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Abstract

We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly
process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the
contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving
directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaning-
ful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into
account during the decomposition process by considering the upright orientation of the input models. Our framework
also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally,
we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our
framework works well for a variety of complex models.
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1. Introduction

The disassembly of 3D models is a process that in-
volves the decomposition of a given assembled model
into individual parts, without breaking any part. Design-
ing a disassembly is also an important concept of Green
Design. As discussed by Knoth et al. [1], for a product,
“almost all end-of-life possibilities – upgrade, reuse, re-
cycling of materials – require some form of disassem-
bly.” Disassembly can provide an optimal solution for
repair and maintenance, such as for the replacement of a
model’s damaged parts or performing equipment main-
tenance. Furthermore, product design for assembly can
be facilitated by performing disassembly analysis. Dis-
assembly analysis either leads to a feasible assembly se-
quence (by reversing the disassembly steps) or alerts the
designers of an assembly problem in the product design
that has to be fixed [2].

As mentioned above, disassembly has numerous ap-
plications in the domain of industrial engineering. How-
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ever, currently disassembly remains mainly a manual
process [3]. Complex 3D objects are typically com-
posed of numerous components, and understanding the
spatial relationships of parts within the assembly is d-
ifficult. Thus, skilled humans are needed to generate
disassembly sequences with specific tools.

To the best of our knowledge, research on disassem-
bly in computer graphics is just at the beginning. Ex-
isting works focus on designing assembly sequences [4]
and generating exploded view diagrams [5, 6]. In these
papers, the authors use blocking constraints to derive
moving directions and the ordering of individual parts.
We build on these initial works and improve them for
our purposes. First, we noticed that solving the disas-
sembly problem based only on blocking constraints is
insufficient. Stability and the needs of illustration must
also be considered. Second, previous works also exhibit
a number of limitations, for example, the moving di-
rections of one part contain only six directions, and the
creation of part hierarchies for an assembly is performed
manually.

In this paper, we present a framework for the auto-
matic disassembly of 3D models and provide several
visualization tools to illustrate the process. In our ap-
proach, we use the geometric properties of individual
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Figure 1: Disassembly sequence of the bench vice model generated by our framework.

parts to retrieve their motion parameters (e.g., transla-
tional axis, separation direction and distance) and com-
pute the hierarchical structure of the model. We ob-
served that using the blocking constraint to determine
the disassembly order for sub-assemblies might be un-
stable. To overcome this issue, we provide an interface
that enables users to specify some fixed parts (e.g., bot-
tom grey parts in Figure 1). We then use this informa-
tion to perform a top-down and constrained disassem-
bly. Finally, we develop visualization methods to illus-
trate the disassembly process automatically.

The contributions of our work include: 1) an im-
proved method for the calculation of the blocking rela-
tionships between parts based on their geometric prop-
erties; 2) an automatic technique that clusters individual
parts into groups; and 3) new constraints for stable dis-
assembly.

1.1. Related Work
Although assembly planning has been a classic prob-

lem for a long time, studies on disassembly only became
popular in recent decades and in the area of robotic-
s [2, 1, 3]. The input of their system includes the ge-
ometrical models of products and the different features
of parts stored in a database (e.g., the type of each part
and the style of contacts between parts). Based on such
information, a disassembly theory is applied to compute
the optimal disassembly sequence from all possible can-
didate solutions. However, these plans are only used by
robotic machines and do not present any ways to depict
disassembly operations for humans.

Assembly/disassembly planning. In the field of
computer graphics, many works have focused on assem-
bly planning and visualization for 3D models [7, 4, 8, 9].

For example, Agrawala et al. [4] combine the planning
with presentation techniques to design effective step-by-
step assembly instructions by automatically determin-
ing the separation order and directions. The limitation
of their work is that the direction to which one part can
move only contains six principal directions (consider
the green oblique cylinder in Figure 1). The work of Xin
et al. [9] illustrates the puzzle assembly or disassem-
bly process, in which they aim to design and create burr
puzzles from 3D models. Song et al. [8] develop a con-
structive approach for generating recursive interlocking
puzzles. However, only one specific sequence of as-
sembly and disassembly exists for such an interlocking
puzzle, making it unsuitable for general mechanical as-
semblies.

