optimization framework can gen-
erate high-quality remeshings as the same as [1], shown
in table 1. We have verified that for uniform remesh-
ing, our method produces meshes with the same angle
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Figure 7: Spectral analysis of the uniform sampling (with ∼ 3500
samples) on Squirrel and Max-Planck.
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Figure 8: Spectral analysis of the adaptive sampling (with ∼ 5200
samples) on Squirrel and Max-Planck.

bounds [30◦, 120◦], edge length bounds [r, 2 r], and the
triangle area bounds [

√
3

4 r2, 3
√

3
4 r2]. These bounds are

very important for applications like finite elements anal-
ysis [32].

However, thanks to our local clustering-based ap-
proach for mesh extraction, our framework can not only
handle general input surfaces as in [1], but also the input
surfaces that with thin-sheet structures or nearby region-
s, e.g., the mouth and legs of the Homer model. The
Euclidean distance is used in [1] for conflict checking
in a global uniform grid structure, and this strategy will
cause some topological problems in thin-sheet regions
or nearby regions that have small Euclidean distance but
large geodesic distance. As shown in the left of Fig. 9,
when the sampling radius is not adapted to the local fea-
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Figure 9: Comparison of remeshing quality. Left : remeshing result
of [1]. The non-manifold vertices and edges are shown in red and
green color, resp. Right : remeshing result of our algorithm. There are
about 2000 vertices in each model.

Model Method |X| Qmin Qavg θmin θmax V567 dH

Homer
Yan [1] 2.5K 0.611 0.913 33.63 105.51 100 0.28

Our 2.5K 0.632 0.921 38.05 103.07 100 0.31

Gray’s Klein Bottle
Yan [1] 10.7K 0.627 0.918 39.97 102.81 100 0.25

Our 10.7K 0.653 0.941 39.26 98.14 100 0.23

Klein Bottle
Yan [1] 3.5K 0.615 0.896 34.30 104.35 99.6 0.35

Our 3.5K 0.628 0.916 37.61 102.92 100 0.32

Table 1: Comparison of remeshing qualities with Yan and Wonka [1],
using the models shown in figures 9 and 10. |X| is the number of sam-
pled points. The definition of these standard quality measurements
can be found in [1]. We omit them here.

ture size of the input mesh, the method of [1] will gen-
erate non-manifold topology in nearby regions (the lips
and leg region). In contrast, since our algorithm uses a
localized scheme, we can always obtain the valid topol-
ogy in such difficult regions (see Fig. 9(right)). Fig. 10
shows more results that the input surfaces have thin-
sheet structure (top) or even self-intersections (bottom).
Performance. We compare the algorithm efficiency
with the previous work [1]. We use the same input mesh
(12k triangles) and the same sampling radius for both
methods. Fig. 11(a) shows the timing curves of our al-
gorithm compared to [1]. As illustrated in this figure,
our algorithm achieves 4 to 5 times speedup over [1] for
both of uniform and adaptive sampling. The speedup
comes from two factors. First, the approach of [1] has
to build the 3D regular triangulation and power diagram
for gap computation and filling, that limits the perfor-
mance of the algorithm. While in our approach, we only
perform a series of fragment sampling and subdivision.
The algorithm always terminates after several levels of
recursion (5-8 times in our tests). Second, a uniform
gird is used in [1] for conflict checking. For a generated
sample point with radius rcur, a subset of d 2 rcur

rmin/
√

3
e3 grid

cells will be checked. In our implementation, only a lo-

cal patch of connected triangles will be traversed, which
improves the speed drastically.

In addition, since our method generalizes the fast
simple MPS algorithm of [9] to curved surfaces, here
we provide a comparison with it. We use a triangulated
planar square domain as our input and a unit square as
the input of [9]. Fig. 11(c) shows that our running time
is as fast as [9] for the 2D uniform sampling.
Memory usage. We compare the memory consump-
tion of our algorithm with the previous method [1] in
Fig. 11(b). Our memory usage mainly includes the
triangle buffer of the subdivided mesh M′, the result-
s buffer of points and the extra memory used for lo-
cal conflict checking and storage of the empty region-
s. Although the uniform 3D grid used in [1] is much
simpler, it requires to store other additional information
for conflict checking. In addition, the extra memory is
also used in [1] to store the regular triangulation and
the power diagram. Fig. 11(b) shows that our algorith-
m uses a factor of 7 less memory than [1] for uniform
sampling and a factor of 5 less memory for the adaptive
sampling.

6. Conclusion

This paper presents a simple method for maximal
Poisson-disk sampling on mesh surfaces. Our approach
improves both the sampling quality and the algorithmic
efficiency upon previous work by using a simpler data
structure for conflict checking and empty region track-
ing. Unlike the previous work [1], we are able to handle
mesh surfaces with thin-sheets structure and even with
self-intersections. One limitation of our work is that the
connectivity information of the input mesh is required,
so that we are not able to handle triangle soups or noisy
data.

In the future, we would like to look for a GPU im-
plementation to further improve the efficiency. We are
also interested in generating MPS inside 3D shapes for
volumetric tetrahedral meshing.
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Figure 10: More comparisons of the remeshing quality on thin-sheet regions (top) and self-intersecting surface (bottom). In each row, left :
remeshing result of [1], where the non-manifold vertices and edges are shown in red and green color, resp. right : remeshing result of our algorithm.
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