Exploded views. The exploded view diagram is a
powerful tool used to convey the spatial relationships
between components within complex objects. To gen-
erate such diagrams, illustrators design many methods
to explode one part from others with the proper direc-
tion and distance. Agrawala et al. [4] and Li et al. [6]
use blocking information to infer the exploded direc-
tions. The latter also includes an interface that enables
users to view the parts of interest. However, the part-
s of their input models are organized into a hierarchy
manually beforehand. Li et al. [5] present a system to
allow interactive cutaway illustrations for complex 3D
models. Tatzgern et al. [10] generate compact explo-
sion diagrams by finding similar sub-assemblies and on-
ly rendering the representatives. Most of these works
generate traditional static diagrams or provide an inter-
active way that requires user’s participation.

Shape analysis. Shape analysis has been demonstrat-
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input segmentation graph hierarchy visualization

Figure 2: Flowchart of our framework. Given an assembled 3D model, our framework first analyzes the geometry of each part and retrieves
the separated direction and distance information. The parts are then automatically grouped into sub-components. Finally, we provide various
visualization tools to illustrate the disassembly process.

ed to help deduce the characteristic properties of man-
made objects. Recently, understanding the higher-level
representations of 3D models has received considerable
interest (see survey [11]), including symmetry detec-
tion [12, 13, 14], upright orientation inference [15] and
shape abstractions [16]. Benefitting from these tech-
niques, a wide spectrum of applications are spawned,
such as shape manipulation [17, 18, 19], shape synthe-
sis [20], motion analysis [21, 22, 23, 24] and compu-
tational furniture design [25]. In addition, many works
focus on the analysis of individual parts within an in-
put model, which are similar to our framework. Mitra et
al. [22] analyze the interactions and motions of mechan-
ical parts based on recent advances in geometric shape
analysis. Jain et al. [20] present a system to interpolate
new shapes from two database shapes by decomposing
input shapes and recombining individual parts accord-
ing to constraints deduced through shape analysis.

2. Principles for Disassembly

We extend the conventions from traditional illustra-
tions [26, 27, 6] for mechanical assemblies to principles
that are suitable for the disassembly process. Although
disassembly is distinct from assembly, we can still ob-
tain some heuristics from the assembly process [4], be-
cause the sequence of assembly is usually the reverse of
that of disassembly.

Hierarchy of parts. Generally, a mechanical assem-
bly can be divided into several sub-assemblies. Dur-
ing the disassembly process, if a sub-assembly can be
removed entirely, people prefer that the parts within
this sub-assembly are disassembled later after the sub-
assembly is separated.

Stability. In actual disassembly studies, stability
analysis is used to investigate whether sub-assemblies
can be collapsed by gravity. Some parts usually per-
form a supporting function in an assembly. Such hold-
ing parts should be fixed, and unstable sub-assemblies
should be pruned out early in the disassembly process.

Step-by-step operations. Disassembly sequences
are listings of subsequent disassembly operations.
Showing all these disassembly operations in a single
static diagram hinders users from identifying the order
in which parts are removed. On the other hand, depict-
ing the disassembly process step-by-step using anima-
tion is easy to understand and follow.

Visibility. Visibility serves an important function in
visualization. The sub-assembly being removed must be
visible to users. A notable exception is that not all the
parts in a symmetry group can be seen simultaneously.

Non-destructive disassembly. Depending on the
goals, disassembly has two main types [28]. One is
“destructive disassembly”, in which a part is removed
from a previously assembled product by destroying or
damaging some other parts of the product. The other
is “non-destructive disassembly”, in which each of the
parts can be removed without affecting any of the other-
s. Our work focuses on non-destructive disassembly for
the purpose of reuse, such as equipment maintenance
and recycling of materials.

3. Overview

Our framework has two main components: shape
analysis and disassembly illustration. Given an input
assembled model, our system first performs shape anal-
ysis. In this step, each part of the input model is seg-
mented and a contact graph is built for the parts. The
constrained disassembly sequences are computed based
on the contact graph. Our system then uses various vi-
sualization techniques (e.g., animation and viewpoint
selection, etc.) to illustrate the disassembly process.
Figure 2 shows the flowchart of our system.

4. Disassembly Computation

In this section, we present the framework for analyz-
ing and generating the disassembly sequences of input
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Figure 3: Left: Trolley assembly. Right: Contact graph. Nodes rep-
resent the parts, and edges store the contacting and blocking informa-
tion. Each edge is composed of two opposite directed edges.

models. The input of our framework is a 3D geometric
model M, which consists a set of interlocked individu-
al parts {pi}

n
i=1. Each part pi is assumed to be clean so

that it is 2-manifold. In the remainder of this section,
we first introduce an improved version of the contac-
t graph, which is used for determining the disassembly
sequence (Section 4.1). Then, we present a simple algo-
rithm to group the individual parts into sub-assemblies,
which can be used for hierarchical decomposition (Sec-
tion 4.2).

4.1. Contact graph construction

To represent the blocking relationships, Agrawala et
al. [4] define the directional blocking graph which s-
tores the separating directions of parts. Li et al. [6]
extend the directional blocking graph to the explosion
graph. However, auxiliary data structures are needed
in their systems to encode the low-level computations,
including whether parts touch or block any others. Fur-
thermore, they use a local translational blocking (LT-
B) cone [29] to calculate the blocking directions. It is
complicated to compute the LTB cone and partition the
translational motion sphere.

Based on the observation that the contact faces
strongly restrict the directions along which one part is
to be removed, we generalize the contact graph of [22]
by encoding the contact faces into the graph. A contac-
t graph is denoted by G = {N, E}, where N is the set
of nodes {ni} and E is the set of the directed edges {ei j}

connecting the nodes in contact. Figure 3 illustrates the
contact graph used in our framework, which is analo-
gous to the half-edge data structure. Each node ni corre-
sponds to a part pi, whereas each directed edge ei j stores
the contact and blocking information of pi with respect
to p j. To construct the contact graph, we first analyze
the geometrical properties of individual parts and detect
the contact relationship between parts. We then use the

Figure 4: Segmentation results. Sharp edge loops are shown in yellow.
Segmented patches are displayed in different colors.

contact faces to infer the separation parameters of the
parts.

Part segmentation. We follow the approach of Mi-
tra et al. [22] to segment an individual part into patch-
es by extracting sharp edge loops (see Figure 4). For
each patch, we fit a simple low degree algebraic sur-
face (including planes, spheres, cones and cylinders) to
detect the type of the patch. We then detect planar circu-
lar loops, which are always incident to separating axes.
Furthermore, we cluster the circular loops into differ-
ent groups according to their axes and consider these
clustered axes as the potential set D of the separating
directions.

Contact detection. Given the input model M, we
first compute the shortest distance between each pair of
parts. If the distance is smaller than a threshold ε (we
use ε = ldiag × 10−4, where ldiag is the diagonal length
of the bounding box of the input model), we mark the
pair of parts as being in contact. We then add two edges
in opposite directions between the corresponding nodes
and store the contact faces in the half-edges. For exam-
ple, if parts pi and p j are in contact, the edge ei j stores
the contact faces that belong to part pi, and its opposite
edge e ji stores the contact faces of p j.

Surface fitting. For each part, the contact faces be-
tween this part and others have been stored in the corre-
sponding edges. Notably, these contact faces can also be
segmented into small regions by using sharp edge fea-
tures. We call such a region as contact region. However,
the faces in a contact region may have different normal-
s. Determining which normal direction can be used to
compute the separation direction is difficult. To miti-
gate this problem, we fit the contact regions with planes
or cylinders (see Figure 5). The fitted surfaces and their
normals are also stored in the corresponding half-edges.
Moreover, we identify a part as a cylindrical part if all
of its fitted surfaces are cylinders.

Determine separation direction. Recall that in the
segmentation step, we have computed the potential set
D of removal directions and then fitted contact surfaces
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Figure 5: Fitted surfaces for a part. Left: Input geometry model of a bench vice assembly. Middle: For the yellow part, the red regions denote the
contact faces with respect to other parts. We translated one of the contact parts slightly for a better view. Right: Four fitted planes (two of them are
in the unseen slot position) and two cylinders to the contact faces.

with their normals for each part pi. We cut the direction
di ∈ D from the set D if a fitted plane with normal di-
rection ni exists and if di · ni ≈ 1. Then the new set D′

becomes the set of separating directions for part pi. In
Figure 5, the yellow part p has only two potential sepa-
ration directions. The method described here is suitable
for non-cylindrical parts. For a cylindrical part, it usu-
ally moves only along the two directions of the axis of
this cylinder.

Having obtained the set D′ of unblocked directions
along which a part pi can be removed, we follow the it-
erative approach of Li et al. [6] to choose the separation
direction from D′ and to determine the disassembly or-
der and separation distance by computing the minimum
distance required to escape the bounding box of the un-
removed parts in contact with pi.

4.2. Part hierarchy
Most complex 3D assemblies exhibit some hierarchi-

cal structures. Disassembling the sub-assemblies entire-
ly before removing their individual parts is reasonable.
However, to the best of our knowledge, no automatic
algorithm can partition an assembly into groups of sub-
assemblies. Given this interesting problem, we conduct
a user study that asks 43 participants to partition the as-
semblies used in this paper so that we may understand
how people cluster/segment the assemblies. One-third
of the participants (14) have a mechanical engineering
background, and the others (29) are people without such
a background. Given the photograph of a model in
which each part has been labeled with a number, the
participants are asked to partition the model and record
the reasons for doing so. Based on this user study, we
summarized three principles that can be used to guide
the partition.

Symmetry. The symmetric parts are always disas-
sembled in the same manner. To simplify the disassem-
bly sequence, we collect the symmetric parts into one
group and disassemble them at the same time. Figure 6
(left) shows a result of symmetry detection.

Coaxial. Coaxial parts usually have the same sepa-
rated direction. Given a pair of parts, if their axes are
contained by a single line, we classify the two parts as
coaxial (see Figure 6 (middle)). The coaxial parts are
clustered into the same groups.

Contact relationship. It is obvious that the disjoin-
t parts can be easily separated. Rather than using this
principle to partition the assemblies, we apply it to ver-
ify whether a part is in contact with any others in the
same group. If a part is not in contact with others, we
remove it from its group.

In this paper, we partition the assemblies in two steps.
We first detect the symmetric and coaxial parts to estab-
lish an initial partition. Symmetric parts are detected by
computing the distance between two vectors, the three
elements of which are the eigenvalues of principal com-
ponent analysis (PCA), which are computed using all
the vertices (including internal vertices) of parts. On
the other hand, we use the definition of coaxial relation-
ship to detect the coaxial parts. Next, for each group C,
we eliminate the part p from C if we cannot find at least
one part q ∈ C that is in contact with p or is symmetric
to p. We traverse all groups to determine the final parti-
tion. However, deriving a completely correct partition is
difficult, because of lacking the functional and semantic
properties of parts. We also provide a user interface that
enables users to correct the misclassifications.

To determine the directions along which one group C
can be removed, we compute the intersection between
the directions of every part p in this group:

Dirs(C) =
⋂
∀p∈C

Dirs(p) (1)

Here, the function Dirs represents the set of possible
removal directions for a part or a group.

5. Disassembly with Constraints

We have demonstrated that the disassembly se-
quences can be efficiently generated by blocking con-
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Figure 6: Symmetric (left) and coaxial (middle) parts are highlighted by a cyan color. We render other parts in a semi-transparent mode. (Right)
Grouping result. Each group is drawn using the same color.

straint, such that no parts will collide with others. How-
ever, in many cases, the generated disassembly opera-
tions are geometrically feasible but are not in line with
the actual situation. For the F15 model (see Figure 8),
the left and right frames are first to be disassembled be-
fore the gears and axles in the middle are removed. The
middle parts will then be collapsed by gravity because
of the lack of holding devices. Thus, additional con-
straints are needed to implement more realistic disas-
sembly. In this section, we describe two new constraints
which take the stability principle into account.

5.1. Top-down disassembly
When we stack objects in our daily life, we natural-

ly proceed from bottom to top under the influence of
gravity. Similarly, the lower parts are usually assumed
to support the upper parts in assemblies. On the other
hand, a base part always lies on the ground plane (see
Figure 7) to support the whole object. The base part can
be automatically detected by adapting the upright orien-
tation approaches [15]. However, in our framework, we
provide a simple user interface to enable a user to spec-
ify the base part and its upright orientation. Once the
base part is specified, we perform a top-down approach
to disassemble the input models.

Figure 7: Examples of base part (left) and fixed parts (right).

In Section 4.1, we get a set of directions for the base
part by clustering the axes of fitted circles. We rank
these directions based on the number of elements in
their corresponding clusters. The direction of the clus-
ter with the most elements is selected as upright orienta-
tion of the model. We then find the global lowest vertex

v of the input model along the upright direction. The
center c of each group and the lowest vertex v form a
vector −→vc. We compute the height of each group from
the ground plane as the length of projection of −→vc along
the upright direction. Each time we disassemble the up-
permost group if it can be removed.

If the model has no obvious base part, e.g., the stool
model in Figure 9, we provide a tool for the user to spec-
ify the upright direction.

5.2. Disassembly with fixtures

A fixed part is defined as the unchanged part through
the whole disassembly sequence (see Figure 7). In the
real disassembly process, fixed parts are used to keep
the intermediate sub-assemblies stable. In our frame-
work, we provide a friendly interface for users to spec-
ify the fixed parts. Given that fixed parts cannot be re-
moved, we first traverse each group to delete the fixed
parts from this group and then place all fixed parts into
one group. Next, we recompute the disassembly orders
of parts using both the blocking and fixed constraints.

It should be noted that once we identify the fixed part-
s, it might conflict with the part hierarchies and sub-
assemblies. Consider the three parts (the green axle
and two yellow gears) in the lower position of the F15
model (see Figure 8(a)), they are partitioned into one
group before the user specifies the fixed parts. When
we specify the left and right frames as fixed parts, the
three parts cannot be removed together. In this case, we
have to break the group into two groups, with only one
group containing the axle while the other containing two
gears.

6. Disassembly Illustration

To allow the users to better understand the disassem-
bly process, we develop several visualization tools to
illustrate this process.
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6.1. Viewpoint selection

In the disassembly process, the currently removed
group must be visible. Meanwhile, the parts that are
not yet removed should also be visible to provide con-
text for the ongoing disassembly operation. To achieve
these goals, we build a regular icosahedron at the cen-
ter of bounding box of the model. Then twenty cameras
with a perspective toward the center of the model are
placed at the vertices of the icosahedron. The size of
the icosahedron is large enough to ensure that the en-
tire model can be seen from each viewpoint. To selec-
t the best viewpoint for the currently removed group,
we adopt the viewpoint Kullback-Leibler distance (VK-
L) [30] in our framework. Given a viewpoint v, we de-
fine the VKL as follows:

KLv =

Nc∑
i=1

ai

at
log

ai
at

Ai
At

(2)

where Nc is the number of groups of parts, ai is the pro-
jected area of group i, at =

∑Nc
i=1 ai, Ai is the actual area

of group i and At =
∑Nc

i=1 Ai is the total area of the mod-
el. Ai can be computed directly from the geometry of
the parts. To compute the projected area ai, we render
the group i with a single color and count the pixels of
this color in the frame buffer as ai.

6.2. Animation

Animation is the most natural approach to illustrate
the disassembly process. In our framework, we gener-
ate a sequence of frames that illustrates every operation
in the disassembly process. After obtaining the hier-
archy of parts, we disassemble the groups iteratively.
Starting from the first group, we disassemble this group
from the rest of the assembly in a certain separated di-
rection, a special camera position and a special color.
The separation distance of this group is set as the min-
imum distance to escape the bounding box of the unre-
moved parts in contact with this group. Then, each part
in this group is removed separately. We render and re-
peat this process until all the groups have been removed
and placed in their final positions.

6.3. Rendering and highlighting

To distinguish the different groups better through the
disassembly process, we employ a non-photorealistic
rendering style where each group is rendered by a single
color. Moreover, for each disassembly operation, we
highlight the currently disassembled parts and render
the other parts in a desaturated manner, which is sim-
ilar to [22]. Figures 1 and 8 give two such examples.

7. Results

In this section, we present selected disassembly re-
sults using our framework. We have tested a wide range
of 3D models, from mechanical assemblies to furniture
models, as shown in Figures 1, 8 and 9. Our framework
is implemented in C++ using the open-source platfor-
m Graphite1. We use the open-source library PQP [31]
for computing the distance between parts, and we adapt
the code of [32] for surface fitting. The experimental
results shown in this paper are conducted on an Intel D-
ual Core 2.40 GHz CPU with 4GB memory and a 64-bit
Windows 7 operating system.

All the disassembly results generated by our frame-
work followed the principles proposed in Section 2. The
base part and fixed parts are specified by users, excep-
t in the stool model. We use animated illustrations to
visualize the disassembly sequences, which are shown
in our accompanying video. The disassembly processes
in Figures 1 and 8 are illustrated by generating dis-
assembly instructions step-by-step, which shows how
each part is to be separated from the remainder of the
assemblies. In Figure 9, we demonstrate three static fig-
ures for each model by employing a non-photorealistic
rendering style. First, each part of an input model is
identified and visualized with a special color. In the
second figure, we cluster the individual parts into mean-
ingful sub-assemblies based on the algorithm described
in Section 4.2. Finally, we generate the exploded views
in which each part is in its final separated position. The
view angles are automatically selected.

Model Statistics Run time(sec)
Model Nt Np Ng Tp Tc Th Ttotal

Bench vice 15K 9 7 1.49 5.33 0.109 6.93

Trolley 23K 25 10 1.55 10.64 0.391 12.58

F15 92K 20 12 61.1 51.9 1.2 114.2

Stool 3.3K 17 10 0.093 2.75 0.047 2.89

Cabinet 30K 36 18 1.8 27.5 0.7 29.9

Clamp 74K 36 15 13.6 106.9 1.52 122.0

Aparelho divisor 203K 81 18 80.6 586.8 10.9 678.3

Table 1: Performance statistics. Here Nt is the number of triangles
in the input geometry model, Np is the parts number, and Ng is the
number of partitioned groups. Tp, Tc and Th respectively represent
the cost time for part analysis, computing the contact graph and com-
puting the part hierarchy. The total time Ttotal is listed on the right.

Comparisons. Notably, using the upright direction
information and fixed parts can improve the stability of

1http://alice.loria.fr/WIKI/index.php/Graphite
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(a) (b) (c) (d) (e)

(f)(g)(h)(i)(j)

Figure 8: (a): Input geometry model of F15, the individual parts of which have been clustered into several different groups. (b) – (j): Illustrating
the step-by-step disassembly operations of this model. In this sequence, we show our visualization methods of rendering, highlighting and camera
movement.

the disassembly process, compared with previous work-
s. For example, for the middle part of the clamp in Fig-
ure 9(c), the method of Agralawa et al. [4] or Li et al. [6]
may disassemble the dark green fastener first, as this
fastener can be removed without violating the blocking
constraints. Consequently, without any holding device,
the parts above this fastener will collapse because of
gravity. In our framework, we disassemble this fastener
later after the parts above it using a top-down approach.
In addition, we allow users to specify the fixed parts and
keep such parts unchanged throughout the disassembly
process. This technique also guarantees the stability ef-
fectively, as shown in Figure 8.

Furthermore, while the parts of a model in previous
works [4, 6] can only move along the three principal ax-
es of the model, our method enables each part to be sep-
arated in any reasonable direction. For the green part in
Figure 1, we first extract the contact faces between this
part and others. We then fit three cylinders to these con-
tact faces, and thus we identify this part as a cylinder
part. As mentioned earlier in Section 4.1, the removal
directions of this part are the two directions of this cylin-
der’s axis.

Performance. We evaluate the performance of our

method in Table 1, including the statistics of each mod-
el (e.g., the number of parts) and the computation time
for each stage. As it shows, the time mainly depends
on the part analysis and the contact graph computation,
which are related to the mesh size and the number of
parts respectively. It also demonstrates that our method
can deal with complex models such as the Aparelho Di-
visor model, which is composed of as many as 81 parts.

8. Conclusions and Future Work

In this paper, we present an approach for the disas-
sembling complex 3D models and visualizing the dis-
assembly processes. The key techniques of our work
include an improved version of the contact graph that
is used for determining the removal directions of part-
s based on shape analysis, an automated method to
partition the input complex model into groups of sub-
assemblies and two constraints for stable disassembly.

The current framework has several limitations. First,
our system can only handle input models with clean ge-
ometry. Second, similar to most works on generating as-
sembly sequences and exploded views, all parts can be
removed only via single linear translations. We cannot
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deal with complex moving paths, e.g., a screw usual-
ly has to be removed by a helix motion, and removing a
nut from inside a car engine follows a sequence of linear
translations. Third, user assistance is required to speci-
fy the base part to compute the upright direction, which
prevents our framework from being fully automatic. We
would like to address these issues in our future work.
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Figure 9: A gallery of examples generated by our framework: (a) Stool, (b) Cabinet, (c) Clamp, and (d) Aparelho Divisor. For each model, left:
shows its distinct parts in a single color. Middle: parts are partitioned into different groups. Right: displays disassembly result with each part in its
final position. To display the internal structure of Aparelho Divisor model, we render its containers in a wire-frame mode.
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